Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Cells ; 12(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36831297

ABSTRACT

Vitiligo is the most frequent cause of depigmentation worldwide. Genetic association studies have discovered about 50 loci associated with disease, many with immunological functions. Among them is HLA-G, which modulates immunity by interacting with specific inhibitory receptors, mainly LILRB1 and LILRB2. Here we investigated the LILRB1 and LILRB2 association with vitiligo risk and evaluated the possible role of interactions between HLA-G and its receptors in this pathogenesis. We tested the association of the polymorphisms of HLA-G, LILRB1, and LILRB2 with vitiligo using logistic regression along with adjustment by ancestry. Further, methods based on the multifactor dimensionality reduction (MDR) approach (MDR v.3.0.2, GMDR v.0.9, and MB-MDR) were used to detect potential epistatic interactions between polymorphisms from the three genes. An interaction involving rs9380142 and rs2114511 polymorphisms was identified by all methods used. The polymorphism rs9380142 is an HLA-G 3'UTR variant (+3187) with a well-established role in mRNA stability. The polymorphism rs2114511 is located in the exonic region of LILRB1. Although no association involving this SNP has been reported, ChIP-Seq experiments have identified this position as an EBF1 binding site. These results highlight the role of an epistatic interaction between HLA-G and LILRB1 in vitiligo pathogenesis.


Subject(s)
Antigens, CD , HLA-G Antigens , Leukocyte Immunoglobulin-like Receptor B1 , Vitiligo , Humans , HLA-G Antigens/genetics , Leukocyte Immunoglobulin-like Receptor B1/genetics , Polymorphism, Genetic , Receptors, Immunologic/genetics , Vitiligo/metabolism
2.
Hum Immunol ; 84(8): 374-383, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36710086

ABSTRACT

We took advantage of the increasingly evolving approaches for in silico studies concerning protein structures, protein molecular dynamics (MD), protein-protein and protein-DNA docking to evaluate: (i) the structure and MD characteristics of the HLA-G well-recognized isoforms, (ii) the impact of missense mutations at HLA-G receptor genes (LILRB1/2), and (iii) the differential binding of the hypoxia-inducible factor 1 (HIF1) to hypoxia-responsive elements (HRE) at the HLA-G gene. Besides reviewing these topics, they were revisited including the following novel results: (i) the HLA-G6 isoforms were unstable docked or not with ß2-microglobulin or peptide, (ii) missense mutations at LILRB1/2 genes, exchanging amino acids at the intracellular domain, particularly those located within and around the ITIM motifs, may impact the HLA-G binding strength, and (iii) HREs motifs at the HLA-G promoter or exon 2 regions exhibiting a guanine at their third position present a higher affinity for HIF1 when compared to an adenine at the same position. These data shed some light into the functional aspects of HLA-G, particularly how polymorphisms may influence the role of the molecule. Computational and atomistic studies have provided alternative tools for experimental physical methodologies, which are time-consuming, expensive, demanding large quantities of purified proteins, and exhibit low output.


Subject(s)
HLA-G Antigens , Immune Checkpoint Proteins , Humans , HLA-G Antigens/metabolism , Leukocyte Immunoglobulin-like Receptor B1/genetics , Immune Checkpoint Proteins/genetics , Genes, MHC Class I , Protein Isoforms/genetics
3.
HLA ; 100(4): 325-348, 2022 10.
Article in English | MEDLINE | ID: mdl-35754199

ABSTRACT

Leukocyte immunoglobulin (Ig)-like receptors (LILR) LILRB1 and LILRB2 may play a pivotal role in maintaining self-tolerance and modulating the immune response through interaction with classical and nonclassical HLA molecules. Although both diversity and natural selection patterns over HLA genes have been extensively evaluated, little information is available concerning the genetic diversity and selection signatures on the LILRB1/2 regions. Therefore, we identified the LILRB1/2 genetic diversity using next-generation sequencing in a population sample from São Paulo State, Brazil. We identified 58 LILRB1 Single Nucleotide Variants (SNVs), which gave rise to 13 haplotypes, and 41 LILRB2 SNVs arranged into 11 haplotypes. Although we may not exclude as a possible effect of population structure, we found evidence of either positive or purifying selection on LILRB1/2 coding regions. Some residues in both proteins showed to be under the effect of positive selection, suggesting that amino acid replacements in these proteins resulted in beneficial functional changes. Finally, we have revealed that allelic variation (six and five amino acid exchanges in LILRB1 and LILRB2, respectively) affects the structure and/or stability of both molecules. Nonetheless, LILRB2 has shown higher average stability, with no D1/D2 residue affecting protein structure. Overall, our findings demonstrate that LILRB1 and LILRB2 are as polymorphic as HLA class Ib genes and provide strong evidence supporting the directional selection regime hypothesis.


Subject(s)
Antigens, CD , Leukocyte Immunoglobulin-like Receptor B1 , Membrane Glycoproteins , Receptors, Immunologic , Alleles , Amino Acids , Antigens, CD/genetics , Brazil , Genetic Variation , Humans , Leukocyte Immunoglobulin-like Receptor B1/genetics , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL