Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 233
Filter
1.
Int J Mol Sci ; 25(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39273697

ABSTRACT

Age-related macular degeneration (AMD) is a major global health problem as it is the leading cause of irreversible loss of central vision in the aging population. Anti-vascular endothelial growth factor (anti-VEGF) therapies are effective but do not respond optimally in all patients. This study investigates the genetic factors associated with susceptibility to AMD and response to treatment, focusing on key polymorphisms in the ARMS2 (rs10490924), IL1B1 (rs1143623), TNFRSF1B (rs1061622), TNFRSF1A (rs4149576), VEGFA (rs3024997), ARMS2, IL1B1, TNFRSF1B, TNFRSF1A, and VEGFA serum levels in AMD development and treatment efficacy. This study examined the associations of specific genetic polymorphisms and serum protein levels with exudative and early AMD and the response to anti-VEGF treatment. The AA genotype of VEGFA (rs3024997) was significantly associated with a 20-fold reduction in the odds of exudative AMD compared to the GG + GA genotypes. Conversely, the TT genotype of ARMS2 (rs10490924) was linked to a 4.2-fold increase in the odds of exudative AMD compared to GG + GT genotypes. In females, each T allele of ARMS2 increased the odds by 2.3-fold, while in males, the TT genotype was associated with a 5-fold increase. Lower serum IL1B levels were observed in the exudative AMD group compared to the controls. Early AMD patients had higher serum TNFRSF1B levels than controls, particularly those with the GG genotype of TNFRSF1B rs1061622. Exudative AMD patients with the CC genotype of TNFRSF1A rs4149576 had lower serum TNFRSF1A levels compared to the controls. Visual acuity (VA) analysis showed that non-responders had better baseline VA than responders but experienced decreased VA after treatment, whereas responders showed improvement. Central retinal thickness (CRT) reduced significantly in responders after treatment and was lower in responders compared to non-responders after treatment. The T allele of TNFRSF1B rs1061622 was associated with a better response to anti-VEGF treatment under both dominant and additive genetic models. These findings highlight significant genetic and biochemical markers associated with AMD and treatment response. This study found that the VEGFA rs3024997 AA genotype reduces the odds of exudative AMD, while the ARMS2 rs10490924 TT genotype increases it. Lower serum IL1B levels and variations in TNFRSF1B and TNFRSF1A levels were linked to AMD. The TNFRSF1B rs1061622 T allele was associated with better anti-VEGF treatment response. These markers could potentially guide risk assessment and personalized treatment for AMD.


Subject(s)
Interleukin-1beta , Macular Degeneration , Polymorphism, Single Nucleotide , Receptors, Tumor Necrosis Factor, Type I , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/blood , Male , Female , Macular Degeneration/genetics , Macular Degeneration/drug therapy , Macular Degeneration/blood , Macular Degeneration/pathology , Aged , Interleukin-1beta/genetics , Interleukin-1beta/blood , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/blood , Aged, 80 and over , Genetic Predisposition to Disease , Middle Aged , Genotype , Alleles , Proteins , Receptors, Tumor Necrosis Factor, Type II
2.
Mol Med ; 30(1): 116, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118044

ABSTRACT

BACKGROUND: CD74 is ectopically expressed in many tumors and can regulate tumor immunity. However, there are many gaps in the study of the prognostic value of CD74 expression and immune infiltration in hepatocellular carcinoma (HCC). METHODS: An online tumor database was searched to obtain data on gene/protein expression. Immune infiltration analysis was performed using the Tumor Immune Estimation Resource and Comprehensive Analysis on Multi-Omics of Immunotherapy in Pan-cancer databases. Single-cell data were obtained from the Tissue-specific Gene Expression and Regulation, Single-cell Transcriptomes of Tumor Immune Microenvironment and Tumor Immune Single-cell Hub 2 databases. RESULTS: CD74 was highly expressed in HCC patients. HCC patients with high CD74 expression who consumed alcohol or were negative for hepatitis virus had a better prognosis than patients with low CD74 expression. CD74 was mainly enriched in immune response regulation pathways. Both copy number variations in CD74 and CD74 expression patterns affected the infiltration levels of immune cells. Interestingly, CD74 regulated the differentiation of myeloid cells. CD74 in macrophages and dendritic cells (DCs) forms complex networks with malignant cells and hepatic progenitor cell (HPC)-like cells, respectively. High CD74 expression in HPC-like cells and malignant cells significantly decreased the fraction of C-type lectin domain family 9 A (CLEC9A)-cDC1+ DCs and IL-1B+ macrophages, respectively. Their crosstalk subsequently shaped the tumor microenvironment of HCC, possibly through the CD74-MIF axis. Importantly, patients with high CD74 expression presented higher immune scores and achieved good outcomes after receiving immunotherapy. CONCLUSION: High CD74 expression is associated with the abundance of a variety of immune cell types, mediating interactions among tumor and immune cells and shaping the malignant behavior of HCC. In summary, CD74 may be a hallmark for determining the prognosis and immune cell infiltration levels of HCC patients.


Subject(s)
Antigens, Differentiation, B-Lymphocyte , Carcinoma, Hepatocellular , Histocompatibility Antigens Class II , Immunotherapy , Liver Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/etiology , Tumor Microenvironment/immunology , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Liver Neoplasms/etiology , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Immunotherapy/methods , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Prognosis , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor , Computational Biology/methods
3.
Article in English | MEDLINE | ID: mdl-39033051

ABSTRACT

AIM: The aim of this study was to examine particular single-nucleotide polymorphisms (IL-1A-889 C/T - rs1800587, IL-1B +3953 C/T - rs 1143634) of interleukins 1A and 1B in the development and prognosis of medication-related osteonecrosis of the jaw. MATERIALS AND METHODS: DentiGen Parodontitis Tests were applied for collecting samples. This test is suitable for sampling oral mucosa cells in order to detect interleukins 1A and 1B single nucleotide polymorphisms (IL-1A-889, IL-1B+3953). Genetic samples were evaluated in the Istenhegyi Genediagnostic Center using the DNA-hybridization method. Genetic samples were collected in the patient group and the control group. The role of gene polymorphisms in the development of the disease was investigated by comparing the genetic results for the patient and control groups. The investigation of gene polymorphisms in disease prognosis is based on stage improvement, recovery, and relapses following treatment. RESULTS: In total, 91 patients with MRONJ and 59 healthy controls were included in the study. 51 patients in the patient group and 37 controls had unfavorable allelic variants. No association (Mp = 1.42, SDp = 0.496, Mc = 1.35, SDc = 0.482, p = 0.52) was found between unfavorable polymorphisms and the development of the MRONJ. In the patient group, surgical therapy was required in 79 cases. Stage improvement was detected in 78 cases, recovery in 67 cases, and relapse in 33 cases. No stage improvement was found in one case, recovery in nine cases, or relapse in 34 cases. Of the 79 patients requiring surgical therapy, 49 had unfavorable allelic variants. No connection was found between the polymorphisms examined and stage improvement (Mp = 1.37, SDp = 0.486, Mnp = 2, SDnp = -, p = 0.800) or recovery (Mp = 1.39, SDp = 0.491, Mnp = 1.44, SDnp = 0.527, p = 0.990). However, a significant association (Mp = 1.21, SDp = 0.415, Mnp = 1.58, SDnp = 0.502, p < 0.001) was found between relapses and the presence of unfavorable allelic variants. CONCLUSION: Within the possible limitations of this study, it can be assumed that the analysis of certain single-nucleotide polymorphisms of interleukin-1 may have the potential to help define the risk stratification of MRONJ after surgical therapy.

4.
JOR Spine ; 7(3): e1349, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38993524

ABSTRACT

Background: Inflammatory cytokines have been reported to be related to intervertebral disc degeneration (IVDD) in several previous studies. However, it remains unclear about the causal relationship between inflammatory cytokines and IVDD. This study employs Mendelian randomization (MR) to analyze the causal link between inflammatory cytokines and the risk of IVDD. Method: We used genetic variants associated with inflammatory cytokines from a meta-analysis of genome-wide association study (GWAS) in 8293 Finns as instrumental variables and IVDD data were sourced from the FinnGen consortium. The main analytical approach utilized Inverse-Variance Weighting (IVW) with random effects to assess the causal relationship. Additionally, complementary methods such as MR-Egger, weighted median, simple mode, weighted mode, and MR pleiotropy residual sum and outlier were employed to enhance the robustness of the final results. Result: We found interferon-gamma (IFN-γ, p = 2.14 × 10-6, OR = 0.870, 95% CI = 0.821-0.921), interleukin-1 beta (IL-1b, p = 0.012, OR = 0.951, 95% CI = 0.914-0.989), interleukin-4 (IL-4, p = 0.034, OR = 0.946, 95% CI = 0.899-0.996), interleukin-18 (IL-18, p = 0.028, OR = 0.964, 95% CI = 0.934-0.996), granulocyte colony-stimulating factor (GCSF, p = 0.010, OR = 0.919, 95% CI = 0.861-0.980), and Stromal cell-derived factor 1a (SDF1a, p = 0.014, OR = 1.072, 95% CI = 1.014-1.134) were causally associated with risk of IVDD. Conclusion: Our MR analyses found a potential causal relationship between six inflammation cytokines (IFN-γ, IL-1b, IL-4, IL-18, SDF1a, and GCSF) and altered IVDD risk.

5.
J Hazard Mater ; 476: 134741, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38991640

ABSTRACT

Exposure to environmental BaP or its metabolite BPDE causes trophoblast cell dysfunctions to induce miscarriage (abnormal early embryo loss), which might be generally regulated by lncRNAs. IL1B, a critical inflammatory cytokine, is closely associated with adverse pregnancy outcomes. However, whether IL1B might cause dysfunctions of BaP/BPDE-exposed trophoblast cells to induce miscarriage, as well as its specific epigenetic regulatory mechanisms, is completely unexplored. In this study, we find that BPDE-DNA adducts, trophoblast cell dysfunctions, and miscarriage are closely associated. Moreover, we also identify a novel lnc-HZ06 and IL1B, both of which are highly expressed in BPDE-exposed trophoblast cells, in villous tissues of recurrent miscarriage patients, and in placental tissues of BaP-exposed mice with miscarriage. Both lnc-HZ06 and IL1B suppress trophoblast cell migration/invasion and increase apoptosis. In mechanism, lnc-HZ06 promotes STAT4-mediated IL1B mRNA transcription, enhances IL1B mRNA stability by promoting the formation of METTL3/HuR/IL1B mRNA ternary complex, and finally up-regulates IL1B expression levels. BPDE exposure promotes TBP-mediated lnc-HZ06 transcription, and thus up-regulates IL1B levels. Knockdown of either murine lnc-hz06 (which down-regulates Il1b levels) or murine Il1b could alleviate miscarriage in BaP-exposed mice. Collectively, this study not only discovers novel biological mechanisms and pathogenesis of unexplained miscarriage but also provides novel potential targets for treatment against BaP/BPDE-induced miscarriage.


Subject(s)
Interleukin-1beta , RNA, Long Noncoding , Trophoblasts , Animals , Female , Humans , Mice , Pregnancy , Abortion, Habitual/genetics , Abortion, Habitual/metabolism , Abortion, Spontaneous , Apoptosis/drug effects , Cell Line , Cell Movement/drug effects , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Trophoblasts/metabolism , Trophoblasts/drug effects , Up-Regulation
6.
Animal Model Exp Med ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860503

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC), which is so called because of the lack of estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptor 2 (HER2) receptors on the cancer cells, accounts for 10%-15% of all breast cancers. The heterogeneity of the tumor microenvironment is high. However, the role of plasma cells controlling the tumor migration progression in TNBC is still not fully understood. METHODS: We analyzed single-cell RNA sequencing data from five HER2 positive, 12 ER positive/PR positive, and nine TNBC samples. The potential targets were validated by immunohistochemistry. RESULTS: Plasma cells were enriched in TNBC samples, which was consistent with validation using data from The Cancer Genome Atlas. Cell communication analysis revealed that plasma cells interact with T cells through the intercellular adhesion molecule 2-integrin-aLb2 complex, and then release interleukin 1 beta (IL1B), as verified by immunohistochemistry, ultimately promoting tumor growth. CONCLUSION: Our results revealed the role of plasma cells in TNBC and identified IL1B as a new prognostic marker for TNBC.

7.
Sci Rep ; 14(1): 14892, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38937503

ABSTRACT

Accurate screening of COVID-19 infection status for symptomatic patients is a critical public health task. Although molecular and antigen tests now exist for COVID-19, in resource-limited settings, screening tests are often not available. Furthermore, during the early stages of the pandemic tests were not available in any capacity. We utilized an automated machine learning (ML) approach to train and evaluate thousands of models on a clinical dataset consisting of commonly available clinical and laboratory data, along with cytokine profiles for patients (n = 150). These models were then further tested for generalizability on an out-of-sample secondary dataset (n = 120). We were able to develop a ML model for rapid and reliable screening of patients as COVID-19 positive or negative using three approaches: commonly available clinical and laboratory data, a cytokine profile, and a combination of the common data and cytokine profile. Of the tens of thousands of models automatically tested for the three approaches, all three approaches demonstrated > 92% sensitivity and > 88 specificity while our highest performing model achieved 95.6% sensitivity and 98.1% specificity. These models represent a potential effective deployable solution for COVID-19 status classification for symptomatic patients in resource-limited settings and provide proof-of-concept for rapid development of screening tools for novel emerging infectious diseases.


Subject(s)
COVID-19 , Cytokines , Machine Learning , Humans , COVID-19/diagnosis , Cytokines/blood , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Mass Screening/methods , Male , Female , Sensitivity and Specificity , Middle Aged , Adult , Aged
8.
Cardiovasc Diabetol ; 23(1): 197, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849829

ABSTRACT

OBJECTIVE: Sodium glucose cotransporter 2 (SGLT2) inhibitors significantly improve cardiovascular outcomes in diabetic patients; however, the mechanism is unclear. We hypothesized that dapagliflozin improves cardiac outcomes via beneficial effects on systemic and cardiac inflammation and cardiac fibrosis. RESEARCH AND DESIGN METHODS: This randomized placebo-controlled clinical trial enrolled 62 adult patients (mean age 62, 17% female) with type 2 diabetes (T2D) without known heart failure. Subjects were randomized to 12 months of daily 10 mg dapagliflozin or placebo. For all patients, blood/plasma samples and cardiac magnetic resonance imaging (CMRI) were obtained at time of randomization and at the end of 12 months. Systemic inflammation was assessed by plasma IL-1B, TNFα, IL-6 and ketone levels and PBMC mitochondrial respiration, an emerging marker of sterile inflammation. Global myocardial strain was assessed by feature tracking; cardiac fibrosis was assessed by T1 mapping to calculate extracellular volume fraction (ECV); and cardiac tissue inflammation was assessed by T2 mapping. RESULTS: Between the baseline and 12-month time point, plasma IL-1B was reduced (- 1.8 pg/mL, P = 0.003) while ketones were increased (0.26 mM, P = 0.0001) in patients randomized to dapagliflozin. PBMC maximal oxygen consumption rate (OCR) decreased over the 12-month period in the placebo group but did not change in patients receiving dapagliflozin (- 158.9 pmole/min/106 cells, P = 0.0497 vs. - 5.2 pmole/min/106 cells, P = 0.41), a finding consistent with an anti-inflammatory effect of SGLT2i. Global myocardial strain, ECV and T2 relaxation time did not change in both study groups. GOV REGISTRATION: NCT03782259.


Subject(s)
Benzhydryl Compounds , Biomarkers , Diabetes Mellitus, Type 2 , Glucosides , Inflammation Mediators , Sodium-Glucose Transporter 2 Inhibitors , Humans , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/adverse effects , Glucosides/therapeutic use , Glucosides/adverse effects , Female , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Male , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Middle Aged , Aged , Treatment Outcome , Inflammation Mediators/blood , Biomarkers/blood , Time Factors , Anti-Inflammatory Agents/therapeutic use , Fibrosis , Inflammation/drug therapy , Inflammation/blood , Inflammation/diagnosis , Double-Blind Method , Myocardium/pathology , Myocardium/metabolism , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/prevention & control , Diabetic Cardiomyopathies/diagnostic imaging , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/blood
9.
BMC Genom Data ; 25(1): 56, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858637

ABSTRACT

BACKGROUND: Polymorphisms in IL1B play a significant role in depression, multiple inflammatory-associated disorders, and susceptibility to infection. Functional non-synonymous SNPs (nsSNPs) result in changes in the encoded amino acids, potentially leading to structural and functional alterations in the mutant proteins. So far, most genetic studies have concentrated on SNPs located in the IL1B promoter region, without addressing nsSNPs and their association with multifactorial diseases. Therefore, this study aimed to explore the impact of deleterious nsSNPs retrieved from the dbSNP database on the structure and functions of the IL1B protein. RESULTS: Six web servers (SIFT, PolyPhen-2, PROVEAN, SNPs&GO, PHD-SNP, PANTHER) were used to analyze the impact of 222 missense SNPs on the function and structure of IL1B protein. Five novel nsSNPs (E100K, T240I, S53Y, D128Y, and F228S) were found to be deleterious and had a mutational impact on the structure and function of the IL1B protein. The I-mutant v2.0 and MUPro servers predicted that these mutations decreased the stability of the IL1B protein. Additionally, these five mutations were found to be conserved, underscoring their significance in protein structure and function. Three of them (T240I, D128Y, and F228S) were predicted to be cancer-causing nsSNPs. To analyze the behavior of the mutant structures under physiological conditions, we conducted a 50 ns molecular dynamics simulation using the WebGro online tool. Our findings indicate that the mutant values differ from those of the IL1B wild type in terms of RMSD, RMSF, Rg, SASA, and the number of hydrogen bonds. CONCLUSIONS: This study provides valuable insights into nsSNPs located in the coding regions of IL1B, which lead to direct deleterious effects on the functional and structural aspects of the IL1B protein. Thus, these nsSNPs could be considered significant candidates in the pathogenesis of disorders caused by IL1B dysfunction, contributing to effective drug discovery and the development of precision medications. Thorough research and wet lab experiments are required to verify our findings. Moreover, bioinformatic tools were found valuable in the prediction of deleterious nsSNPs.


Subject(s)
Computational Biology , Interleukin-1beta , Polymorphism, Single Nucleotide , Humans , Polymorphism, Single Nucleotide/genetics , Computational Biology/methods , Interleukin-1beta/genetics , Mutation, Missense , Databases, Genetic
10.
Nutrients ; 16(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674931

ABSTRACT

Populational aging is marked by chronic noncommunicable diseases, such as metabolic syndrome (MetS). IL-10 and IL-1ß are pleiotropic cytokines with multiple biological effects linked to metabolic disorders. This cross-sectional study assessed 193 participants' IL-10 and IL-1ß serum levels regarding their role in developing MetS, clinical characteristics, and their IL1B rs1143627 and IL10 rs1800890 variants' genotype frequencies in a population over 60. IL-10 levels correlated weakly with HDL levels and fat mass and inversely with triglycerides, glucose, glycated hemoglobin, and estimated average blood glucose levels. IL-10 levels were also indirectly influenced by the patient's T2DM duration, lean mass amount, and bone mineral content. Participants with altered HDL, elevated serum glucose, raised HbA1c levels, or those over 80 had reduced serum IL-10 levels compared to those with normal levels or other age groups, respectively. Women also had higher serum IL-10 levels than men. Dissimilarly, IL-1ß levels correlated directly only with the number of total leukocytes and segmented neutrophils, showing only significant variations with self-reported alcohol consumption. Our study also found that those with the IL10 AA genotype (lower IL-10 levels) had a significantly higher risk of developing MetS. These findings may help direct future research and more targeted therapeutic approaches in older adults.


Subject(s)
Interleukin-10 , Interleukin-1beta , Metabolic Syndrome , Humans , Interleukin-10/blood , Interleukin-10/genetics , Male , Metabolic Syndrome/blood , Metabolic Syndrome/genetics , Female , Interleukin-1beta/blood , Interleukin-1beta/genetics , Aged , Cross-Sectional Studies , Middle Aged , Aged, 80 and over , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/blood , Genotype , Genetic Variation , Polymorphism, Single Nucleotide , Blood Glucose/metabolism , Blood Glucose/analysis , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/analysis
11.
Res Sq ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38585865

ABSTRACT

Objective: Sodium glucose cotransporter 2 (SGLT2) inhibitors significantly improve cardiovascular outcomes in diabetic patients; however, the mechanism is unclear. We hypothesized that dapagliflozin improves cardiac outcomes via beneficial effects on systemic and cardiac inflammation and cardiac fibrosis. Research and Design Methods: This randomized placebo-controlled clinical trial enrolled 62 adult patients (mean age 62, 17% female) with type 2 diabetes (T2D) without known heart failure. Subjects were randomized to 12 months of daily 10 mg dapagliflozin or placebo. For all patients, blood/plasma samples and cardiac magnetic resonance imaging (CMRI) were obtained at time of randomization and at the end of 12 months. Systemic inflammation was assessed by plasma IL-1B, TNFα, IL-6 and ketone levels and PBMC mitochondrial respiration, an emerging marker of sterile inflammation. Cardiac fibrosis was assessed by T1 mapping to calculate extracellular volume fraction (ECV); cardiac tissue inflammation was assessed by T2 mapping. Results: Between the baseline and 12-month time point, plasma IL-1B was reduced (-1.8 pg/mL, P=0.003) while ketones were increased (0.26 mM, P=0.0001) in patients randomized to dapagliflozin. PBMC maximal oxygen consumption rate (OCR) decreased over the 12-month period in the placebo group but did not change in patients receiving dapagliflozin (-158.9 pmole/min/106cells, P=0.0497 vs -45.2 pmole/min/106cells, P=0.41), a finding consistent with an anti-inflammatory effect of SGLT2i. ECV and T2 relaxation time did not change in both study groups. Conclusion: This study demonstrates that 12 months of dapagliflozin reduces IL-1B mediated systemic inflammation but affect cardiac fibrosis in T2D. Clinical Trialgov Registration: NCT03782259.

12.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38399404

ABSTRACT

Drug repurposing is a promising approach that has the potential to revolutionize the drug discovery and development process. By leveraging existing drugs, we can bring new treatments to patients more quickly and affordably. Anti-inflammatory drugs have been shown to target multiple pathways involved in cancer development and progression. This suggests that they may be more effective in treating cancer than drugs that target a single pathway. Cell viability was measured using the MTT assay. The expression of genes related to inflammation (TNFa, IL1b, COX-1, COX-2, and 5-LOX) was measured in HepG2, MCF7, and THLE-2 cells using qPCR. The levels of TNFα, IL1b, COX-1, COX-2, and 5-LOX were also measured in these cells using an ELISA kit. An enzyme binding assay revealed that sulfadiazine expressed weaker inhibitory activity against COX-2 (IC50 = 5.27 µM) in comparison with the COX-2 selective reference inhibitor celecoxib (COX-2 IC50 = 1.94 µM). However, a more balanced inhibitory effect was revealed for sulfadiazine against the COX/LOX pathway with greater affinity towards 5-LOX (IC50 = 19.1 µM) versus COX-1 (IC50 = 18.4 µM) as compared to celecoxib (5-LOX IC50 = 16.7 µM, and COX-1 IC50 = 5.9 µM). MTT assays revealed the IC50 values of 245.69 ± 4.1 µM and 215.68 ± 3.8 µM on HepG2 and MCF7 cell lines, respectively, compared to the standard drug cisplatin (66.92 ± 1.8 µM and 46.83 ± 1.3 µM, respectively). The anti-inflammatory effect of sulfadiazine was also depicted through its effect on the levels of inflammatory markers and inflammation-related genes (TNFα, IL1b, COX-1, COX-2, 5-LOX). Molecular simulation studies revealed key binding interactions that explain the difference in the activity profiles of sulfadiazine compared to celecoxib. The results suggest that sulfadiazine exhibited balanced inhibitory activity against the 5-LOX/COX-1 enzymes compared to the selective COX-2 inhibitor, celecoxib. These findings highlight the potential of sulfadiazine as a potential anticancer agent through balanced inhibitory activity against the COX/LOX pathway and reduction in the expression of inflammatory genes.

13.
Heliyon ; 10(1): e23635, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38187273

ABSTRACT

Due to substantial homology between the human and zebrafish genome and a high level of conservation of the innate immune system across species, zebrafish larvae have become an invaluable research tool for studying inflammation and modelling inflammatory disease. However, further microscopy techniques need to be developed for better profiling of inflammation and in particular, integrated cytokine responses to different stimuli - approaches are currently largely limited to assessment of changes in cytokine gene transcription and in vivo visualisation using transgenics, which is limited in terms of the number of cytokines that may be assessed at once. In this study, after confirming substantial homology of human vs zebrafish cytokine amino acid sequences, immunofluorescence staining using antibodies directed at human cytokines was performed. Inflammatory cytokine signalling responses to experimental tailfin transection was assessed over 24 h (1 hpi (hours post injury), 2 hpi, 4 hpi, 24 hpi) in zebrafish larvae, with experimental end point at 120 h post fertilization (hpf). When immunofluorescence results were compared to responses observed in rodent and human literature, it is clear that the cytokines follow a similar response, albeit with a condensed total time course. Notably, tumor necrosis factor-α and monocyte chemoattractant protein-1 increased and remained elevated over the 24-h period. In contrast, interleukin-1ß and interleukin-6 peaked at 4 hpi and 2 hpi respectively but had both returned to baseline levels by 24 hpi. Macrophage migration inhibitory factor was lowest at 1 hpi, potentially encouraging macrophage movement into the site of injury, followed by a sharp increase. This protocol provides valuable insight into inflammation over a time course and more so, provides an affordable and accessible method to comprehensively assess inflammation in zebrafish disease models.

14.
Discov Oncol ; 15(1): 7, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191842

ABSTRACT

BACKGROUND: Emerging studies have reported the contribution of cholesterol to hepatocellular carcinoma (HCC) progression. However, the specific role and mechanism of cholesterol metabolism on spontaneous and progressive HCC development from the point of view of ferroptosis are still worth exploring. The present study aimed to reveal a novel mechanism of cholesterol metabolism-related ferroptosis in hepatocellular carcinoma cells. METHODS: Two microarray datasets (GSE25097, GSE22058) related to HCC were downloaded from Gene Expression Omnibus (GEO) datasets. Metabolomics analysis was performed by ultra performance liquid chromatography - tandem mass spectrometer (UPLC-MS/MS). The cholesterol-related proteins were downloaded from HMBD. Ferroptosis-related genes were extracted from FerrDb database. Data sets were separated into two groups. GSE25097 was used to identify ferroptosis-related genes, and GSE22058 was used to verify results. During these processes, chemical-protein interaction (CPI), protein-protein interaction (PPI), the Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. Multivariate logistic regression analysis was used to test the associated pathway. RESULTS: We identified 8 differentially expressed ferroptosis-related genes (HAMP, PTGS2, IL1B, ALOX15B, CDKN2A, RRM2, NQO1 and KIF20A) and 4 differentially expressed cholesterol-related genes (LCAT, CH25H, CEL and CYP7A1). Furthermore, based on the predicted results with STITCH, we identified indomethacin and IL1B as the essential node for cholesterol-mediated ferroptosis in hepatocellular carcinoma cell. Multivariate logistic regression analysis showed the activities of plasma IL1B in liver cancer patients enrolled have been significantly affected by the level of plasma cholesterol (P < 0.001) and the test result of IL1B is a predictor variable causing the changes of serum Fe levels (P < 0.001). CONCLUSIONS: Our findings shed new light on the association between cholesterol metabolism and ferroptosis in HCC, and suggest that IL1B is the necessary node for cholesterol to lead to ferroptosis process in HCC. Also, we identified the potential role of indomethacin in adjuvant therapy of HCC with complications of abnormal cholesterol metabolism.

15.
Inflammopharmacology ; 32(1): 667-682, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37902927

ABSTRACT

The inflammatory response in ulcerative colitis (UC) could be relieved by the conventional immunomodulatory agents; 5-aminosalicylic acid, corticosteroids, or azathioprine. However, the low remission rates and the intolerance to these agents necessitate investigation of gene expression signature in UC that could influence the therapeutic efficacy of drugs, as well as the interference with persistence genes by novel therapeutic option. Three microarray datasets (GSE66407, GSE38713 and GSE14580) from the NCBI-GEO database were utilized. Differentially expressed genes between samples of patients with UC and healthy ones were analyzed using R software. In addition, in vivo study using oxazolone-induced UC in BALB/c mice was carried out to investigate the proposed therapeutic efficacy of dichloroacetate (DCA). The bioinformatics analysis revealed the persistence of NLRP3, NFATC1, and IL1B in UC despite treatment with common therapeutic agents. DCA administration to oxazolone-treated mice showed remarkable interference with those persistence genes. Western blotting analysis for NLRP3, NFATC1, nuclear/total NF-κB, and cleaved caspase-1 revealed the ability of DCA to reduce the expression levels of these proteins in oxazolone-treated mice. Additionally, the inflammatory cytokines IL-1ß and IL-13 were reduced in colonic tissue by DCA treatment. The therapeutic efficacy of DCA was further confirmed by the apparent reduction in histopathological scoring, disease activity index, and the normalization of colon length. Therefore, DCA could be suggested as a novel and promising therapeutic option in UC based on its ability to interfere with the persistence of NFATC1/NLRP3/IL1B signaling. That merits further safety/toxicological pre-clinical assessment and update of bioavailability/metabolism data prior to clinical investigation.


Subject(s)
Colitis, Ulcerative , Humans , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein , Oxazolone/pharmacology , NF-kappa B , Acetates , Computational Biology , NFATC Transcription Factors , Interleukin-1beta
16.
Tropical Biomedicine ; : 142-148, 2024.
Article in English | WPRIM (Western Pacific) | ID: wpr-1038578

ABSTRACT

@#Salmonella enterica subsp. enterica serovar Enteritidis (SE) is a global concern for the poultry industry due to its association with foodborne illnesses. The transmission occurs through the transovarial route which initiates from colonization in oviducts and ascending to ovaries. Though there are studies on cytosine-phosphate-guanine oligodeoxynucleotide (CpG-ODN) and the increase of innate immune response, there is limited research on the intravaginal treatment using CpG-ODN. Previous studies have shown that stimulating CpG-ODN can induce the production of antimicrobial peptide avian beta-defensins (AvBDs) in vaginal cell cultures, there is limited information on the use of intravaginal treatment to induce the innate immune system, particularly in the Kampung Unggul Balitbangtan (KUB-1) chickens (Gallus gallus domesticus). This study investigates the impact of intravaginal CpG-ODN stimulation on the innate immune response in KUB-1 chicken ovaries and oviducts when challenged to SE. A total of 39 KUB-1 chickens were divided into four groups namely T1 (treated with CpG-ODN, n=12), T2 (SE group, n=12), T3 (CpG-ODN and SE, n=12), and Control (without CpG-ODN and SE, n=3). Chickens were observed from day 1 to 4 post-intravaginal (PI) inoculation. The results suggest that intravaginal CpG-ODN treatment modulates AvBD10 production through toll-like receptor (TLR)21, with interleukin (IL)1B and IL10 playing reciprocal roles, providing insights into the potential of this treatment to prevent transovarial Salmonellosis in poultry. The novelty of this study adds valuable insights to the current body of knowledge.

17.
Int J Mol Sci ; 24(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38003536

ABSTRACT

The interleukin-1 gene cluster encodes cytokines, which modulate mesangial cell proliferation and matrix expansion, both constituting central factors in the development and progression of immunoglobulin A nephropathy (IgAN). A candidate-gene study was performed to examine the association of polymorphisms of the interleukin-1 gene cluster with the risk of progressive IgAN. To gain deeper insights into the involvement of interleukin genes in IgAN, a meta-analysis of genetic association studies (GAS) that examine the association between interleukin variants and IgAN was conducted. Association study: The case-control study consisted of 121 unrelated Caucasians with sporadic, histologically diagnosed IgAN and of 246 age- and sex-matched healthy controls. Persistent proteinuria (>2 g/24 h) and/or impaired kidney function (serum creatinine > 1.5 mg/dL) defined progressive (n = 67) vs. non-progressive (n = 54) IgAN cases. Genotypes were assessed for two promoter-region single-nucleotide polymorphisms, C-899T (rs1800587) in IL1A and C-511T (rs16944) in IL1B, and for one penta-allelic variable-length tandem repeat polymorphism (VNTR 86 bp intron 2) in IL1RN. The association of these variants with the susceptibility of IgAN and the development of progressive IgAN (healthy status, IgAN, progressive IgAN) was tested using the generalized odds ratio (ORG) metric. Linkage disequilibrium and haplotype analysis were also performed. Meta-analysis: We included in the meta-analysis 15 studies investigating association between 14 interleukin variants harbored in eight different genes and IgAN. The ORG was used to evaluate the association between interleukin variants and IgAN using random effects models. The present case-control study revealed association of IL1B C-511T (rs16944) with the progression of IgAN (p = 0.041; ORG = 2.11 (1.09-4.07)). On haplotype analysis, significant results were derived for the haplotypes C-C-1 (p = 0.005; OR = 0.456 (0.261~0.797)) and C-T-2 (p = 0.003; OR = 4.208 (1.545-11.50)). Regarding association and meta-analysis results, variants in IL1B (rs1143627 and rs16944), IL1RN (rs928940, rs439154, and rs315951) and IL10 (rs1800871) were associated with IgAN based on either genotype or allele counts. Genetic variants and haplotypes in the IL1B, IL1RN, and IL10 genes might contribute to an increased risk for development and progression of IgAN.


Subject(s)
Glomerulonephritis, IGA , Humans , Glomerulonephritis, IGA/genetics , Glomerulonephritis, IGA/pathology , Case-Control Studies , Interleukin-10/genetics , Genetic Predisposition to Disease , Genotype , Interleukins/genetics , Polymorphism, Single Nucleotide , Interleukin-1/genetics , Interleukin-1beta/genetics
18.
Front Immunol ; 14: 1197775, 2023.
Article in English | MEDLINE | ID: mdl-38022570

ABSTRACT

Background: There is a bidirectional relationship between obesity and depression. We investigated whether the coexistence of obesity and depression increases the risk of having severe depression and a high suicide risk in adolescents with major depressive disorder (MDD). Additionally, we explored the potential mechanisms linking the coexistence of obesity and depression to worse outcomes in these patients. Methods: The odds of high suicide risk and severe depression were compared among MDD patients based on different body mass index (BMI) groups. Complete blood count (CBC) parameters, inflammatory ratios (neutrophil-lymphocyte ratio [NLR], monocyte-lymphocyte ratio [MLR], and platelet-lymphocyte ratio [PLR]), and cytokine levels (IFN-γ, IL-1ß, IL-6, IL-8, MCP-1, TNF-α, and TGF-ß1) were evaluated across BMI groups. Additionally, Pearson correlation coefficients (r) were assessed to understand the relationships between the 8Q and 9Q scores, CBC parameters, inflammatory ratios, cytokine levels, and BMI. Results: A total of 135 antidepressant-naive adolescents with MDD were included. Overweight and obese MDD patients had higher odds of having high suicide risk and severe depression than lean individuals. Furthermore, they exhibited significantly higher white blood cell (WBC), and neutrophil counts. The NLR tended to be higher in obese MDD patients than in leans. Overweight and obese MDD patients had elevated levels of interleukin (IL)-1ß and IL-6 compared to lean individuals, while TGF-ß1 levels appeared to decline as body weight increased. BMI showed weak positive correlations with 8Q score, WBC count, neutrophil count, monocyte count, platelet count, neutrophil percentage, and NLR, and a weak negative correlation with lymphocyte percentage. The 8Q score displayed weak positive correlations with BMI, neutrophil percentage, monocyte percentages, NLR, and MLR, and a weak negative correlation with lymphocyte percentage. Conclusion: The findings suggest that coexistence of overweight or obesity with depression heightened inflammatory responses, leading to worse outcomes and increased suicide risk in adolescents MDD patients.


Subject(s)
Depressive Disorder, Major , Suicide , Humans , Adolescent , Overweight/complications , Transforming Growth Factor beta1 , Interleukin-6 , Depression , Obesity/complications , Cytokines , Disease Susceptibility
19.
Drug Des Devel Ther ; 17: 3103-3128, 2023.
Article in English | MEDLINE | ID: mdl-37868820

ABSTRACT

Purpose: This study was conducted to explore the mechanism of Sijunzi Decoction (SJZ) in the treatment of ulcerative colitis (UC). Methods: The study aimed to investigate the active components and targets of SJZ in the treatment of UC by screening databases such as TCMSP, GeneCards, OMIM, Distinct, TTD, and Drugbank. An online Venn tool, Cytoscape 3.7.2, and Autodock Tools were used to analyze the components and targets. The study also used a mouse model of UC to further investigate the effects of SJZ. HE staining, immunofluorescence, ELISA, qPCR, and Western blot were used to detect various indices. Results: Eighty-three active components and 112 action targets were identified from SJZ, including 67 targets for treating UC-related NETs. The five core targets identified were AKT1, JUN, IL1B, PTGS2, and TNF, and molecular docking studies indicated that the five targets were well-docked with ginsenoside Rh2, isoflavones, and formononetin. Animal experiments demonstrated that SJZ could alleviate various parameters such as weight, colon length, spleen index, disease activity index, and intestinal pathology of the UC mice. Immunofluorescence and Western blot showed that SJZ could reduce the expression of IL1B and TNF in intestinal neutrophils while increasing the expression of Occludin. Cellular immunofluorescence suggests that SJZ can reduce the expression of TNF and IL1B in NETs. The qPCR results also suggested that SJZ could inhibit TNF signal. Furthermore, ELISA results suggested that SJZ could inhibit the expression of pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6) while promoting the expression of anti-inflammatory cytokines (IL-10, IL-37, TGF-ß). Conclusion: SJZ treats UC by reducing the content of intestinal NETs, with primary targets on the NETs being IL1B and TNFand suppress TNF signal. The practical components of SJZ may be ginsenoside Rh2, isoflavones, and formononetin.


Subject(s)
Colitis, Ulcerative , Drugs, Chinese Herbal , Extracellular Traps , Isoflavones , Animals , Mice , Colitis, Ulcerative/drug therapy , Silicon , Molecular Docking Simulation , Drugs, Chinese Herbal/pharmacology , Cytokines
20.
Front Immunol ; 14: 1231087, 2023.
Article in English | MEDLINE | ID: mdl-37799713

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19) that presents with varied clinical manifestations ranging from asymptomatic or mild infections and pneumonia to severe cases associated with cytokine storm, acute respiratory distress syndrome (ARDS), and even death. The underlying mechanisms contributing to these differences are unclear, although exacerbated inflammatory sequelae resulting from infection have been implicated. While advanced aging is a known risk factor, the precise immune parameters that determine the outcome of SARS-CoV-2 infection in elderly individuals are not understood. Here, we found aging-associated (age ≥61) intrinsic changes in T cell responses when compared to those from individuals aged ≤ 60, even among COVID-positive patients with mild symptoms. Specifically, when stimulated with SARS-CoV-2 peptides in vitro, peripheral blood mononuclear cell (PBMC) CD4+ and CD8+ T cells from individuals aged ≥61 showed a diminished capacity to produce IFN-γ and IL-1ß. Although they did not have severe disease, aged individuals also showed a higher frequency of PD-1+ cells and significantly diminished IFN-γ/PD-1 ratios among T lymphocytes upon SARS-CoV-2 peptide stimulation. Impaired T cell IL-1ß expression coincided with reduced NLRP3 levels in T lymphocytes. However, the expression of these molecules was not affected in the monocytes of individuals aged ≥61. Together, these data reveal SARS-CoV-2-specific CD4+ and CD8+ T-cell intrinsic cytokine alterations in the individuals older than 61 and may provide new insights into dysregulated COVID-directed immune responses in the elderly.


Subject(s)
Aging , COVID-19 , Aged , Humans , Aging/genetics , Aging/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/genetics , COVID-19/immunology , Leukocytes, Mononuclear/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2 , Middle Aged , CD4-Positive T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL