Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 525
Filter
1.
Int J Mol Sci ; 25(18)2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39337477

ABSTRACT

Proteins form the fastest-growing therapeutic class. Due to their intrinsic instability, loss of native structure is common. Structure alteration must be carefully evaluated as structural changes may jeopardize the efficiency and safety of the protein-based drugs. Hydrogen deuterium exchange (HDX) has long been used to evaluate protein structure and dynamics. The rate of exchange constitutes a sensitive marker of the conformational state of the protein and of its stability. It is often monitored by mass spectrometry. Fourier transform infrared (FTIR) spectroscopy is another method with very promising capabilities. Combining protein microarrays with FTIR imaging resulted in high throughput HDX FTIR measurements. BaF2 slides bearing the protein microarrays were covered by another slide separated by a spacer, allowing us to flush the cell continuously with a flow of N2 gas saturated with 2H2O. Exchange occurred simultaneously for all proteins and single images covering ca. 96 spots of proteins that could be recorded on-line at selected time points. Each protein spot contained ca. 5 ng protein, and the entire array covered 2.5 × 2.5 mm2. Furthermore, HDX could be monitored in real time, and the experiment was therefore not subject to back-exchange problems. Analysis of HDX curves by inverse Laplace transform and by fitting exponential curves indicated that quantitative comparison of the samples is feasible. The paper also demonstrates how the whole process of analysis can be automatized to yield fast analyses.


Subject(s)
Deuterium Exchange Measurement , Protein Array Analysis , Spectroscopy, Fourier Transform Infrared/methods , Deuterium Exchange Measurement/methods , Protein Array Analysis/methods , Proteins/chemistry , Hydrogen/chemistry
2.
bioRxiv ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39229138

ABSTRACT

Arginyltransferase 1 (ATE1) catalyzes arginylation, an important post-translational modification (PTM) in eukaryotes that plays a critical role in cellular homeostasis. The disruption of ATE1 function is implicated in mammalian neurodegenerative disorders and cardiovascular maldevelopment, while post-translational arginylation has also been linked to the activities of several important human viruses such as SARS-CoV-2 and HIV. Despite the known significance of ATE1 in mammalian cellular function, past biophysical studies of this enzyme have mainly focused on yeast ATE1, leaving the mechanism of arginylation in mammalian cells unclear. In this study, we sought to structurally and biophysically characterize mouse (Mus musculus) ATE1. Using size-exclusion chromatography (SEC), small angle X-ray scattering (SAXS), and hydrogen deuterium exchange mass spectrometry (HDX-MS), assisted by AlphaFold modeling, we found that mouse ATE1 is structurally more complex than yeast ATE1. Importantly, our data indicate the existence of an intrinsically disordered region (IDR) in all mouse ATE1 splice variants. However, comparative HDX-MS analyses show that yeast ATE1 does not have such an IDR, consistent with prior X-ray, cryo-EM, and SAXS analyses. Furthermore, bioinformatics approaches reveal that mammalian ATE1 sequences, as well as in a large majority of other eukaryotes, contain an IDR-like sequence positioned in proximity to the ATE1 GNAT active-site fold. Computational analysis suggests that the IDR likely facilitates the formation of the complex between ATE1 and tRNAArg, adding a new complexity to ATE1 structure and providing new insights for future studies of ATE1 functions.

3.
Methods Enzymol ; 704: 59-87, 2024.
Article in English | MEDLINE | ID: mdl-39300657

ABSTRACT

This Chapter describes methods for the biosynthetic substitution of the mononuclear, non-heme iron in plant and animal lipoxygenases (LOXs). Substitution of this iron center for a manganese ion results in an inactive, yet faithful structural surrogate of the LOX enzymes. This metal ion substitution permits structural and dynamical studies of enzyme-substrate complexes in solution and immobilized on lipid membrane surfaces. Representative procedures for two LOXs, soybean lipoxygenase (SLO) from plants and human epithelial 15-lipoxygenase-2 (15-LOX-2) from mammals, are described as examples.


Subject(s)
Arachidonate 15-Lipoxygenase , Glycine max , Iron , Humans , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/chemistry , Glycine max/enzymology , Iron/chemistry , Iron/metabolism , Lipoxygenase/chemistry , Lipoxygenase/metabolism , Animals , Lipoxygenases/metabolism , Lipoxygenases/chemistry , Manganese/chemistry , Manganese/metabolism
4.
J Chromatogr A ; 1736: 465384, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39305539

ABSTRACT

Natural bile acids, a class of steroids with a valeric acid side chain at the C-17 position, present significant challenges in separation and analysis due to structural similarities, isomerism, and large polarity differences. Therefore, advanced analytical methods are essential for the accurate identification and quantification of bile acids. This study conducted a comprehensive qualitative analysis of bile acids by integrating liquid chromatography-tandem mass spectrometry (LC-MS/MS), hydrogen-deuterium exchange tandem mass spectrometry (HDX-MS/MS), and quantitative structure-retention relationship (QSRR) methods. Firstly, LC-MS/MS conditions were optimized to enhance chromatographic separation and improve the reliability of characteristic fragment ions. MS/MS fragmentation rules for bile acids were derived from the mass spectral data of bile acid standards and validated through HDX-MS/MS experiments. Secondly, potential bile acids in snake bile were identified based on these validated fragmentation rules, and a QSRR model was established to predict the retention times of the proposed structures. Thirdly, HDX-MS/MS was applied to assist in identifying bile acid isomers. Finally, a total of 150 bile acids, including 11 free bile acids (free BA), 5 glyco-bile acids (GBA) and 134 tauro-bile acids (TBA), were detected in snake bile. Thirteen bile acids were accurately characterized by comparing their retention time and MS/MS spectra with standards. Forty-nine bile acids were reasonably annotated using the QSRR model and HDX-MS/MS. This study is notable for being the first to utilize the QSRR and HDX-MS/MS techniques for the annotation of bile acids in snake bile, providing a robust framework for the structural elucidation of these compounds.

5.
Protein Sci ; 33(7): e5074, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38888268

ABSTRACT

Adeno-associated virus (AAV), a widely used gene therapy vector, is a small, nonenveloped virus that contains a single-stranded DNA genome with a maximum length of 4.7 kb. Despite extensive biophysical and structural characterization, many aspects of AAV functions remain elusive. This knowledge gap is primarily due to a lack of structurally resolved dynamic information and the absence of structural coverage of functionally critical segments on the AAV capsid. Here, we developed a protocol to study AAV structural dynamics by hydrogen-deuterium exchange mass spectrometry (HDX-MS), a powerful method for monitoring protein structure stability and dynamics in solution. We performed HDX-MS measurements on AAVs without or with different DNA payloads of different sizes, and obtained detailed dynamic information on the entire AAV sequence including the two functionally important segments not previously structurally characterized. The unique N terminus of the capsid protein VP1 (VP1u) was found to adopt a highly dynamic and unstable conformation with low HDX protection across the entire region, whereas the presence of a DNA payload increased its protection. The VP1 and VP2 shared region (VP1/2) showed no measurable protection, with or without DNA. Differential HDX between empty and full capsid samples allowed us to identify potential new DNA-capsid interaction sites located primarily around the five-fold channel, which differ from the three-fold pocket binding site previously identified. Our HDX-MS method for characterizing AAV structural dynamics opens a new way for future efforts to understand AAV structure-function relationships and engineer next-generation AAV vectors with improved gene delivery properties.


Subject(s)
Capsid Proteins , Capsid , Dependovirus , Genetic Therapy , Genetic Vectors , Dependovirus/genetics , Dependovirus/chemistry , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Genetic Vectors/genetics , Genetic Therapy/methods , Capsid/chemistry , Capsid/metabolism , Hydrogen Deuterium Exchange-Mass Spectrometry , Protein Stability , Humans , Protein Conformation , Models, Molecular
6.
Int J Biol Macromol ; 273(Pt 1): 132868, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838881

ABSTRACT

Low molecular weight heparin and synthetic mimetics such as fondaparinux show different binding kinetics, protease specificity, and clinical effects. A combination of allosteric and template-mediated bridging mechanisms have been proposed to explain the differences in rate acceleration and specificity. The difficulty in working with heterogeneous heparin species has rendered a crystallographic interpretation of the differences in antithrombin activation between mimetics and natural heparin inaccessible. In this study, we examine the allosteric changes in antithrombin caused by binding fondaparinux, enoxaparin and depolymerized natural heparins using millisecond hydrogen deuterium exchange mass spectrometry (TRESI-HDX MS) and relate these conformational changes to complex stability in the gas phase using collision induced unfolding (CIU). This exploration reveals that in addition to the dynamic changes caused by fondaparinux, long chain heparins reduce structural flexibility proximal to Arg393, the cleavable residue in the reactive centre loop of the protein. These local changes in protein dynamics are associated with an increase in overall complex stability that increases with heparin chain length. Ultimately, these results shed light on the molecular mechanisms underlying differences in activity and specificity between heparin mimetics and natural heparins.


Subject(s)
Antithrombins , Fondaparinux , Heparin , Fondaparinux/chemistry , Heparin/chemistry , Antithrombins/chemistry , Antithrombins/pharmacology , Protein Unfolding/drug effects , Deuterium Exchange Measurement , Humans , Kinetics , Protein Binding , Polysaccharides/chemistry , Polysaccharides/pharmacology , Models, Molecular
7.
J Chromatogr A ; 1726: 464947, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38724406

ABSTRACT

Monoclonal antibodies (mAbs) are large and highly heterogeneous species typically characterized using a plethora of analytical methodologies. There is a trend within the biopharmaceutical industry to combine several of these methods in one analytical platform to simultaneously assess multiple structural attributes. Here, a protein analyzer for the fully automated middle-up and bottom-up liquid chromatography-mass spectrometry (LC-MS) analysis of charge, size and hydrophobic variants is described. The multidimensional set-up combines a multi-method option in the first dimension (1D) (choice between size exclusion - SEC, cation exchange - CEX or hydrophobic interaction chromatography - HIC) with second dimension (2D) on-column reversed-phase (RPLC) based desalting, denaturation and reduction prior to middle-up LC-MS analysis of collected 1D peaks and parallel on-column trypsin digestion of denatured and reduced peaks in the third dimension (3D) followed by bottom-up LC-MS analysis in the fourth dimension (4D). The versatile and comprehensive workflow is applied to the characterization of charge, hydrophobic and size heterogeneities associated with an engineered Fc fragment and is complemented with hydrogen-deuterium exchange (HDX) MS and FcRn affinity chromatography - native MS to explain observations in a structural/functional context.


Subject(s)
Antibodies, Monoclonal , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry , Antibodies, Monoclonal/chemistry , Chromatography, Liquid/methods , Mass Spectrometry/methods , Immunoglobulin Fc Fragments/chemistry , Humans , Chromatography, Gel/methods , Liquid Chromatography-Mass Spectrometry
8.
J Agric Food Chem ; 72(15): 8774-8783, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38587054

ABSTRACT

Proteins can be adsorbed on the air-water interface (AWI), and the structural changes in proteins at the AWI are closely related to the foaming properties of foods and beverages. However, how these structural changes in proteins at the AWI occur is not well understood. We developed a method for the structural assessment of proteins in the foam state using hydrogen/deuterium exchange mass spectrometry. Adsorption sites and structural changes in human serum albumin (HSA) were identified in situ at the peptide-level resolution. The N-terminus and the loop (E492-T506), which contains hydrophobic amino acids, were identified as adsorption sites. Both the structural flexibility and hydrophobicity were considered to be critical factors for the adsorption of HSA at the AWI. Structural changes in HSA were observed after more than one minute of foaming and were spread widely throughout the structure. These structural changes at the foam AWI were reversible.


Subject(s)
Proteins , Serum Albumin, Human , Humans , Proteins/chemistry , Hydrophobic and Hydrophilic Interactions , Adsorption , Surface Properties
9.
Viruses ; 16(4)2024 04 10.
Article in English | MEDLINE | ID: mdl-38675928

ABSTRACT

The higher-order structure (HOS) is a critical quality attribute of recombinant adeno-associated viruses (rAAVs). Evaluating the HOS of the entire rAAV capsid is challenging because of the flexibility and/or less folded nature of the VP1 unique (VP1u) and VP1/VP2 common regions, which are structural features essential for these regions to exert their functions following viral infection. In this study, hydrogen/deuterium exchange mass spectrometry (HDX-MS) was used for the structural analysis of full and empty rAAV8 capsids. We obtained 486 peptides representing 85% sequence coverage. Surprisingly, the VP1u region showed rapid deuterium uptake even though this region contains the phospholipase A2 domain composed primarily of α-helices. The comparison of deuterium uptake between full and empty capsids showed significant protection from hydrogen/deuterium exchange in the full capsid at the channel structure of the 5-fold symmetry axis. This corresponds to cryo-electron microscopy studies in which the extended densities were observed only in the full capsid. In addition, deuterium uptake was reduced in the VP1u region of the full capsid, suggesting the folding and/or interaction of this region with the encapsidated genome. This study demonstrated HDX-MS as a powerful method for probing the structure of the entire rAAV capsid.


Subject(s)
Capsid Proteins , Capsid , Dependovirus , Dependovirus/chemistry , Dependovirus/genetics , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Capsid Proteins/genetics , Capsid/chemistry , Capsid/metabolism , Serogroup , Deuterium Exchange Measurement , Hydrogen Deuterium Exchange-Mass Spectrometry/methods , Humans , Deuterium/chemistry , Mass Spectrometry , Cryoelectron Microscopy , Models, Molecular
10.
Elife ; 132024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456462

ABSTRACT

The physical basis of phase separation is thought to consist of the same types of bonds that specify conventional macromolecular interactions yet is unsatisfyingly often referred to as 'fuzzy'. Gaining clarity on the biogenesis of membraneless cellular compartments is one of the most demanding challenges in biology. Here, we focus on the chromosome passenger complex (CPC), that forms a chromatin body that regulates chromosome segregation in mitosis. Within the three regulatory subunits of the CPC implicated in phase separation - a heterotrimer of INCENP, Survivin, and Borealin - we identify the contact regions formed upon droplet formation using hydrogen/deuterium exchange mass spectrometry (HXMS). These contact regions correspond to some of the interfaces seen between individual heterotrimers within the crystal lattice they form. A major contribution comes from specific electrostatic interactions that can be broken and reversed through initial and compensatory mutagenesis, respectively. Our findings reveal structural insight for interactions driving liquid-liquid demixing of the CPC. Moreover, we establish HXMS as an approach to define the structural basis for phase separation.


Subject(s)
Cell Cycle Proteins , Phase Separation , Cell Cycle Proteins/genetics , Chromosomes , Mitosis , Cytoskeleton , Chromosome Segregation , Aurora Kinase B/genetics
11.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474147

ABSTRACT

Liquid chromatography with mass spectrometry (LC-MS)-based metabolomics detects thousands of molecular features (retention time-m/z pairs) in biological samples per analysis, yet the metabolite annotation rate remains low, with 90% of signals classified as unknowns. To enhance the metabolite annotation rates, researchers employ tandem mass spectral libraries and challenging in silico fragmentation software. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) may offer an additional layer of structural information in untargeted metabolomics, especially for identifying specific unidentified metabolites that are revealed to be statistically significant. Here, we investigate the potential of hydrophilic interaction liquid chromatography (HILIC)-HDX-MS in untargeted metabolomics. Specifically, we evaluate the effectiveness of two approaches using hypothetical targets: the post-column addition of deuterium oxide (D2O) and the on-column HILIC-HDX-MS method. To illustrate the practical application of HILIC-HDX-MS, we apply this methodology using the in silico fragmentation software MS-FINDER to an unknown compound detected in various biological samples, including plasma, serum, tissues, and feces during HILIC-MS profiling, subsequently identified as N1-acetylspermidine.


Subject(s)
Hydrogen Deuterium Exchange-Mass Spectrometry , Metabolomics , Deuterium , Chromatography, Liquid/methods , Metabolomics/methods , Hydrophobic and Hydrophilic Interactions
12.
Biomolecules ; 14(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38540792

ABSTRACT

Japanese encephalitis virus (JEV) remains a global public health concern due to its epidemiological distribution and the existence of multiple strains. Neutralizing antibodies against this infection have shown efficacy in in vivo studies. Thus, elucidation of the epitopes of neutralizing antibodies can aid in the design and development of effective vaccines against different strains of JEV. Here, we describe a combination of native mass spectrometry (native-MS) and hydrogen/deuterium exchange mass spectrometry (HDX-MS) to complete screening of eight mouse monoclonal antibodies (MAbs) against JEV E-DIII to identify epitope regions. Native-MS was used as a first pass to identify the antibodies that formed a complex with the target antigen, and it revealed that seven of the eight monoclonal antibodies underwent binding. Native mass spectra of a MAb (JEV-27) known to be non-binding showed broad native-MS peaks and poor signal, suggesting the protein is a mixture or that there are impurities in the sample. We followed native-MS with HDX-MS to locate the binding sites for several of the complex-forming antibodies. This combination of two mass spectrometry-based approaches should be generally applicable and particularly suitable for screening of antigen-antibody and other protein-protein interactions when other traditional approaches give unclear results or are difficult, unavailable, or need to be validated.


Subject(s)
Encephalitis Virus, Japanese , Hydrogen , Animals , Mice , Epitope Mapping/methods , Encephalitis Virus, Japanese/metabolism , Deuterium/chemistry , Antibodies, Viral , Epitopes/chemistry , Antibodies, Neutralizing , Mass Spectrometry/methods , Antibodies, Monoclonal
13.
Mol Pharm ; 21(5): 2223-2237, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38552144

ABSTRACT

The fibrillation of therapeutic peptides can present significant quality concerns and poses challenges for manufacturing and storage. A fundamental understanding of the mechanisms of fibrillation is critical for the rational design of fibrillation-resistant peptide drugs and can accelerate product development by guiding the selection of solution-stable candidates and formulations. The studies reported here investigated the effects of structural modifications on the fibrillation of a 29-residue peptide (PepA) and two sequence modified variants (PepB, PepC). The C-terminus of PepA was amidated, whereas both PepB and PepC retained the carboxylate, and Ser16 in PepA and PepB was substituted with a helix-stabilizing residue, α-aminoisobutyric acid (Aib), in PepC. In thermal denaturation studies by far-UV CD spectroscopy and fibrillation kinetic studies by fluorescence and turbidity measurements, PepA and PepB showed heat-induced conformational changes and were found to form fibrils, whereas PepC did not fibrillate and showed only minor changes in the CD signal. Pulsed hydrogen-deuterium exchange mass spectrometry (HDX-MS) showed a high degree of protection from HD exchange in mature PepA fibrils and its proteolytic fragments, indicating that most of the sequence had been incorporated into the fibril structure and occurred nearly simultaneously throughout the sequence. The effects of the net peptide charge and formulation pH on fibrillation kinetics were investigated. In real-time stability studies of two formulations of PepA at pH's 7.4 and 8.0, analytical methods detected significant changes in the stability of the formulations at different time points during the study, which were not observed during accelerated studies. Additionally, PepA samples were withdrawn from real-time stability and subjected to additional stress (40 °C, continuous shaking) to induce fibrillation; an approach that successfully amplified oligomers or prefibrillar species previously undetected in a thioflavin T assay. Taken together, these studies present an approach to differentiate and characterize fibrillation risk in structurally related peptides under accelerated and real-time conditions, providing a model for rapid, iterative structural design to optimize the stability of therapeutic peptides.


Subject(s)
Drug Design , Peptides , Peptides/chemistry , Circular Dichroism/methods , Drug Stability , Amino Acid Sequence , Kinetics , Aminoisobutyric Acids/chemistry , Protein Stability , Mass Spectrometry/methods
14.
Biomol NMR Assign ; 18(1): 15-25, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38453826

ABSTRACT

KKT4 is a multi-domain kinetochore protein specific to kinetoplastids, such as Trypanosoma brucei. It lacks significant sequence similarity to known kinetochore proteins in other eukaryotes. Our recent X-ray structure of the C-terminal region of KKT4 shows that it has a tandem BRCT (BRCA1 C Terminus) domain fold with a sulfate ion bound in a typical binding site for a phosphorylated serine or threonine. Here we present the 1H, 13C and 15N resonance assignments for the BRCT domain of KKT4 (KKT4463-645) from T. brucei. We show that the BRCT domain can bind phosphate ions in solution using residues involved in sulfate ion binding in the X-ray structure. We have used these assignments to characterise the secondary structure and backbone dynamics of the BRCT domain in solution. Mutating the residues involved in phosphate ion binding in T. brucei KKT4 BRCT results in growth defects confirming the importance of the BRCT phosphopeptide-binding activity in vivo. These results may facilitate rational drug design efforts in the future to combat diseases caused by kinetoplastid parasites.


Subject(s)
Kinetochores , Nuclear Magnetic Resonance, Biomolecular , Protein Domains , Trypanosoma brucei brucei , Kinetochores/metabolism , Kinetochores/chemistry , Amino Acid Sequence , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Protein Structure, Secondary
15.
Adv Exp Med Biol ; 3234: 41-57, 2024.
Article in English | MEDLINE | ID: mdl-38507199

ABSTRACT

The characterization of a protein complex by mass spectrometry can be conducted at different levels. Initial steps regard the qualitative composition of the complex and subunit identification. After that, quantitative information such as stoichiometric ratios and copy numbers for each subunit in a complex or super-complex is acquired. Peptide-based LC-MS/MS offers a wide number of methods and protocols for the characterization of protein complexes. This chapter concentrates on the applications of peptide-based LC-MS/MS for the qualitative, quantitative, and structural characterization of protein complexes focusing on subunit identification, determination of stoichiometric ratio and number of subunits per complex as well as on cross-linking mass spectrometry and hydrogen/deuterium exchange as methods for the structural investigation of the biological assemblies.


Subject(s)
Peptides , Tandem Mass Spectrometry , Chromatography, Liquid , Hydrogen/chemistry
16.
J Chromatogr A ; 1720: 464773, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38432106

ABSTRACT

Although the co-occurrences of isomeric chalcones and dihydroflavones widely appear in medicinal plants, the differentiation of such isomerism seldom succeeds using MS/MS, attributing to totally identical MS/MS spectra. Here, efforts were paid to pursue an eligible tool allowing to address the technical challenge. Being inspired by that one more proton signal is observed in 1H NMR spectrum of isoliquiritigenin than liquiritigenin when employing DMSO­d6 as solvent, hydrogen-deuterium exchange (HDX)-MS/MS was evaluated towards differentiating isomeric chalcones and dihydroflavones through replacing H2O with D2O to prepare the mobile phase. As a result, differences were observed for either MS1 or MS2 spectrum when comparing two pairs of isomers, such as liquiritigenin vs. isoliquiritigenin and liquiritin vs. isoliquiritin, because the isomeric precursor and fragment ion species owned different amounts of hydroxyl protons and those reactive protons could be partially or completely substituted by deuterium protons at the exposure in D2O to result in n × 1.006 mass increments. Moreover, utmost four hydrogen/deuterium exchanges occurred for a single glucosyl moiety. Thereafter, HDX-MS/MS was applied to characterize the flavonoids of Snow chrysanthemum, a precious edible herbal medicine that is rich in isomeric chalcones and dihydroflavones. Through paying special attention to the deuterium labeling styles of (de)protonated molecules as well as those featured fragment ions, five pairs of isomeric chalcones and dihydroflavones were confirmatively differentiated, in addition to that 28 flavonoids were structurally annotated by applying those well-defined mass fragmentation rules. Hence, this study offered an in-depth insight towards the flavonoids-focused characterization of Snow chrysanthemum, and more importantly, HDX-MS/MS is a superior tool to differentiate, but not limited to, isomeric chalcones and dihydroflavones.


Subject(s)
Chalcones , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Hydrogen/chemistry , Deuterium , Flavonoids , Isomerism , Protons , Deuterium Exchange Measurement/methods , Chromatography, Liquid , Ions
17.
Article in English | MEDLINE | ID: mdl-38422227

ABSTRACT

SARS-CoV-2 non-structural protein 10 (nsp10) is essential for the stimulation of enzymatic activities of nsp14 and nsp16, acting as both an activator and scaffolding protein. Nsp14 is a bifunctional enzyme with the N-terminus containing a 3'-5' exoribonuclease (ExoN) domain that allows the excision of nucleotide mismatches at the virus RNA 3'-end, and a C-terminal N7-methyltransferase (N7-MTase) domain. Nsp10 is required for stimulating both ExoN proofreading and the nsp16 2'-O-methyltransferase activities. This makes nsp10 a central player in both viral resistance to nucleoside-based drugs and the RNA cap methylation machinery that helps the virus evade innate immunity. We characterised the interactions between full-length nsp10 (139 residues), N- and C-termini truncated nsp10 (residues 10-133), and nsp10 with a C-terminal truncation (residues 1-133) with nsp14 using microscale thermophoresis, multi-detection SEC, and hydrogen-deuterium (H/D) exchange mass spectrometry. We describe the functional role of the C-terminal region of nsp10 for binding to nsp14 and show that full N- and C-termini of nsp10 are important for optimal binding. In addition, our H/D exchange experiments suggest an intermediary interaction of nsp10 with the N7-MTase domain of nsp14. In summary, our results suggest intermediary steps in the process of association or dissociation of the nsp10-nsp14 complex, involving contacts between the two proteins in regions not identifiable by X-ray crystallography alone.

18.
Biol Chem ; 405(5): 311-324, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38379409

ABSTRACT

Interferon induced transmembrane proteins (IFITMs) play a dual role in the restriction of RNA viruses and in cancer progression, yet the mechanism of their action remains unknown. Currently, there is no data about the basic biochemical features or biophysical properties of the IFITM1 protein. In this work, we report on description and biochemical characterization of three conformational variants/oligomeric species of recombinant IFITM1 protein derived from an Escherichia coli expression system. The protein was extracted from the membrane fraction, affinity purified, and separated by size exclusion chromatography where two distinct oligomeric species were observed in addition to the expected monomer. These species remained stable upon re-chromatography and were designated as "dimer" and "oligomer" according to their estimated molecular weight. The dimer was found to be less stable compared to the oligomer using circular dichroism thermal denaturation and incubation with a reducing agent. A two-site ELISA and HDX mass spectrometry suggested the existence of structural motif within the N-terminal part of IFITM1 which might be significant in oligomer formation. Together, these data show the unusual propensity of recombinant IFITM1 to naturally assemble into very stable oligomeric species whose study might shed light on IFITM1 anti-viral and pro-oncogenic functions in cells.


Subject(s)
Antigens, Differentiation , Protein Conformation , Humans , Antigens, Differentiation/metabolism , Antigens, Differentiation/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism
19.
ACS Chem Neurosci ; 15(3): 503-516, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38194353

ABSTRACT

The molecular determinants of amyloid protein misfolding and aggregation are key for the development of therapeutic interventions in neurodegenerative disease. Although small synthetic molecules, bifunctional molecules, and natural products offer a potentially advantageous approach to therapeutics to remodel aggregation, their evaluation requires new platforms that are informed at the molecular level. To that end, we chose pulsed hydrogen/deuterium exchange mass spectrometry (HDX-MS) to discern the phenomena of aggregation modulation for a model system of alpha synuclein (αS) and resveratrol, an antiamyloid compound. We invoked, as a complement to HDX, advanced kinetic modeling described here to illuminate the details of aggregation and to determine the number of oligomeric populations by kinetically fitting the experimental data under conditions of limited proteolysis. The misfolding of αS is most evident within and nearby the nonamyloid-ß component region, and resveratrol significantly remodels that aggregation. HDX distinguishes readily a less solvent-accessible, more structured oligomer that coexists with a solvent-accessible, more disordered oligomer during aggregation. A view of the misfolding emerges from time-dependent changes in the fractional species across the protein with or without resveratrol, while details were determined through kinetic modeling of the protected species. A detailed picture of the inhibitory action of resveratrol with time and regional specificity emerges, a picture that can be obtained for other inhibitors and amyloid proteins. Moreover, the model reveals that new states of aggregation are sampled, providing new insights on amyloid formation. The findings were corroborated by circular dichroism and transmission electron microscopy.


Subject(s)
Neurodegenerative Diseases , Resveratrol , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Amyloid/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use , Solvents
20.
J Microbiol Biotechnol ; 34(1): 10-16, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-37830242

ABSTRACT

The emergence of multi-drug resistant Enterococcus faecalis raises a serious threat to global public health. E. faecalis is a gram-positive intestinal commensal bacterium found in humans. E. faecalis can endure extreme environments such as high temperature, pressure, and high salt, which facilitates them to cause infection in hospitals. E. faecalis has two acyl carrier proteins, AcpA (EfAcpA) in de novo fatty acid synthesis (FAS) and AcpB (EfAcpB) which utilizes exogenous fatty acids. Previously, we determined the tertiary structures of these two ACPs and investigated their structure-function relationships. Solution structures revealed that overall folding of these two ACPs is similar to those of other bacterial ACPs. However, circular dichroism (CD) experiments showed that the melting temperature of EfAcpA is 76.3°C and that of EfAcpB is 79.2°C, which are much higher than those of other bacterial ACPs. In this study, to understand the origin of their structural stabilities, we verified the important residues for stable folding of these two ACPs by monitoring thermal and chemical denaturation. Hydrogen/deuterium exchange and chemical denaturation experiments on wild-type and mutant proteins revealed that Ile10 of EfAcpA and Ile14 of EfAcpB mediate compact intramolecular packing and promote high thermostability and stable folding. E. faecalis may maximize efficiency of FAS and increase adaptability to the environmental stress by having two thermostable ACPs. This study may provide insight into bacterial adaptability and development of antibiotics against multi-drug-resistant E. faecalis.


Subject(s)
Acyl Carrier Protein , Enterococcus faecalis , Humans , Enterococcus faecalis/genetics , Acyl Carrier Protein/chemistry , Acyl Carrier Protein/metabolism , Anti-Bacterial Agents/metabolism , Fatty Acids/metabolism , Protein Folding , Bacterial Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL