Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 776
Filter
1.
Pflugers Arch ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115555

ABSTRACT

Intestinal absorption of phosphate is bimodal, consisting of a transcellular pathway and a poorly characterized paracellular mode, even though the latter one contributes to the bulk of absorption under normal dietary conditions. Claudin-3 (Cldn3), a tight junction protein present along the whole intestine in mice, has been proposed to tighten the paracellular pathway for phosphate. The aim of this work was to characterize the phosphate-related phenotype of Cldn3-deficient mice. Cldn3-deficient mice and wildtype littermates were fed standard diet or challenged for 3 days with high dietary phosphate. Feces, urine, blood, intestinal segments and kidneys were collected. Measurements included fecal, urinary, and plasma concentrations of phosphate and calcium, plasma levels of phosphate-regulating hormones, evaluation of trans- and paracellular phosphate transport across jejunum and ileum, and analysis of intestinal phosphate and calcium permeabilities. Fecal and urinary excretion of phosphate as well as its plasma concentration was similar in both genotypes, under standard and high-phosphate diet. However, Cldn3-deficient mice challenged with high dietary phosphate had a reduced urinary calcium excretion and increased plasma levels of calcitriol. Intact FGF23 concentration was also similar in both groups, regardless of the dietary conditions. We found no differences either in intestinal phosphate transport (trans- or paracellular) and phosphate and calcium permeabilities between genotypes. The intestinal expression of claudin-7 remained unaltered in Cldn3-deficient mice. Our data do not provide evidence for a decisive role of Cldn3 for intestinal phosphate absorption and phosphate homeostasis. In addition, our data suggest a novel role of Cldn3 in regulating calcitriol levels.

2.
Food Res Int ; 192: 114811, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147508

ABSTRACT

Advanced glycation end products (AGEs), a heterogeneous compound existed in processed foods, are related to chronic diseases when they are accumulated excessively in human organs. Protein-bound Nε-(carboxymethyl) lysine (CML) as a typical AGE, is widely determined to evaluate AGEs level in foods and in vivo. This study investigated the intestinal absorption of three protein-bound CML originated from main food raw materials (soybean, wheat and peanut). After in vitro gastrointestinal digestion, the three protein-bound CML digests were ultrafiltered and divided into four fractions: less than 1 kDa, between 1 and 3 kDa, between 3 and 5 kDa, greater than 5 kDa. Caco-2 cell monolayer model was further used to evaluate the intestinal absorption of these components. Results showed that the absorption rates of soybean protein isolate (SPI)-, glutenin (Glu)-, peanut protein isolate (PPI)-bound CML were 30.18%, 31.57% and 29.5%, respectively. The absorption rates of components with MW less than 5 kDa accounted for 19.91% (SPI-bound CML), 22.59% (Glu-bound CML), 23.64% (PPI-bound CML), respectively, and these samples were absorbed by paracellular route, transcytosis route and active route via PepT-1. Taken together, these findings demonstrated that all three protein-bound CML digests with different MW can be absorbed in diverse absorption pathways by Caco-2 cell monolayer model. This research provided a theoretical basis for scientific evaluation of digestion and absorption of AGEs in food.


Subject(s)
Arachis , Digestion , Glutens , Intestinal Absorption , Lysine , Soybean Proteins , Humans , Caco-2 Cells , Lysine/analogs & derivatives , Lysine/metabolism , Arachis/chemistry , Intestinal Absorption/physiology , Soybean Proteins/metabolism , Soybean Proteins/chemistry , Glutens/metabolism , Glycation End Products, Advanced/metabolism , Plant Proteins/metabolism , Triticum/chemistry
3.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3212-3219, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041082

ABSTRACT

In this experiment, the micro-precipitation method was used to prepare self-assembled nanoparticles of Herpetospermum caudigerum Wall.(MP-SAN). The process was optimized using average particle size and polydispersity index(PDI)as evaluation indexes. The mean particle size, PDI,zeta potential, and microstructure of MP-SAN were characterized. The intestinal absorption mechanism of dehydrodiconiferyl alcohol(DA)and herpetrione(Her)in MP-SAN was investigated through single-pass intestinal perfusion in rats. The optimized process parameters for producing MP-SAN were a stirring speed of 800 r·min~(-1),stirring time of 5 min, and rotary evaporation temperature of 40℃. The resulting MP-SAN exhibited a spherical-like structure and uniform morphology, with a mean particle size of(267.63±13.27) nm, a PDI of 0.062 0±0.043 9,and a zeta potential of(-46.18±3.66) mV. The absorption rate constant(K_a)and apparent permeability coefficient(P_(app))of DA in the ileal segment were significantly higher than those in the jejunal segment(P<0.05). However, there was no significant difference in the absorption of Her between the ileal and jejunal segments. Intestinal absorption parameters of DA and Her tended to increase with increasing drug concentration. Specifically, the K_a and P_(app) of DA in MP-SAN in the high-concentration group were significantly higher than those in the low-concentration group(P<0.01). The addition of verapamil, a P-glycoprotein inhibitor, did not significantly affect the intestinal absorption of DA and Her. However, the absorption of both DA and Her in MP-SAN was significantly increased by the addition of indomethacin(P<0.05),suggesting that DA and Her may be substrates for multidrug resistance-associated protein 2.


Subject(s)
Intestinal Absorption , Nanoparticles , Particle Size , Animals , Nanoparticles/chemistry , Rats , Male , Rats, Sprague-Dawley , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Cucurbitaceae/chemistry
4.
Nutrients ; 16(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39064781

ABSTRACT

The nutritional quality of plant-based meat analogues compared to traditional meat products has been questioned in recent commentary, particularly in relation to protein quality and micronutrient bioavailability. However, the attributes of specific products within this category are unclear. We therefore undertook a comprehensive assessment of the compositional and functional attributes of v2food® (Sydney, Australia) plant-based mince, including an assessment of the effects of reformulation, including the addition of amino acids, ascorbic acid, and different forms of elemental iron. The protein digestibility and protein quality of v2food® plant-based mince were comparable to beef mince in the standardized INFOGEST system, and favourable effects on microbiota composition and short-chain fatty acid (SCFA) production were demonstrated in an in vitro digestion system. The use of ferrous sulphate as an iron source improved in vitro intestinal iron absorption by ~50% in comparison to other forms of iron (p < 0.05), although levels were ~3-fold lower than beef mince, even in the presence of ascorbic acid. In conclusion, the current study identified some favourable nutritional attributes of plant-based v2food® mince, specifically microbiota and SCFA changes, as well as other areas where further reformulation could be considered to further enhance the bioavailability of key nutrients. Further studies to assess the effect of plant-based meat analogues on health measures in vivo will be important to improve knowledge in this area.


Subject(s)
Feces , Gastrointestinal Microbiome , Intestinal Absorption , Humans , Gastrointestinal Microbiome/physiology , Feces/microbiology , Feces/chemistry , Intestinal Absorption/drug effects , Dietary Proteins/metabolism , Iron/metabolism , Iron/pharmacokinetics , Nutritive Value , Biological Availability , Ascorbic Acid , Fatty Acids, Volatile/metabolism , Digestion , Ferrous Compounds
5.
J Agric Food Chem ; 72(29): 16287-16297, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38986018

ABSTRACT

Variances in the biological functions of astaxanthin geometric isomers (i.e., all-E, Z) are related to their intestinal absorption, but the mechanism of isomer absorption mediated by transporters remains unclear. Here, models of in vitro cell overexpression, in situ intestinal perfusion, and in vivo mouse inhibition were employed to investigate the impact of cluster of differentiation 36 (CD36) on the absorption of astaxanthin isomers. Cells overexpressing CD36 notably enhanced the uptake of Z-astaxanthin, particularly the 9-Z-isomer (47.76%). The absorption rate and permeability of Z-astaxanthin surpassed that of the all-E-isomer by the in situ model. Furthermore, the addition of the CD36-specific inhibitor sulfo-N-succinimidyl oleate significantly reduced the absorption of Z-astaxanthin in the mouse duodenum and jejunum, especially the 9-Z-isomer (57.66%). Molecular docking and surface plasmon resonance techniques further validated that 9-Z-astaxanthin binds to more amino acids of CD36 with higher affinity and in a fast-binding, fast-dissociating mode, thus favoring transport. Our findings elucidate, for the first time, the mechanism of the CD36-mediated transmembrane transport of astaxanthin geometric isomers.


Subject(s)
CD36 Antigens , Intestinal Absorption , Molecular Docking Simulation , Xanthophylls , Xanthophylls/metabolism , Xanthophylls/chemistry , Animals , CD36 Antigens/metabolism , CD36 Antigens/genetics , Mice , Intestinal Absorption/drug effects , Male , Humans , Isomerism , Mice, Inbred C57BL , Jejunum/metabolism , Protein Binding
6.
Chem Biol Drug Des ; 104(1): e14576, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38969623

ABSTRACT

Intestinal absorption of compounds is significant in drug research and development. To evaluate this efficiently, a method combining mathematical modeling and molecular simulation was proposed, from the perspective of molecular structure. Based on the quantitative structure-property relationship study, the model between molecular structure and their apparent permeability coefficients was successfully constructed and verified, predicting intestinal absorption of drugs and interpreting decisive structural factors, such as AlogP98, Hydrogen bond donor and Ellipsoidal volume. The molecules with strong lipophilicity, less hydrogen bond donors and receptors, and small molecular volume are more easily absorbed. Then, the molecular dynamics simulation and molecular docking were utilized to study the mechanism of differences in intestinal absorption of drugs and investigate the role of molecular structure. Results indicated that molecules with strong lipophilicity and small volume interacted with the membrane at a lower energy and were easier to penetrate the membrane. Likewise, they had weaker interaction with P-glycoprotein and were easier to escape from it and harder to export from the body. More in, less out, is the main reason these molecules absorb well.


Subject(s)
Hydrogen Bonding , Intestinal Absorption , Molecular Docking Simulation , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Humans , Molecular Structure , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , Hydrophobic and Hydrophilic Interactions , Permeability
7.
AAPS PharmSciTech ; 25(6): 163, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38997614

ABSTRACT

Some glycoside drugs can be transported through intestinal glucose transporters (IGTs). The surfactants used in oral drug preparations can affect the function of transporter proteins. This study aimed to investigate the effect of commonly used surfactants, Poloxamer 188 and Tween 80, on the drug transport capacity of IGTs. Previous studies have shown that gastrodin is the optimal drug substrate for IGTs. Gastrodin was used as a probe drug to evaluate the effect of these two surfactants on intestinal absorption in SD rats through pharmacokinetic and in situ single-pass intestinal perfusion. Then, the effects of the two surfactants on the expression of glucose transporters and tight-junction proteins were examined using RT-PCR and western blotting. Additionally, the effect of surfactants on intestinal permeability was evaluated through hematoxylin-eosin staining. The results found that all experimental for Poloxamer 188 (0.5%, 2.0% and 8.0%) and Tween 80 (0.1% and 2.0%) were not significantly different from those of the blank group. However, the AUC(0-∞) of gastrodin increased by approximately 32% when 0.5% Tween 80 was used. The changes in IGT expression correlated with the intestinal absorption of gastrodin. A significant increase in the expression of IGTs was observed at 0.5% Tween 80. In conclusion, Poloxamer 188 had minimal effect on the drug transport capacity of IGTs within the recommended limits of use. However, the expression of IGTs increased in response to 0.5% Tween 80, which significantly enhanced the drug transport capacity of IGTs. However, 0.1% and 2.0% Tween 80 had no significant effect.


Subject(s)
Intestinal Absorption , Intestinal Mucosa , Poloxamer , Polysorbates , Rats, Sprague-Dawley , Surface-Active Agents , Animals , Poloxamer/pharmacology , Polysorbates/pharmacology , Rats , Intestinal Absorption/drug effects , Male , Surface-Active Agents/pharmacology , Biological Transport/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Glucose Transport Proteins, Facilitative/metabolism , Glucosides/pharmacology
8.
J Ethnopharmacol ; 334: 118528, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38972526

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Pudilan Xiaoyan Oral Liquid (PDL) is a proprietary Chinese medicinal preparation approved by the State for treating acute pharyngitis in both adults and children (Approval No. Z20030095). It is worth noting that children exhibit unique physiopathological characteristics compared to adults. However, the in vivo regulatory characteristics of PDL in treating acute pharyngitis in children remain incompletely understood. AIM OF THE STUDY: The differential absorption and metabolism characteristics of the main pharmacological components in PDL in young and adult rats were investigated with a view to providing a reference for preclinical data of PDL in medication for children. MATERIALS AND METHODS: This study utilized UPLC-Q-TOF-MS to investigate the pharmacodynamic material basis of PDL. The focus was on the gastrointestinal digestion and absorption characteristics of organic acid components in PDL (PDL-OAC), known as the primary pharmacodynamic components in this formulation. The research combined in vitro dynamic simulation and a Quadruple single-pass intestinal perfusion model to examine these characteristics. The permeability properties of PDL-OAC were evaluated using an artificial parallel membrane model. Additionally, an acute pharyngitis model was established to evaluate the histopathological condition of the pharynx in young rats using H&E staining. The levels of IL-1ß, TNF-α, IL-6, and IL-10 in blood and pharyngeal tissue homogenates of young rats were quantified using ELISA kits. RESULTS: A total of 91 components were identified in PDL, including 33 organic acids, 24 flavonoids, 14 alkaloids, 5 terpenoids and coumarins, 3 sugars, and 12 amino acids. The PDL-OAC exhibited a significant reduction in IL-1ß, TNF-α, IL-6, and IL-10 levels in the pharyngeal tissues of young rats with acute pharyngitis. Results from dynamic simulation studies of gastrointestinal fluids revealed that the PDL-OAC (Specifically chlorogenic acid (CGA), gallic acid (GA), chicoric acid (CRA), and caffeic acid (CA)) were effectively stabilized in the gastrointestinal fluids of both children and adults in vitro. Young rats, characterized by thinner intestinal walls and higher permeability, efficiently absorbed the four organic acids across the entire intestinal segment. The absorption of CGA, GA, and CRA followed a concentration-dependent pattern, with CGA and GA absorption being influenced by exocytosis. CONCLUSION: The efficacy of the PDL-OAC in treating acute pharyngitis was demonstrated in young rats. The absorption rate of these components was observed to be faster in young rats compared to adult rats, underscoring the need for dedicated studies on the drug's usage in children. This research provides valuable insights for the appropriate clinical use of PDL in pediatric patients.


Subject(s)
Drugs, Chinese Herbal , Intestinal Absorption , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Male , Rats , Intestinal Absorption/drug effects , Administration, Oral , Caffeic Acids/pharmacokinetics , Caffeic Acids/administration & dosage , Age Factors
9.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931417

ABSTRACT

BACKGROUND: Peru is one of the most biodiverse countries in the world, which is reflected in its wealth of knowledge about medicinal plants. However, there is a lack of information regarding intestinal absorption and the permeability of natural products. The human colon adenocarcinoma cell line (Caco-2) is an in vitro assay used to measure apparent permeability. This study aims to develop a quantitative structure-property relationship (QSPR) model using machine learning algorithms to predict the apparent permeability of the Caco-2 cell in natural products from Peru. METHODS: A dataset of 1817 compounds, including experimental log Papp values and molecular descriptors, was utilized. Six QSPR models were constructed: a multiple linear regression (MLR) model, a partial least squares regression (PLS) model, a support vector machine regression (SVM) model, a random forest (RF) model, a gradient boosting machine (GBM) model, and an SVM-RF-GBM model. RESULTS: An evaluation of the testing set revealed that the MLR and PLS models exhibited an RMSE = 0.47 and R2 = 0.63. In contrast, the SVM, RF, and GBM models showcased an RMSE = 0.39-0.40 and R2 = 0.73-0.74. Notably, the SVM-RF-GBM model demonstrated superior performance, with an RMSE = 0.38 and R2 = 0.76. The model predicted log Papp values for 502 natural products falling within the applicability domain, with 68.9% (n = 346) showing high permeability, suggesting the potential for intestinal absorption. Additionally, we categorized the natural products into six metabolic pathways and assessed their drug-likeness. CONCLUSIONS: Our results provide insights into the potential intestinal absorption of natural products in Peru, thus facilitating drug development and pharmaceutical discovery efforts.

10.
Pharm Res ; 41(6): 1201-1216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38834905

ABSTRACT

BACKGROUND: Some glucoside drugs can be transported via intestinal glucose transporters (IGTs), and the presence of carbohydrate excipients in pharmaceutical formulations may influence the absorption of them. This study, using gastrodin as probe drug, aimed to explore the effects of fructose, lactose, and arabic gum on intestinal drug absorption mediated by the glucose transport pathway. METHODS: The influence of fructose, lactose, and arabic gum on gastrodin absorption was assessed via pharmacokinetic experiments and single-pass intestinal perfusion. The expression of sodium-dependent glucose transporter 1 (SGLT1) and sodium-independent glucose transporter 2 (GLUT2) was quantified via RT‒qPCR and western blotting. Alterations in rat intestinal permeability were evaluated through H&E staining, RT‒qPCR, and immunohistochemistry. RESULTS: Fructose reduced the area under the curve (AUC) and peak concentration (Cmax) of gastrodin by 42.7% and 63.71%, respectively (P < 0.05), and decreased the effective permeability coefficient (Peff) in the duodenum and jejunum by 58.1% and 49.2%, respectively (P < 0.05). SGLT1 and GLUT2 expression and intestinal permeability remained unchanged. Lactose enhanced the AUC and Cmax of gastrodin by 31.5% and 65.8%, respectively (P < 0.05), and increased the Peff in the duodenum and jejunum by 33.7% and 26.1%, respectively (P < 0.05). SGLT1 and GLUT2 levels did not significantly differ, intestinal permeability increased. Arabic gum had no notable effect on pharmacokinetic parameters, SGLT1 or GLUT2 expression, or intestinal permeability. CONCLUSION: Fructose, lactose, and arabic gum differentially affect intestinal drug absorption through the glucose transport pathway. Fructose competitively inhibited drug absorption, while lactose may enhance absorption by increasing intestinal permeability. Arabic gum had no significant influence.


Subject(s)
Benzyl Alcohols , Excipients , Fructose , Glucose Transporter Type 2 , Glucose , Glucosides , Gum Arabic , Intestinal Absorption , Lactose , Rats, Sprague-Dawley , Sodium-Glucose Transporter 1 , Animals , Intestinal Absorption/drug effects , Glucosides/pharmacology , Glucosides/administration & dosage , Glucosides/pharmacokinetics , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 1/genetics , Male , Glucose Transporter Type 2/metabolism , Glucose Transporter Type 2/genetics , Rats , Excipients/chemistry , Excipients/pharmacology , Glucose/metabolism , Lactose/chemistry , Benzyl Alcohols/pharmacology , Benzyl Alcohols/pharmacokinetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Biological Transport/drug effects , Permeability/drug effects
11.
Int J Nephrol Renovasc Dis ; 17: 151-161, 2024.
Article in English | MEDLINE | ID: mdl-38831770

ABSTRACT

Hyperphosphataemia represents a significant challenge in the management of chronic kidney disease, exerting a pronounced influence on the pathogenesis of cardiovascular complications and mineral bone disorders. Traditional approaches to address hyperphosphataemia involve implementing dietary phosphate restrictions, administering phosphate binders, and, in cases of end-stage renal disease, resorting to dialysis. Unfortunately, these interventions frequently prove inadequate in maintaining phosphate levels within recommended ranges. Additionally, commonly employed pharmacological agents are not immune to eliciting adverse events, thereby limiting their prescription and therapeutic adherence. There is a growing focus on exploring novel therapeutic strategies in this context. The current discussion centres on tenapanor, a pharmacological agent predominantly acting as a selective inhibitor of sodium/hydrogen exchanger isoform 3 (NHE3). Its mechanism of action involves modulating tight junctions, resulting in reduced sodium absorption and intestinal paracellular permeability to phosphate. Furthermore, tenapanor downregulates sodium-dependent phosphate 2b transport protein (NaPi2b) expression, thereby impeding active transcellular phosphate transport. Clinical trials have elucidated the efficacy and safety profile of tenapanor. This evidence hints at a potential paradigm shift in the management of hyperphosphataemia. However, the burgeoning optimism surrounding tenapanor warrants tempered enthusiasm, as further research remains indispensable. The imperative lies in meticulously delineating its efficacy and safety contours within the crucible of clinical practice. In this review, we synthesize the intricate interplay between hyperphosphataemia and Chronic Kidney Disease-Mineral Bone Disorder, and we discuss the existing pharmacological interventions for hyperphosphataemia and explore emerging treatment paradigms that offer novel perspectives in managing elevated phosphate levels in CKD patients.

12.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732008

ABSTRACT

Neuropathy affects 7-10% of the general population and is caused by a lesion or disease of the somatosensory system. The limitations of current therapies highlight the necessity of a new innovative approach to treating neuropathic pain (NP) based on the close correlation between oxidative stress, inflammatory process, and antioxidant action. The advantageous outcomes of a novel combination composed of Hop extract, Propolis, Ginkgo Biloba, Vitamin B, and palmitoylethanolamide (PEA) used as a treatment was evaluated in this study. To assess the absorption and biodistribution of the combination, its bioavailability was first examined in a 3D intestinal barrier model that replicated intestinal absorption. Further, a 3D nerve tissue model was developed to study the biological impacts of the combination during the essential pathways involved in NP. Our findings show that the combination could cross the intestinal barrier and reach the peripheral nervous system, where it modulates the oxidative stress, inflammation levels, and myelination mechanism (increased NRG, MPZ, ERB, and p75 levels) under Schwann cells damaging. This study proves the effectiveness of Ginkgo Biloba, Propolis, Hop extract, Vitamin B, and PEA in avoiding nerve damage and suggests a potential alternative nutraceutical treatment for NP and neuropathies.


Subject(s)
Amides , Dietary Supplements , Ethanolamines , Neuralgia , Palmitic Acids , Plants, Medicinal , Ethanolamines/pharmacology , Palmitic Acids/pharmacology , Palmitic Acids/administration & dosage , Animals , Neuralgia/drug therapy , Amides/pharmacology , Amides/chemistry , Plants, Medicinal/chemistry , Polyphenols/pharmacology , Polyphenols/chemistry , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Rats , Male , Antioxidants/pharmacology , Ginkgo biloba/chemistry , Humans
13.
Toxins (Basel) ; 16(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38787057

ABSTRACT

Breakfast cereals play a crucial role in children's diets, providing essential nutrients that are vital for their growth and development. Children are known to be more susceptible than adults to the harmful effects of food contaminants, with mycotoxins being a common concern in cereals. This study specifically investigated aflatoxin B1 (AFB1), enniatin B (ENNB), and sterigmatocystin (STG), three well-characterized mycotoxins found in cereals. The research aimed to address existing knowledge gaps by comprehensively evaluating the bioaccessibility and intestinal absorption of these three mycotoxins, both individually and in combination, when consumed with breakfast cereals and milk. The in vitro gastrointestinal method revealed patterns in the bioaccessibility of AFB1, ENNB, and STG. Overall, bioaccessibility increased as the food progressed from the stomach to the intestinal compartment, with the exception of ENNB, whose behavior differed depending on the type of milk. The ranking of overall bioaccessibility in different matrices was as follows: digested cereal > cereal with semi-skimmed milk > cereal with lactose-free milk > cereal with soy beverage. Bioaccessibility percentages varied considerably, ranging from 3.1% to 86.2% for AFB1, 1.5% to 59.3% for STG, and 0.6% to 98.2% for ENNB. Overall, the inclusion of milk in the ingested mixture had a greater impact on bioaccessibility compared to consuming the mycotoxins as a single compound or in combination. During intestinal transport, ENNB and STG exhibited the highest absorption rates when ingested together. This study highlights the importance of investigating the combined ingestion and transport of these mycotoxins to comprehensively assess their absorption and potential toxicity in humans, considering their frequent co-occurrence and the possibility of simultaneous exposure.


Subject(s)
Breakfast , Digestion , Edible Grain , Food Contamination , Intestinal Absorption , Mycotoxins , Edible Grain/chemistry , Mycotoxins/analysis , Humans , Food Contamination/analysis , Animals , Child , Milk/chemistry , Biological Availability
14.
J Affect Disord ; 358: 416-421, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38735581

ABSTRACT

BACKGROUND: The therapeutic response to lithium in patients with bipolar disorder is highly variable and has a polygenic basis. Genome-wide association studies investigating lithium response have identified several relevant loci, though the precise mechanisms driving these associations are poorly understood. We aimed to prioritise the most likely effector gene and determine the mechanisms underlying an intergenic lithium response locus on chromosome 21 identified by the International Consortium on Lithium Genetics (ConLi+Gen). METHODS: We conducted in-silico functional analyses by integrating and synthesising information from several publicly available functional genetic datasets and databases including the Genotype-Tissue Expression (GTEx) project and HaploReg. RESULTS: The findings from this study highlighted TMPRSS15 as the most likely effector gene at the ConLi+Gen lithium response locus. TMPRSS15 encodes enterokinase, a gastrointestinal enzyme responsible for converting trypsinogen into trypsin and thus aiding digestion. Convergent findings from gene-based lookups in human and mouse databases as well as co-expression network analyses of small intestinal RNA-seq data (GTEx) implicated TMPRSS15 in the regulation of intestinal nutrient absorption, including ions like sodium and potassium, which may extend to lithium. LIMITATIONS: Although the findings from this study indicated that TMPRSS15 was the most likely effector gene at the ConLi+Gen lithium response locus, the evidence was circumstantial. Thus, the conclusions from this study need to be validated in appropriately designed wet-lab studies. CONCLUSIONS: The findings from this study are consistent with a model whereby TMPRSS15 impacts the efficacy of lithium treatment in patients with bipolar disorder by modulating intestinal lithium absorption.


Subject(s)
Bipolar Disorder , Computer Simulation , Intestinal Absorption , Serine Endopeptidases , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Bipolar Disorder/metabolism , Humans , Intestinal Absorption/drug effects , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Mice , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Lithium/therapeutic use , Lithium/pharmacology , Antimanic Agents/pharmacology , Antimanic Agents/therapeutic use , Genome-Wide Association Study , Lithium Compounds/pharmacology , Lithium Compounds/therapeutic use , Lithium Compounds/pharmacokinetics
15.
J Trace Elem Med Biol ; 84: 127459, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38640745

ABSTRACT

Trace elements such as zinc, manganese, copper, or iron are essential for a wide range of physiological functions. It is therefore crucial to ensure an adequate supply of these elements to the body. Many previous investigations have dealt with the role of transport proteins, in particular their selectivity for, and competition between, different ions. Another so far less well investigated major factor influencing the absorption of trace elements seems to be the intestinal mucus layer. This gel-like substance covers the entire gastrointestinal tract and its physiochemical properties can be mainly assigned to the glycoproteins it contains, so-called mucins. Interaction with mucins has already been demonstrated for some metals. However, knowledge about the impact on the respective bioavailability and competition between those metals is still sketchy. This review therefore aims to summarize the findings and knowledge gaps about potential effects regarding the interaction between gastrointestinal mucins and the trace elements iron, zinc, manganese, and copper. Mucins play an indispensable role in the absorption of these trace elements in the neutral to slightly alkaline environment of the intestine, by keeping them in a soluble form that can be absorbed by enterocytes. Furthermore, the studies so far indicate that the competition between these trace elements for uptake already starts at the intestinal mucus layer, yet further research is required to completely understand this interaction.


Subject(s)
Copper , Intestinal Absorption , Intestinal Mucosa , Iron , Manganese , Zinc , Copper/metabolism , Humans , Zinc/metabolism , Manganese/metabolism , Iron/metabolism , Intestinal Absorption/physiology , Animals , Intestinal Mucosa/metabolism , Mucins/metabolism , Mucus/metabolism , Trace Elements/metabolism
16.
Pharm Res ; 41(5): 849-861, 2024 May.
Article in English | MEDLINE | ID: mdl-38485855

ABSTRACT

PURPOSE: Olmesartan medoxomil (olmesartan-MX), an ester-type prodrug of the angiotensin II receptor blocker (ARB) olmesartan, is predominantly anionic at intestinal pH. Human organic anion transporting polypeptide 2B1 (OATP2B1) is expressed in the small intestine and is involved in the absorption of various acidic drugs. This study was designed to test the hypothesis that OATP2B1-mediated uptake contributes to the enhanced intestinal absorption of olmesartan-MX, even though olmesartan itself is not a substrate of OATP2B1. METHODS: Tetracycline-inducible human OATP2B1- and rat Oatp2b1-overexpressing HEK 293 cell lines (hOATP2B1/T-REx-293 and rOatp2b1/T-REx-293, respectively) were established to characterize OATP2B1-mediated uptake. Rat jejunal permeability was measured using Ussing chambers. ARBs were quantified by liquid chromatography-tandem mass spectrometry. RESULTS: Significant olmesartan-MX uptake was observed in hOATP2B1/T-REx-293 and rOatp2b1/T-REx-293 cells, whereas olmesartan uptake was undetectable or much lower than olmesartan-MX uptake, respectively. Furthermore, olmesartan-MX exhibited several-fold higher uptake in Caco-2 cells and greater permeability in rat jejunum compared to olmesartan. Olmesartan-MX uptake in hOATP2B1/T-REx-293 cells and in Caco-2 cells was significantly decreased by OATP2B1 substrates/inhibitors such as 1 mM estrone-3-sulfate, 100 µM rifamycin SV, and 100 µM fluvastatin. Rat Oatp2b1-mediated uptake and rat jejunal permeability of olmesartan-MX were significantly decreased by 50 µM naringin, an OATP2B1 inhibitor. Oral administration of olmesartan-MX with 50 µM naringin to rats significantly reduced the area under the plasma concentration-time curve of olmesartan to 76.9%. CONCLUSION: Olmesartan-MX is a substrate for OATP2B1, and the naringin-sensitive transport system contributes to the improved intestinal absorption of olmesartan-MX compared with its parent drug, olmesartan.


Subject(s)
Imidazoles , Intestinal Absorption , Olmesartan Medoxomil , Organic Anion Transporters , Prodrugs , Tetrazoles , Animals , Humans , Intestinal Absorption/drug effects , Olmesartan Medoxomil/metabolism , Prodrugs/pharmacokinetics , Prodrugs/metabolism , HEK293 Cells , Tetrazoles/pharmacokinetics , Tetrazoles/metabolism , Organic Anion Transporters/metabolism , Organic Anion Transporters/antagonists & inhibitors , Male , Imidazoles/pharmacokinetics , Imidazoles/metabolism , Rats , Rats, Sprague-Dawley , Jejunum/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacokinetics , Angiotensin II Type 1 Receptor Blockers/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Permeability/drug effects , Caco-2 Cells
17.
J Oleo Sci ; 73(4): 563-571, 2024.
Article in English | MEDLINE | ID: mdl-38556289

ABSTRACT

The solubility and permeability of the Biopharmaceutics Classification System (BCS) class IV drugs, such as furosemide (FUR), are low. Thus, the oral bioavailability of these drugs needs to be augmented. Here, we aimed to design orally disintegrating tablets containing FUR nanoparticles to improve bioavailability after oral administration. The FUR nanoparticles were generated by bead-milling in water containing 0.5% methylcellulose and 0.5% 2-hydroxypropyl-ß-cyclodextrin (w/w%). Particle size was approximately 47-350 nm (mean particle size, 188 nm). An orally disintegrating tablet (FUR-NP tablet) comprising FUR nanoparticles (1%) was successfully produced by employing suspensions outlined above that incorporated additives (4% D-mannitol, 0.4% polyvinylpyrrolidone, and 16% gum Arabic, w/w%), followed by freeze-drying. The FUR-NP tablet disaggregated after only 5 s in water, liberating nano-sized FUR particles (172 nm). Experiments using rats showed the absorption of the FUR-NP tablet was significantly improved by comparison with a FUR tablet containing microparticles. In summary, the orally disintegrating tablet containing FUR nanoparticles markedly enhanced the bioavailability of FUR. We anticipate this formulation will also improve the bioavailability of other BCS class IV drugs.


Subject(s)
Furosemide , Nanoparticles , Rats , Animals , Biological Availability , Tablets , Solubility , Water , Administration, Oral
18.
Front Pharmacol ; 15: 1331637, 2024.
Article in English | MEDLINE | ID: mdl-38444938

ABSTRACT

Background: Ivacaftor is a modern drug used in the treatment of cystic fibrosis. It is highly lipophilic and exhibits a strong positive food effect. These characteristics can be potentially connected to a pronounced lymphatic transport after oral administration. Methods: A series of studies was conducted to describe the basic pharmacokinetic parameters of ivacaftor in jugular vein cannulated rats when dosed in two distinct formulations: an aqueous suspension and an oil solution. Additionally, an anesthetized mesenteric lymph duct cannulated rat model was studied to precisely assess the extent of lymphatic transport. Results: Mean ± SD ivacaftor oral bioavailability was 18.4 ± 3.2% and 16.2 ± 7.8%, respectively, when administered as an aqueous suspension and an oil solution. The relative contribution of the lymphatic transport to the overall bioavailability was 5.91 ± 1.61% and 4.35 ± 1.84%, respectively. Conclusion: Lymphatic transport plays only a minor role in the process of ivacaftor intestinal absorption, and other factors are, therefore, responsible for its pronounced positive food effect.

19.
Toxicol In Vitro ; 97: 105813, 2024 May.
Article in English | MEDLINE | ID: mdl-38522493

ABSTRACT

The aims of the current study included characterizing the intestinal transport mechanism of polystyrene microplastics (MPs) with different charges and sizes in the intestinal epithelial cell model and determining the inhibitory effect of green tea extracts (GTEs) on the intestinal absorption of MPs in Caco-2 cells. The smaller sizes, which included diameters of 0.2 µm, of amine-modified MPs compared to either larger size (1 µm diameter, or carboxylate-MPs (0.2 and 1 µm diameter) significantly lowered the cell viability of caco-2 cells that were measured by MTT assay (p < 0.05). The transported amount (particles/mL of the cell media) of amine-modified MPs by the Caco-2 cell, was not dependent according to the concentrations, energy, or temperature, but it was higher than the carboxylate-modified MPs. The co-treatment of GTEs with the amine-modified MPs inhibited Caco-2 cell cytotoxicity as well as reduced the production of intracellular reactive oxygen species (ROS) in HepG2 generated by the exposure of amine-modified MPs. The GTEs co-treatment also increased trans-epithelial electrical resistances (TEER) and reduced the transportation of Lucifer Yellow via the Caco-2 monolayer compared to only the amine-modified MPs exposure. The GTEs treatment led to a decrease in the number of amine-modified MPs transported to the basal side of the Caco-2 monolayer. The results from our study suggest that the consumption of GTEs could enhance the intestinal barrier function by recovering intestinal epithelial cell damage induced by MPs, which resulted in a decrease of the intestinal absorption of MPs.


Subject(s)
Microplastics , Polystyrenes , Humans , Polystyrenes/toxicity , Microplastics/toxicity , Plastics , Caco-2 Cells , Antioxidants , Intestinal Absorption , Tea , Amines
20.
Foods ; 13(3)2024 01 24.
Article in English | MEDLINE | ID: mdl-38338509

ABSTRACT

Beeswax oleogels (OGs), with a mechanical strength similar to pork backfat, were formulated with avocado (A), sunflower (S), and linseed (L) oils, applying a central composite design plus star point, and were evaluated as oral delivery vehicles of curcuminoids (OGACur, OGSCur, OGLCur). The incorporation of curcumin into the OG matrix significantly delayed both the formation of peroxides and conjugated trienes (K268 values), and the degradation rate of curcumin decreased with the increase of the oil polyunsaturated fatty acids (PUFA) content. The oil structuring did not affect the bioaccessibility of curcuminoids (>55% in all the OGs, regardless of the oil type), but it did reduce the release of fatty acids (~10%) during in vitro gastrointestinal digestion. The intestinal absorption, evaluated in Caco-2 cell monolayers, was higher for the micelle-solubilized curcumin from the digested OG than from unstructured oils, and it showed high anti-inflammatory potential by inhibiting the tumor necrosis factor-α (TNF-α) production compared to the positive control, both before and after the stimulation of ThP-1 cells with LPS. Regardless of the oil type, these beeswax-based OGs with gel-like behavior designed as fat replacers may be promising vehicles for the oral delivery of curcuminoids.

SELECTION OF CITATIONS
SEARCH DETAIL