Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 656
Filter
1.
Neurochem Int ; 179: 105834, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39142353

ABSTRACT

Alcohol exposure in adolescence is considered a major cause of cognitive impairments later in life including spatial learning and memory. Integrated stress response (ISR), a program of conservative translation and transcription, is crucial in synaptic plasticity and memory. Although previous studies have elucidated ISR in different brain areas involved in learning and memory disorders, the impact of ISR on learning and memory following adolescent alcohol exposure remains unclear. Here, we demonstrated that adolescent intermittent ethanol (AIE) exposure caused spatial learning and memory impairment, combined with neuronal damage in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc) and hippocampus (HIP) in adult rats. Moreover, integrated stress response inhibitor (ISRIB) administration not only improved spatial learning and memory impairment and neuronal damage but also inhibited the endoplasmic reticulum stress (ER) and reversed changes in synaptic proteins. These findings suggested that ISRIB ameliorates AIE exposure-induced spatial learning and memory deficits by improving neural morphology and synaptic function through inhibiting ER stress signaling pathway in the mPFC, NAc and HIP in adulthood. Our findings may enhance comprehension of cognitive function and neuronal effects of adolescent ethanol exposure and ISRIB treatment may be an underlying potential option for addressing alcohol-induced learning and memory deficits.

2.
Trends Cogn Sci ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39147644

ABSTRACT

Decision making is often necessary before performing an action. Traditionally, it has been assumed that decision making and motor control are independent, sequential processes. Ogasa et al. challenge this view, and demonstrate that the decision-making process significantly impacts on the formation and retrieval of motor memory by tagging it with the level of confidence.

3.
Metab Brain Dis ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120852

ABSTRACT

Obesity is a significant health concern that is correlated with various adverse health outcomes. Diet-induced obesity (DIO) is associated with impaired cognitive function. Pharmacological treatments for obesity are limited and may have serious adverse effects. Zingiber officinale (ZO) has anti-inflammatory and antioxidant effects, in addition to metabolic effects. This study aimed to assess the effects of Zingiber officinale supplementation on cognitive function, anxiety levels, neurotrophin levels, and the inflammatory and oxidative status in the cortex following DIO in mice. Two-month-old male Swiss mice were fed DIO or standard chow for 4 months and subsequently subdivided into the following groups (n = 10 mice/group): (i) control - vehicle (CNT + vehicle); (ii) CNT supplemented with ZO (CNT + ZO); (iii) obese mice (DIO + vehicle); and (iv) obese mice supplemented with ZO (DIO + ZO) (n = 10). Zingiber officinale extract (400 mg/kg/day) was administered for 35 days via oral gavage. The DIO + vehicle group exhibited impaired recognition memory. The CNT + ZO group presented a greater number of crossings in the open field. No difference between the groups was observed in the plus maze test. DIO + vehicle increased the DCFH and carbonylation levels in the cortex. The DIO + vehicle group presented a reduction in catalase activity. The expression of inflammatory or neurotrophin markers in the cerebral cortex was not different. In conclusion, our findings indicate that supplementation with ZO reverses the cognitive impairment in DIO mice and enhances the antioxidant status of the cerebral cortex.

4.
J Neuroinflammation ; 21(1): 200, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129007

ABSTRACT

BACKGROUND: We recently reported that the dopamine (DA) analogue CA140 modulates neuroinflammatory responses in lipopolysaccharide-injected wild-type (WT) mice and in 3-month-old 5xFAD mice, a model of Alzheimer's disease (AD). However, the effects of CA140 on Aß/tau pathology and synaptic/cognitive function and its molecular mechanisms of action are unknown. METHODS: To investigate the effects of CA140 on cognitive and synaptic function and AD pathology, 3-month-old WT mice or 8-month-old (aged) 5xFAD mice were injected with vehicle (10% DMSO) or CA140 (30 mg/kg, i.p.) daily for 10, 14, or 17 days. Behavioral tests, ELISA, electrophysiology, RNA sequencing, real-time PCR, Golgi staining, immunofluorescence staining, and western blotting were conducted. RESULTS: In aged 5xFAD mice, a model of AD pathology, CA140 treatment significantly reduced Aß/tau fibrillation, Aß plaque number, tau hyperphosphorylation, and neuroinflammation by inhibiting NLRP3 activation. In addition, CA140 treatment downregulated the expression of cxcl10, a marker of AD-associated reactive astrocytes (RAs), and c1qa, a marker of the interaction of RAs with disease-associated microglia (DAMs) in 5xFAD mice. CA140 treatment also suppressed the mRNA levels of s100ß and cxcl10, markers of AD-associated RAs, in primary astrocytes from 5xFAD mice. In primary microglial cells from 5xFAD mice, CA140 treatment increased the mRNA levels of markers of homeostatic microglia (cx3cr1 and p2ry12) and decreased the mRNA levels of a marker of proliferative region-associated microglia (gpnmb) and a marker of lipid-droplet-accumulating microglia (cln3). Importantly, CA140 treatment rescued scopolamine (SCO)-mediated deficits in long-term memory, dendritic spine number, and LTP impairment. In aged 5xFAD mice, these effects of CA140 treatment on cognitive/synaptic function and AD pathology were regulated by dopamine D1 receptor (DRD1)/Elk1 signaling. In primary hippocampal neurons and WT mice, CA140 treatment promoted long-term memory and dendritic spine formation via effects on DRD1/CaMKIIα and/or ERK signaling. CONCLUSIONS: Our results indicate that CA140 improves neuronal/synaptic/cognitive function and ameliorates Aß/tau pathology and neuroinflammation by modulating DRD1 signaling in primary hippocampal neurons, primary astrocytes/microglia, WT mice, and aged 5xFAD mice.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice, Transgenic , Neuroinflammatory Diseases , Receptors, Dopamine D1 , Signal Transduction , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice , Amyloid beta-Peptides/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Receptors, Dopamine D1/metabolism , Synapses/drug effects , Synapses/metabolism , Synapses/pathology , Cognition/drug effects , Dopamine/metabolism , Mice, Inbred C57BL , Male , Humans
5.
Contemp Clin Trials ; 145: 107647, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39095013

ABSTRACT

Despite evidence that aerobic exercise benefits the aging brain, in particular the hippocampus and memory, controlled clinical trials have not comprehensively evaluated effects of aerobic exercise training on human memory in older adults. The central goal of this study was to determine chronic effects of moderate-to-vigorous intensity aerobic exercise on the hippocampus and memory in non-demented, inactive adults ages 55-80 years. We determine effects of aerobic exercise training with a 6-month randomized controlled trial (RCT) comparing 150 min/week of home-based, light intensity exercise with progressive moderate-to-vigorous intensity aerobic exercise. For the first time in a large trial, we examined temporal mechanisms by determining if individual differences in the rapid, immediate effects of moderate intensity exercise on hippocampal-cortical connectivity predict chronic training-related changes over months in connectivity and memory. We examined physiological mechanisms by testing the extent to which chronic training-related changes in cardiorespiratory fitness are a critical factor to memory benefits. The Exercise Effects on Brain Connectivity and Learning from Minutes to Months (Brain-EXTEND) trial is conceptually innovative with advanced measures of hippocampal-dependent learning and memory processes combined with novel capture of the physiological changes, genetic components, and molecular changes induced by aerobic exercise that change hippocampal-cortical connectivity. Given that hippocampal connectivity deteriorates with Alzheimer's and aerobic exercise may contribute to reduced risk of Alzheimer's, our results could lead to an understanding of the physiological mechanisms and moderators by which aerobic exercise reduces risk of this devastating and costly disease.

6.
Neurobiol Dis ; 200: 106629, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111704

ABSTRACT

Hypoxic-ischemic encephalopathy (HIE) in neonates causes mortality and neurologic morbidity, including poor cognition with a complex neuropathology. Injury to the cholinergic basal forebrain and its rich innervation of cerebral cortex may also drive cognitive pathology. It is uncertain whether genes associated with adult cognition-related neurodegeneration worsen outcomes after neonatal HIE. We hypothesized that neocortical damage caused by neonatal HI in mice is ushered by persistent cholinergic innervation and interneuron (IN) pathology that correlates with cognitive outcome and is exacerbated by genes linked to Alzheimer's disease. We subjected non-transgenic (nTg) C57Bl6 mice and mice transgenically (Tg) expressing human mutant amyloid precursor protein (APP-Swedish variant) and mutant presenilin (PS1-ΔE9) to the Rice-Vannucci HI model on postnatal day 10 (P10). nTg and Tg mice with sham procedure were controls. Visual discrimination (VD) was tested for cognition. Cortical and hippocampal cholinergic axonal and IN pathology and Aß plaques, identified by immunohistochemistry for choline acetyltransferase (ChAT) and 6E10 antibody respectively, were counted at P210. Simple ChAT+ axonal swellings were present in all sham and HI groups; Tg mice had more than their nTg counterparts, but HI did not affect the number of axonal swellings in APP/PS1 Tg mice. In contrast, complex ChAT+ neuritic clusters (NC) occurred only in Tg mice; HI increased that burden. The abundance of ChAT+ clusters in specific regions correlated with decreased VD. The frequency of attritional ChAT+ INs in the entorhinal cortex (EC) was increased in Tg shams relative to their nTg counterparts, but HI obviated this difference. Cholinergic IN pathology in EC correlated with NC number. The Aß deposition in APP/PS1 Tg mice was not exacerbated by HI, nor did it correlate with other metrics. Adult APP/PS1 Tg mice have significant cortical cholinergic axon and EC ChAT+ IN pathologies; some pathology was exacerbated by neonatal HI and correlated with VD. Mechanisms of neonatal HI induced cognitive deficits and cortical neuropathology may be modulated by genetic risk, perhaps accounting for some of the variability in outcomes.

7.
J Genet Genomics ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151821

ABSTRACT

Netrin-G2 is a membrane-anchored protein and is known to play critical roles in neuronal circuit development and synaptic organization. In this study, we identify compound heterozygous mutations of c.547delC, p.(Arg183Alafs*186) and c.605G>A, p.(Trp202*) in NTNG2 causing a syndrome exhibiting developmental delay, intellectual disability, hypotonia, and facial dysmorphism. To elucidate the underlying cellular and molecular mechanisms, CRISPR-Cas9 technology is employed to generate a knock-in mouse model expressing the R183Afs and W202X mutations. We report that the Ntng2R183Afs/W202X mice exhibit hypotonia and impaired learning and memory. We find that levels of CaMKII and p-GluA1Ser831 are decreased and excitatory postsynaptic transmission and long-term potentiation are impaired. To increase the activity of CaMKII, the mutant mice have received intraperitoneal injections of DCP-LA, a CaMKII agonist, and show improved cognitive function. Together, our findings reveal molecular mechanisms of how NTNG2 deficiency leads to impairments of cognitive ability and synaptic plasticity.

8.
Behav Brain Res ; 474: 115180, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111405

ABSTRACT

The present study aimed to assess the potential effect of vitamin B12 (Vit B12) on cognition impairment caused by nicotine (Nic) cessation in adolescent male rats. Adolescent male rats were categorized into two main groups as vehicle (normal saline, intraperitoneally), and Nic group in which received Nic (2 mg/kg) from 21 to 42 days of ages and then the Nic group were divided into three groups as withdrawal (the animals returned to regular diet without treatment), second and third groups received bupropion (20 mg/kg), and Vit B12 at three different doses including 0.5,1, and 1.5 mg/kg by oral gavage as treatments to attenuate Nic withdrawal symptoms. The last group including normal animals received the highest doses of Vit B12 just in the Nic abstinence period to compare the effect of that with vehicle. In MWM, Vit B12and bupropion increased the time spent in the target quadrant that is strongly associated with spatial memory as well as the more time spent with the NORT. Vit B12 and bupropion modulated both oxidant/antioxidant and inflammatory/anti-inflammatory balance, alongside inhibitory effect on AChE, and GFAP. However, BDNF and amyloid-B showed insignificant difference as compared to Vit B12 and bupropion. Considering the present results and similar related studies, Vit B12 can be introduced as a strong anti-oxidant, and anti-inflammatory agent by which probably improved memory impairment caused by Nic addiction accompanied by withdrawal. Further, other mechanisms including activity reduction of AChE, and GFAP should be considered; however, it needs further investigation and larger-scale evidences.

9.
Neurosci Biobehav Rev ; 164: 105844, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39106940

ABSTRACT

This systematic review explored the impact of maternal immune activation (MIA) on learning and memory behavior in offspring, with a particular focus on sexual dimorphism. We analyzed 20 experimental studies involving rodent models (rats and mice) exposed to either lipopolysaccharide (LPS) or POLY I:C during gestation following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Our findings reveal that most studies report a detrimental impact of MIA on the learning and memory performance of offspring, highlighting the significant role of prenatal environmental factors in neurodevelopment. Furthermore, this review underscores the complex effects of sex, with males often exhibiting more pronounced cognitive impairment compared to females. Notably, a small subset of studies report enhanced cognitive function following MIA, suggesting complex, context-dependent outcomes of prenatal immune challenges. This review also highlights sex differences caused by the effects of MIA in terms of cytokine responses, alterations in gene expression, and differences in microglial responses as factors that contribute to the cognitive outcomes observed.


Subject(s)
Learning , Memory , Prenatal Exposure Delayed Effects , Animals , Female , Pregnancy , Prenatal Exposure Delayed Effects/immunology , Learning/physiology , Memory/physiology , Sex Characteristics , Mice , Lipopolysaccharides/pharmacology , Poly I-C/pharmacology , Rats , Male
10.
Article in English | MEDLINE | ID: mdl-39110919

ABSTRACT

OBJECTIVE: Subjective cognitive symptoms are commonly reported after mild traumatic brain injury (mTBI) but are often not associated with objective cognitive performance. This may be due to limitations in traditional cognitive performance measures, which may not be sensitive to subtle variations in cognition in post-acute mTBI. This study explored associations between objective and subjective cognition using computer-based tasks of increasing cognitive load, proposed to be more sensitive to subtle differences in performance. METHOD: Individuals with mTBI (n = 68) and trauma controls (n = 40) were prospectively recruited and assessed approximately 8 weeks post-injury. Participants completed measures of subjective symptom reporting, objective cognitive performance (including two computer-based tasks of increasing cognitive load), and psychological distress. RESULTS: There were no significant associations between subjective and objective cognition reporting in the mTBI group, both in bivariate correlations (|r| = 0.01-0.20, p > .05) and when controlling for psychological distress (|r| = 0.00-0.17, p > .05). A similar pattern of results was observed in trauma controls, suggesting that the limited relationships between objective and subjective cognition in mTBI may not be specific to this population. CONCLUSIONS: Despite employing measures of cognitive performance proposed to be more sensitive than traditional tasks, no significant relationships were observed between objective and subjective cognition in post-acute mTBI, and estimated effect sizes were small to negligible. This provides further evidence that at a group level 8 weeks after mTBI subjective cognitive symptoms primarily reflect factors aside from objective cognition.

11.
Ecotoxicol Environ Saf ; 283: 116830, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39111240

ABSTRACT

The primary purpose of present study was to explore the effects of arsenic exposure on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/nuclear transcription factor-κB (NF-κB) signaling pathway in the hippocampus of offspring mice at different developmental stages. Sodium arsenite (NaAsO2) at doses of 0, 15, 30 or 60 mg/L administered to female mice and their pups. The nuclear translocation levels of NF-κB were assessed by EMSA. Real-time RT-PCR was used to measure Akt, NF-κB and PI3K mRNA levels. Protein expressions of PI3K, p-Akt, inhibitor kappa B kinase (IKK), p-NF-κB, protein kinase A (PKA), inhibitor kappa B (IκB), and cAMP response element-binding protein (CREB) were measured by Western blot. Results disclosed that exposure to 60 mg/L NaAsO2 could suppress NF-κB levels of nuclear translocation of postnatal day (PND) 20 and PND 40 mice. Arsenic downregulated the transcriptional and translational levels of PI3K, Akt and NF-κB. Additionally, protein expressions of p-IKK, p-IκB, PKA and p-CREB also reduced. Taken together, results of present study indicated that arsenic could downregulate the PI3K/Akt/NF-κB signaling pathway, particularly on PND 40, which might be involved in the cognitive impairments.

12.
Trends Ecol Evol ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39097475

ABSTRACT

Fish experiencing harvest mortality often evolve a fast life-history that prioritizes investment in current versus future reproduction, thereby potentially limiting energetic investment in the brain. Fisheries may also select for shy fish that are less willing to learn, or directly select fish with poor cognitive ability. The resulting evolutionary changes can alter the cognitive performance of individuals and affect fish populations and fisheries quality.

13.
Neurobiol Stress ; 31: 100654, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38948390

ABSTRACT

Chronic pain can induce mood disorders and cognitive dysfunctions, such as anxiety, depression, and learning and memory impairment in humans. However, the specific neural network involved in anxiety- and depression-like behaviors and learning and memory impairment caused by chronic pain remains poorly understood. In this study, behavioral test results showed that chronic pain induced anxiety- and depression-like behaviors, and learning and memory impairment in male mice. c-Fos immunofluorescence and fiber photometry recording showed that glutamatergic neurons in the LH of mice with chronic pain were selectively activated. Next, the glutamatergic neurons of LH in normal mice were activated using optogenetic and chemogenetic methods, which recapitulates some of the depressive-like behaviors, as well as memory impairment, but not anxiety-like behavior. Finally, inhibition of glutamatergic neurons in the LH of mice with chronic pain, effectively relieved anxiety- and depression-like behaviors and learning and memory impairment. Taken together, our findings suggest that hyperexcitation of glutamatergic neurons in the LH is involved in depression-like behavior and learning and memory impairment induced by chronic pain.

14.
Front Neural Circuits ; 18: 1414452, 2024.
Article in English | MEDLINE | ID: mdl-38978957

ABSTRACT

As an evolutionarily ancient sense, olfaction is key to learning where to find food, shelter, mates, and important landmarks in an animal's environment. Brain circuitry linking odor and navigation appears to be a well conserved multi-region system among mammals; the anterior olfactory nucleus, piriform cortex, entorhinal cortex, and hippocampus each represent different aspects of olfactory and spatial information. We review recent advances in our understanding of the neural circuits underlying odor-place associations, highlighting key choices of behavioral task design and neural circuit manipulations for investigating learning and memory.


Subject(s)
Odorants , Animals , Olfactory Pathways/physiology , Smell/physiology , Humans , Olfactory Perception/physiology , Space Perception/physiology , Brain/physiology
15.
J Adv Res ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972542

ABSTRACT

INTRODUCTION: Post-stroke cognitive impairment is one of the major causes of disability due to cerebral ischemia. MAD2B is an inhibitor of Cdh1/APC, and loss of Cdh1/APC function in mature neurons increases ROCK2 activity, leading to changes in synaptic plasticity and memory loss in mouse neurons. Whether MAD2B regulates learning memory capacity through ROCK2 in cerebral ischemia is not known. OBJECTIVES: We investigated the role and mechanism of MAD2B in cerebral ischemia-induced cognitive dysfunction. METHODS: The expression of MAD2B and its downstream related molecules was detected by immunoblotting and intervened with neuroprotectants after middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R). We constructed MAD2B-cKO-specific knockout mice, knocked down and overexpressed MAD2B in mouse hippocampus by lentiviral injection in brain stereotaxis, modeled cerebral ischemia by using MCAO, and explored the role of MAD2B in post-stroke cognitive impairment (PSCI) by animal behaviors such as Y-maze and Novel object recognition test. Then the expression of MAD2B/ROCK2, downstream molecules and apoptosis-related molecules was detected. Finally, ROCK2 expression was intervened using its inhibitor and shRNA-ROCK2 lentivirus. RESULTS: The expression of MAD2B and its downstream molecules increased after MCAO and OGD/R. Nonetheless, this expression underwent a decline post-therapy with neuroprotective agents. Deletion of MAD2B in the hippocampus ameliorated memory and learning deficits and improved motor coordination in MCAO mice. Conversely, the overexpression of MAD2B in the hippocampus exacerbated learning and memory deficits. Deletion of MAD2B resulted in the downregulation of ROCK2/LIMK1/cofilin. It effectively reduced ischemia-induced upregulation of BAX and cleaved caspase-3, which could be reversed by MAD2B overexpression. Inhibition or knockdown of ROCK2 expression in primary cultured neurons led to the downregulation of LIMK1/cofilin expression and reduced the expression of apoptosis-associated molecules induced by ischemia. CONCLUSIONS: Our findings suggest that MAD2B affects neuronal apoptosis via Rock2, which affects neurological function and cerebral infarction.

16.
Adv Neurobiol ; 38: 111-129, 2024.
Article in English | MEDLINE | ID: mdl-39008013

ABSTRACT

Memory traces for behavioral experiences, such as fear conditioning or taste aversion, are believed to be stored through biophysical and molecular changes in distributed neuronal ensembles across various brain regions. These ensembles are known as engrams, and the cells that constitute them are referred to as engram cells. Recent advancements in techniques for labeling and manipulating neural activity have facilitated the study of engram cells throughout different memory phases, including acquisition, allocation, long-term storage, retrieval, and erasure. In this chapter, we will explore the application of next-generation sequencing methods to engram research, shedding new light on the contribution of transcriptional and epigenetic mechanisms to engram formation and stability.


Subject(s)
Epigenesis, Genetic , Memory , Neurons , Memory/physiology , Humans , Animals , Neurons/metabolism , Brain/metabolism , Fear/physiology , Transcription, Genetic
17.
Metab Brain Dis ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017968

ABSTRACT

Calcitriol as a biologically active form of vitamin D3 has beneficial effects on all body systems. This vitamin has a potent neuroprotective effect via several independent mechanisms against brain insults induced by anticancer drugs. The present study was designed to examine the neuroprotective effects of calcitriol against neurotoxicity induced by cisplatin. Induction of neurotoxicity was done with cisplatin administration (5 mg/kg/week) for 5 successive weeks in male Wistar rats. The neuroprotective influence of calcitriol supplementation (100ng/kg/day for 5 weeks) was assessed through behavioral, electrophysiological, and molecular experiments. Cisplatin administration impaired spatial learning and memory and decreased prefrontal brain-derived neurotrophic factor (BDNF). Peripheral sensory neuropathy was induced through cisplatin administration. Cisplatin also reduced the amplitudes of the compound action potential of sensory nerves in electrophysiological studies. Cisplatin treatment elevated MDA levels and reduced anti-oxidant (SOD and GPx) enzymes. Pro-inflammatory cytokines (IL-1ß and TNF-α) and metalloproteinase-2 and 9 (MMP-2/9) were augmented through treatment with cisplatin. Learning and memory impairments along with BDNF changes caused by cisplatin were amended with calcitriol supplementation. Reduced sensory nerve conduction velocity in the cisplatin-treated group was improved by calcitriol. Calcitriol partially improved redox imbalance and diminished the pro-inflammatory cytokines and MMP-2/9 levels. Our findings showed that calcitriol supplementation can relieve cisplatin-induced peripheral neurotoxicity. Calcitriol can be regarded as a promising new neuroprotective agent.

18.
Brain Circ ; 10(2): 134-144, 2024.
Article in English | MEDLINE | ID: mdl-39036298

ABSTRACT

Emotions, in general, have no scientific definition. Emotions can be denoted as the mental state because of the neurophysiological changes. Emotions are related to mood, personality, temperament, and consciousness. People exhibit different emotions in different situations causing changes in cognitive functions. One of the major cognitive functions is the ability to learn, to store the acquired information in the parts of the brain such as the hippocampus, amygdala, cortex, and cerebellum. Learning and memory are affected by different types of emotions. Emotional responses such as fear, depression, and stress have impaired effects on cognitive functions such as learning and memory, whereas optimistic and happy emotions have positive effects on long-term memory. Certain disorders have greater effects on the regions of the brain which are also associated with synaptic plasticity and Learning and Memory(LM). Neuroimaging techniques are involved in studying the changing regions of the brain due to varied emotions and treatment strategies based on the changes observed. There are many drugs, and in advancements, nanotechnology is also utilized in the treatment of such psychiatric disorders. To improve mental health and physical health, emotional balance is most important, and effective care should be provided for people with less emotional quotient and different types of disorders to inhibit cognitive dysfunctions. In this review, emotions and their varied effects on a cognitive function named learning and memory, disorders associated with the defects of learning due to emotional instability, the areas of the brain that are in control of emotions, diagnosis, and treatment strategies for psychiatric disorders dependent on emotions are discussed.

19.
Dyslexia ; 30(3): e1780, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39030983

ABSTRACT

A topic of recent debate is the hypothesis that deficits associated with developmental disorders of language, such as reading disability, can be explained by a selective weakness in procedural memory. Adults with (n = 29; RD) and without (n = 29; TD) reading disability completed a weather prediction task under immediate and delayed feedback conditions, that rely on the striatal (procedural) and hippocampal (declarative) circuits, respectively. We examined trial-by-trial accuracy by feedback condition (immediate vs. delayed) and group (RD vs. TD). In the immediate feedback condition, we found the TD group to have a higher learning rate than the RD group. In the delayed feedback condition, we found the TD group reach a high level of accuracy early, and outperform the RD group for the duration of the task. The TD group also made gains in reaction time under both conditions, while the RD group slowed in their responses. Taken together, it appears that while procedural memory is indeed impaired in adults with reading disability, to a lesser extent, declarative memory is also affected. This lends partial support to the PDH, and more broadly to the position that reading disability is associated with general (non-linguistic) difficulties in learning.


Subject(s)
Dyslexia , Weather , Humans , Dyslexia/physiopathology , Male , Female , Adult , Young Adult , Learning/physiology , Reaction Time/physiology , Memory/physiology , Feedback, Psychological/physiology
20.
Sleep Med ; 121: 303-314, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39047304

ABSTRACT

Sleep is considered closely related to cognitive function, and cognitive impairment is the main clinical manifestation of Alzheimer's disease (AD). Sleep disturbance in AD patients is more severe than that in healthy elderly individuals. Additionally, sleep deprivation reportedly increases the activity of the hypothalamic orexin system and the risk of AD. To investigate whether intervention with the orexin system can improve sleep disturbance in AD and its impact on AD pathology. In this study, six-month-old amyloid precursor protein/presenilin 1 mice were subjected to six weeks of chronic sleep deprivation and injected intraperitoneally with almorexant, a dual orexin receptor antagonist (DORA), to investigate the effects and mechanisms of sleep deprivation and almorexant intervention on learning and memory in mice with AD. We found that sleep deprivation aggravated learning and memory impairment and increased brain ß-amyloid (Aß) deposition in mice with AD. The application of almorexant can increase the total sleep time of sleep-deprived mice and reduce cognitive impairment and Aß deposition, which is related to the improvement in Aquaporin-4 polarity. Thus, DORA may be an effective strategy for delaying the progression of AD patients by improving the sleep disturbances.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Memory Disorders , Mice, Transgenic , Orexin Receptor Antagonists , Sleep Deprivation , Animals , Sleep Deprivation/complications , Sleep Deprivation/drug therapy , Mice , Orexin Receptor Antagonists/pharmacology , Orexin Receptor Antagonists/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/complications , Memory Disorders/drug therapy , Memory Disorders/etiology , Isoquinolines/pharmacology , Isoquinolines/therapeutic use , Amyloid beta-Protein Precursor/genetics , Acetamides/pharmacology , Acetamides/therapeutic use , Male , Amyloid beta-Peptides/metabolism , Learning/drug effects , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Orexin Receptors/metabolism , Presenilin-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL