Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Microb Cell Fact ; 23(1): 11, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183135

ABSTRACT

BACKGROUND: The demand for low-cost cellulolytic enzyme synthesis is rising in the enzyme market. This work aims to produce cellulase by utilizing various agricultural wastes and investigating the use of enzyme in saccharification and textile industries. RESULTS: Solid state fermentation (SSF) was applied to produce industrial enzymes, particularly cellulase, through utilizing Molokhia (Corchorus olitorius) stems by Aspergillus awamori MK788209 isolate. Two stages of statistical factorial designs Plackett-Burman (PB) and Central Composite Design (CCD) were applied to enhance the A. awamori MK788209 cellulase production from Molokhia stems (MS). The fold increase of enzyme production by PB followed by CCD was 2.51 and 4.86, respectively. Additionally, the A. awamori MK788209 culture filtrate was highly effective in saccharifying various agricultural wastes, particularly pea peels (PP) (yielding 98.33 mg reducing sugar/ml), due to its richness in cellulase, laccase, xylanase, pectinase, and amylase. By optimizing the three main variables; pea peel weight, culture filtrate volume added, and saccharification time by CCD, the sugar recovery from PP was enhanced, leading to a 3.44-fold increase in reducing sugar recovery (338 mg reducing sugar /ml). Furthermore, the A. awamori MK788209 culture filtrate showed high efficacy in textile applications, enhancing the roughness, weight loss, white index, and printing capability of treated cotton fabrics. CONCLUSIONS: A. Awamori MK788209 produced cellulase which was effective in PP saccharification. The enzyme was also capable of enhancing cotton fabric properties.


Subject(s)
Cellulase , Pisum sativum , Textiles , Sugars
2.
Environ Res ; 244: 117866, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38061590

ABSTRACT

Cellulase is a new research point besides glucoamylase, amylase, and protease in the enzyme industry. Cellulase can decompose lignocellulosic biomass into small-molecule sugars, which facilitates microbial utilization; thus, it has a vast market potential in the field of feed, food, energy, and chemistry. The Aspergillus was the first strain used in cellulase preparation because of its safety and non-toxicity, strong growth ability, and high enzyme yield. This review provides the latest research and advances on preparing cellulase from Aspergillus. The metabolic mechanisms of cellulase secretion by Aspergillus, the selection of fermentation substrates, the comparison of the fermentation modes, and the effect of fermentation conditions have been discussed in this review. Also, the subsequent separation and purification techniques of Aspergillus cellulase, including salting out, organic solvent precipitation, ultrafiltration, and chromatography, have been declared. Further, bottlenecks in Aspergillus cellulase preparation and corresponding feasible approaches, such as genetic engineering, mixed culture, and cellulase immobilization, have also been proposed in this review. This paper provides theoretical support for the efficient production and application of Aspergillus cellulase.


Subject(s)
Cellulase , Cellulase/genetics , Cellulase/metabolism , Aspergillus/genetics , Aspergillus/metabolism , Fermentation
3.
Arch Microbiol ; 205(9): 315, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37605001

ABSTRACT

The worldwide availability of lignocellulosic wastes represents a serious environmental challenge with potential opportunities. Xylanases are crucial in lignocellulosic bio-hydrolysis, but the low enzyme productivity and stability are still challenges. In the current study, Bacillus subtilis (coded ARSE2) revealed potent xylanase activity among other local isolates. The enzyme production optimization revealed that maximum enzyme production (490.58 U/mL) was achieved with 1% xylan, 1.4% peptone, and 5% NaCl at 30 °C and pH 9. Furthermore, several lignocellulosic wastes were exploited for sustainable xylanase production, where sugarcane bagasse (16%) under solid-state fermentation and woody sawdust (2%) under submerged fermentation supported the maximum enzyme titer of about 472.03 and 485.7 U/mL, respectively. The partially purified enzyme revealed two protein bands at 42 and 30 kDa. The partially purified enzyme revealed remarkable enzyme activity and stability at 50-60 °C and pH 8-9. The enzyme also revealed significant stability toward tween-80, urea, DTT, and EDTA with Vmax and Km values of 1481.5 U/mL and 0.187 mM, respectively. Additionally, the purified xylanase was applied for xylooligosaccharides production, which revealed significant antimicrobial activity toward Staphylococcus aureus with lower activity against Escherichia coli. Hence, the locally isolated Bacillus subtilis ARSE2 could fulfill the xylanase production requirements in terms of economic production at a high titer with promising enzyme characteristics. Additionally, the resultant xylooligosaccharides revealed a promising antimicrobial potential, which paves the way for other medical applications.


Subject(s)
Bacillus subtilis , Saccharum , Cellulose , Escherichia coli
4.
J Environ Manage ; 340: 117994, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37119630

ABSTRACT

Waste valorization is mandatory to develop and consolidate a circular bioeconomy. It is necessary to search for appropriate processes to add value to different wastes by utilizing them as feedstocks to provide energy, chemicals, and materials. For instance, hydrothermal carbonization (HTC) is an alternative thermochemical process that has been suggested for waste valorization aiming at hydrochar production. Thus, this study proposed the Co-HTC of pine residual sawdust (PRS) with non-dewatered sewage sludge (SS) - two wastes largely produced in sawmills and wastewater treatment plants, respectively - without adding extra water. The influence of temperature (180, 215, and 250 °C), reaction time (1, 2, and 3 h), and PRS/SS mass ratio (1/30, 1/20, and 1/10) on the yield and characteristics of the hydrochar were evaluated. The hydrochars obtained at 250 °C had the best coalification degree, showing the highest fuel ratio, high heating value (HHV), surface area, and N, P, and K retention, although presenting the lowest yields. Conversely, hydrochar functional groups were generally reduced by increasing Co-HTC temperatures. Regarding the Co-HTC effluent, it presented acidic pH (3.66-4.39) and high COD values (6.2-17.3 g·L-1). In general, this new approach could be a promising alternative to conventional HTC, in which a high amount of extra water is required. Besides, the Co-HTC process can be an option for managing lignocellulosic wastes and sewage sludges while producing hydrochar. This carbonaceous material has the potential for several applications, and its production is a step towards a circular bioeconomy.


Subject(s)
Carbon , Sewage , Temperature , Wood , Water
5.
Microb Cell Fact ; 21(1): 226, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36307797

ABSTRACT

BACKGROUND: The utilization of industrial wastes as feedstock in microbial-based processes is a one of the high-potential approach for the development of sustainable, environmentally beneficial and valuable bioproduction, inter alia, lipids. Rye straw hydrolysate, a possible renewable carbon source for bioconversion, contains a large amount of xylose, inaccessible to the wild-type Yarrowia lipolytica strains. Although these oleaginous yeasts possesses all crucial genes for xylose utilization, it is necessary to induce their metabolic pathway for efficient growth on xylose and mixed sugars from agricultural wastes. Either way, biotechnological production of single cell oils (SCO) from lignocellulosic hydrolysate requires yeast genome modification or adaptation to a suboptimal environment. RESULTS: The presented Y. lipolytica strain was developed using minimal genome modification-overexpression of endogenous xylitol dehydrogenase (XDH) and xylulose kinase (XK) genes was sufficient to allow yeast to grow on xylose as a sole carbon source. Diacylglycerol acyltransferase (DGA1) expression remained stable and provided lipid overproduction. Obtained an engineered Y. lipolytica strain produced 5.51 g/L biomass and 2.19 g/L lipids from nitrogen-supplemented rye straw hydrolysate, which represents an increase of 64% and an almost 10 times higher level, respectively, compared to the wild type (WT) strain. Glucose and xylose were depleted after 120 h of fermentation. No increase in byproducts such as xylitol was observed. CONCLUSIONS: Xylose-rich rye straw hydrolysate was exploited efficiently for the benefit of production of lipids. This study indicates that it is possible to fine-tune a newly strain with as minimally genetic changes as possible by adjusting to an unfavorable environment, thus limiting multi-level genome modification. It is documented here the use of Y. lipolytica as a microbial cell factory for lipid synthesis from rye straw hydrolysate as a low-cost feedstock.


Subject(s)
Yarrowia , Yarrowia/metabolism , Biomass , Xylose/metabolism , Lipids , Carbon/metabolism
6.
Bioresour Technol ; 343: 126097, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34626758

ABSTRACT

Lignocellulosic wastes were recently considered as biomass resources, however, its conversion to valuable products is still immature although researchers have put lots of effort into this issue. This article reviews the key challenges of the biorefinery utilizing lignocellulosic materials and recent developments to conquer those obstacles. Available biological techniques and processes, from the pretreatments of cellulosic materials to the valorization processes, were emphasized. Biological pretreatments, including hydrolysis using microbial consortia, fungi, enzymes, engineered bacterial/fungal strains, and co-culture systems, could enhance the release of reducing sugar. Resources recovery, including biogases, ethanol, butanol, PHA, etc., from lignocellulosic materials were also discussed, while the influences of composition of lignocellulosic materials and pretreatment options, applications of co-culture system, and integrated treatments with other wastes, were described. In the review, co-culture system and metabolic engineering are emphasized as the promising biological technologies, while perspectives are provided for their future developments.


Subject(s)
Biofuels , Lignin , Biomass , Biotechnology , Hydrolysis
7.
Bioresour Technol ; 342: 126043, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34592452

ABSTRACT

In this study, the effects of different lignocellulosic wastes on alleviating acidification in the fermentation of lactic acid (LA) from food waste (FW) were studied. Amongst three lignocellulosic wastes, spent mushroom substance (SMS) could reach 95.22% lignin removal efficiency through simple NaOH pretreatment. Results showed pretreated SMS was best choice for FW co-fermentation, the maximum LA concentration could reach 46.12 g/L. And the NaOH solution as neutraliser could save 5.69 mL compared with the other two lignocellulosic wastes. The reason for alleviating acidification was 4.71% calcium salt in SMS and the porous structure of SMS. Then, 50% of pretreated liquid (PL) produced in SMS pretreatment was reused in the co-fermentation process. Compared with the group with 0% PL loading, that with 50% PL loading showed an increase in LA concentration and optical purity of L-LA, reaching 50.95 g/L and 96.28%, and NaOH consumption also further decreased by 24.65%.


Subject(s)
Food , Refuse Disposal , Fermentation , Hydrogen-Ion Concentration , Lactic Acid , Lignin
8.
Polymers (Basel) ; 13(11)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199445

ABSTRACT

The Musaceae family has significant potential as a source of lignocellulosic fibres and starch from the plant's bunches and pseudostems. These materials, which have traditionally been considered waste, can be used to produce fully bio-based composites to replace petroleum-derived synthetic plastics in some sectors such as packaging, the automotive industry, and implants. The fibres extracted from Musaceae have mechanical, thermal, and physicochemical properties that allow them to compete with other natural fibres such as sisal, henequen, fique, and jute, among others, which are currently used in the preparation of bio-based composites. Despite the potential use of Musaceae residues, there are currently not many records related to bio-based composites' developments using starches, flours, and lignocellulosic fibres from banana and plantain pseudostems. In this sense, the present study focusses on the description of the Musaceae components and the review of experimental reports where both lignocellulosic fibre from banana pseudostem and flour and starch are used with different biodegradable and non-biodegradable matrices, specifying the types of surface modification, the processing techniques used, and the applications achieved.

9.
Front Microbiol ; 12: 682679, 2021.
Article in English | MEDLINE | ID: mdl-34163456

ABSTRACT

Three newly isolated fungal species, namely, Cerrena unicolor Han 849, Lenzites betulina Han 851, and Schizophyllum commune Han 881, isolated from their native habitats in Wulingshan National Nature Reserve of Hebei Province of northern China, were screened for laccase production with single or mixed lignocellulosic wastes. C. unicolor Han 849 was found to express the highest levels of laccase with single or mixed lignocellulosic wastes compared with L. betulina Han 851 and S. commune Han 881. The highest laccase activity from the mixed fungal culture of C. unicolor Han 849 and S. commune Han 881 or L. betulina Han 851 on Firmiana platanifolia was 1,373.12 ± 55.93 and 1,144.85 ± 34.97 U/L, respectively, higher than that from other tested conditions. L. betulina Han 851 or S. commune Han 881 mixed with other species was also helpful for accelerating laccase secretion due to reach maximum enzyme activity quickly. The treatment of mixing different species, including the mixture of two or three species, was obviously conducive to the improvement of laccase activity on Firmiana platanifolia. These results revealed that the fungal co-culture and the mixed lignocellulosic wastes contribute to the improvement of laccase activities and enhance laccase activities within a short period. These findings would be helpful for providing a new method for rapid production of low-cost laccase and for optimization of integrated industrial laccase production.

10.
Sci Total Environ ; 774: 145610, 2021 Jun 20.
Article in English | MEDLINE | ID: mdl-33609818

ABSTRACT

This review emphasizes the win-win one-pot valorization process of different waste biomass that composed of many biological macromolecules (e.g. polysaccharides, polyphenols, carbohydrates, lipids, enzymes, proteins, etc.) and other biomolecules (e.g. alkaloids, terpenoids, tannins, phenolics, carotenoids, amino acids, sugars, vitamins, etc.) into biofunctionalized magnetite (Fe3O4) nanoparticles (BMNPs). It illustrates the sustainable recruitment of microbial intra- and extra-cellular metabolites, proteins, and/or enzymes in the biosynthesis of BMNPs. It elucidates the environmental affluence of such sustainable, cost-effective, and ecofriendly BMNPs as an antimicrobial agent for water disinfection, photo-degrader, and adsorbent for different xenobiotics, organic and inorganic water pollutants. It confers the future environmental aspects of BMNPs in biofuels production from lipids and lignocellulosic wastes, biosensors manufacturing and bio-upgrading of petroleum fractions, etc. It discusses the circular economy, challenges, and opportunities for scaling up the zero-waste green synthesis of MNPs. Nevertheless, imminent investigations are still needed to elucidate the exact rule of biological macro- and micro- molecules in BMNPs synthesis and mechanisms involved in its microbicidal and photodegradation activities. Accentuated researches are more required on the toxicity and/or biosafety of the green synthesized BMNPs to humans and other non-target organisms to ensure its eco-safety upon environmental applications.


Subject(s)
Magnetite Nanoparticles , Water Purification , Biofuels , Biomass , Ferrosoferric Oxide , Humans
11.
Environ Sci Pollut Res Int ; 28(19): 24721-24730, 2021 May.
Article in English | MEDLINE | ID: mdl-32951172

ABSTRACT

Biofiltration offers an efficient and economical alternative for the elimination of offensive odors caused by hydrogen sulfide, ammonia, and volatile organic compounds. Considering that packing materials affect the performance and represent the main installation cost, the purpose of this work was to evaluate the biofiltration of H2S and NH3 comparing three composted mixtures made from chicken manure and lignocellulosic residues (pruning waste, sugarcane bagasse, and rice husk) used as packing material. A range of gas concentrations similar to those of a municipal WWTP was used in the biofiltration of a contaminated stream performed on a laboratory scale. The results indicate that at low concentrations of H2S (6-36 ppm) and NH3 (0-1 ppm), the three biofilters showed 100% removal efficiency. Now, at the maximum levels of gas concentrations of H2S (250 ppm) and NH3 (19 ppm) while the removal efficiency of H2S remained higher than 90% in all cases, the removal efficiency of NH3 remained higher than 90% only in the sugarcane bagasse biofilter. Compost mixtures with sugarcane bagasse and rice husk are highly reliable as packing material for biofiltration at high concentration of H2S. Specifically, the sugarcane bagasse mixture had the highest removal efficiency (99% H2S and 95% NH3) and the highest elimination capacity (15 g H2S/m3h and 0.6 g NH3/m3h), making it a better option for the elimination of both gases. These results represent a contribution to the construction of a low-price elimination system of offensive odors in WTTPs and other industries.


Subject(s)
Air Pollutants , Composting , Hydrogen Sulfide , Air Pollutants/analysis , Ammonia/analysis , Animals , Chickens , Filtration , Hydrogen Sulfide/analysis , Lignin , Manure
12.
Bioresour Technol ; 321: 124462, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33285508

ABSTRACT

Lignocellulosic waste has offered a cost-effective and food security-wise substrate for the generation of biofuels and value-added products. Here, whole-genome sequencing and comparative genomic analyses were performed for Serratia sp. AXJ-M. The results showed that strain AXJ-M contained a high proportion of strain-specific genes related to carbohydrate metabolism. Furthermore, the genetic basis of strain AXJ-M for efficient degradation of cellulose was identified. Cellulase activity tests revealed strong cellulose degradation ability and cellulase activities in strain AXJ-M. mRNA expression indicated that GH1, GH3 and GH8 might determine the strain's cellulose degradation ability. The SWISS-MODEL and Ramachandran Plot were used to predict and evaluate the 3D structure, respectively. High performance liquid chromatography (HPLC) and gas chromatography-mass spectrometer (GC-MS) were used to analyze the cellulose degradation products. Further research is needed to elucidate the cellulose degradation mechanism and to develop industrial applications for lignocellulosic biomass degradation and waste management.


Subject(s)
Cellulase , Waste Management , Bacteria , Biofuels , Biomass , Cellulase/genetics , Cellulose
13.
J Environ Manage ; 275: 111231, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32829265

ABSTRACT

Biocatalytic degradation of recalcitrant pollutants employing ligninolytic enzymes is a promising approach for wastewater treatment. However, enzymes production must be improved to make biodegradation a more cost-effective treatment. In this research, laccase production from Trametes versicolor using lignocellulosic residues (agave bagasse, coconut fibers and wheat bran) as cosubstrates was improved using a central composite face-centered design, and the application of the enzymes-rich culture supernatant was evaluated for blue wastewater biodegradation. Findings revealed that the optimal conditions for laccase production were found at 35 °C and 5 g/L of wheat bran as cosubstrate, reaching about 200 U/mL in 11 days in a batch submerged fermentation. These conditions were scaled up for a submerged fermentation using an airlift reactor, and a maximum enzymatic activity of 1200 U/mL was achieved in 9 days at 30 °C. This enzymes-rich culture supernatant was tested for the degradation of blue wastewater from aircraft in an airlift reactor. Results showed a COD removal efficiency of 43% and an increase of the biodegradability index from 0.64 to 1.36, both results applying an enzymatic activity of supernatant of 300 U/mL. In conclusion, the enzymatic biodegradation becomes a viable strategy for the pretreatment of a real effluent such as the blue wastewater collected in public transportation.


Subject(s)
Laccase , Trametes , Biodegradation, Environmental , Lignin , Wastewater
14.
Biotechnol Prog ; 36(2): e2934, 2020 03.
Article in English | MEDLINE | ID: mdl-31642208

ABSTRACT

Lignocellulosic wastes can be potentially converted into several bioproducts such as glucose, xylo-oligosaccharides, and bioethanol. Certain processes, such as enzymatic hydrolysis, are generally needed to convert biomass into bioproducts. The present study investigated the production of xylanases and cellulases by Streptomyces thermocerradoensis I3 under solid-state fermentation (SSF), using wheat bran as a low-cost medium. The activities of xylanase and carboxymethyl cellulase (CMCase) were evaluated until 96 hr of incubation. The highest enzyme activity was observed after 72 hr of incubation. The crude enzyme extract was sequentially filtered, first using a 50 kDa filter, followed by a 30 kDa filter. Fraction 3 (F3) exhibited activities of both xylanase and CMCase. Xylanase and CMCase showed optimum activity at 70°C and pH 6.0 and 55°C and pH 6.0, respectively. The zymogram analysis showed a single activity band with a molecular mass of approximately 17 kDa. These findings provide strong evidence that the enzyme is a bifunctional xylanase/endoglucanase. This enzyme improved the saccharification of sugarcane bagasse by 1.76 times that of commercial cellulase. This enzyme has potential applications in various biotechnological procedures.


Subject(s)
Cellulase/metabolism , Fermentation , Streptomyces/metabolism , Xylosidases/metabolism , Hydrogen-Ion Concentration , Temperature
15.
Bioresour Technol ; 285: 121325, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30991186

ABSTRACT

Refuse derived fuel containing non-hazardous industrial wastes was subjected to torrefaction and carbonization in an industrial furnace. The RDF samples were heated at 300 °C and 400 °C, for 30 min, yielding solid products (chars) as well as gases and liquids. Proximate and ultimate composition, mineral composition, chlorine content and high heating value were determined for the original sample and the produced chars. Thermal treatment produced RDF chars with carbon contents of 61.6 and 80.2 wt%, and high heating values of 19.9 and 23.5 MJ/kg, that could be further upgraded by washing with water to reduce ash and chlorine concentrations and improve calorific value. Gas products were composed of carbon dioxide and carbon monoxide with minor amounts of hydrogen. Methane was only detected in the gas produced at 400 °C. The process generated liquid products rich in organic compounds that represent potential in further energy or material recovery.


Subject(s)
Garbage , Refuse Disposal , Carbon , Chlorine , Gases , Heating
16.
J Microbiol Methods ; 160: 93-100, 2019 05.
Article in English | MEDLINE | ID: mdl-30890400

ABSTRACT

The paper and pulp industry (PPI) produces high quantities of solid and liquid discharge and is regarded as the most polluting industry in the world causing adverse effects to environments and human beings. Hence changes in the way PPI sludge and waste materials are treated is urgently required. Nearly, 10 million tons of waste is generated per year, however PPI waste is enriched with many organic chemicalscontaining a high percentage of lignin, cellulose, and hemicellulose which can be used as valuable raw materials for the production of bioenergy and value-added chemicals. Pretreatment of complex lignocellulosic materials of PPI waste is difficult because of the cellulose crystallinity and lignin barrier. At present most of this waste is recycled in a conventional treatment approach through biological and chemical processes, incurring high cost and low returns. Henceefficient pretreatment techniques are required by which complete conversion of PPI waste is possible. Therefore, the present chapter provides the scope of integration of pretreatment methods through which bioenergy recovery is possible during the PPI waste treatment. Detailed information is presented on the various pre-treatment techniques (chemical, mechanical, enzymatic and biological) in order to increase the efficiency of PPI waste treatment and energy recovery from PPI waste. Along with acid and alkali based efficient chemical treatment process, physical methods (i.e. shearing, high-pressure homogenization, etc.), biochemical techniques (whole cell-based and enzyme-based) and finally biological techniques (e.g. aerobic and anaerobic treatment) are discussed. During each of the treatment processes, scope of energy recovery and bottlenecks of the processes were elaborated. The review thus provides systemic insight into developing efficient pretreatment processes which could increase carbon recovery and treatment efficiency of PPI waste.


Subject(s)
Industrial Waste , Paper , Sewage , Biofuels/microbiology , Bioreactors/microbiology , Cellulose/metabolism , Enzymes/chemistry , Lignin/metabolism , Sewage/chemistry , Sewage/microbiology
17.
Prep Biochem Biotechnol ; 48(9): 853-866, 2018.
Article in English | MEDLINE | ID: mdl-30303451

ABSTRACT

In this context, carboxymethyl cellulase (CMCase) production from Glutamicibacter arilaitensis strain ALA4 was initially optimized by one factor at a time (OFAT) method using goat dung as proficient feedstock. Two-level full factorial design (25 factorial matrix) using first-order polynomial model revealed the significant (p < 0.05) influence of pH, moisture, and peptone on CMCase activity. Central composite design at N = 20 was further taken into account using a second-order polynomial equation, and thereby liberated maximum CMCase activity of 4925.56 ± 31.61 U/g in the goat dung medium of pH 8.0 and 100% moisture containing 1% (w/w) peptone, which was approximately two fold increment with respect to OFAT method. Furthermore, the partially purified CMCase exhibited stability not only at high pH and temperature but also in the presence of varied metal ions, organic solvents, surfactants, and inhibitors with pronounced residual activities. The enzymatic hydrolysis using partially purified CMCase depicted the maximum liberation of fermentable sugars from alkali pretreated lignocellulosic wastes biomass in the order of paddy straw (13.8 ± 0.15 mg/g) > pomegranate peel (9.1 ± 0.18 mg/g) > sweet lime peel (8.37 ± 0.16 mg/g), with saccharification efficiency of 62.1 ± 0.8, 40.95 ± 0.4, and 37.66 ± 0.4%, respectively after 72 hr of treatment.


Subject(s)
Biomass , Cellulase/biosynthesis , Lignin/metabolism , Micrococcaceae/metabolism , Animals , Cell Culture Techniques/methods , Cellulase/chemistry , Feces/microbiology , Fermentation , Glycosylation , Goats , Hydrogen-Ion Concentration , Lignin/chemistry , Micrococcaceae/enzymology , Protein Stability , Temperature
18.
Microb Cell Fact ; 17(1): 154, 2018 Sep 27.
Article in English | MEDLINE | ID: mdl-30261894

ABSTRACT

BACKGROUND: Coffee silverskin, a by-product from coffee roasting industries, was evaluated as a feedstock for biobutanol production by acetone-butanol-ethanol fermentation. This lignocellulosic biomass contained approximately 30% total carbohydrates and 30% lignin. Coffee silverskin was subjected to autohydrolysis at 170 °C during 20 min, with a biomass-to-solvent ratio of 20%, and a subsequent enzymatic hydrolysis with commercial enzymes in order to release simple sugars. The fermentability of the hydrolysate was assessed with four solventogenic strains from the genus Clostridium. In addition, fermentation conditions were optimised via response surface methodology to improve butanol concentration in the final broth. RESULTS: The coffee silverskin hydrolysate contained 34.39 ± 2.61 g/L total sugars, which represents a sugar recovery of 34 ± 3%. It was verified that this hydrolysate was fermentable without the need of any detoxification method and that C. beijerinckii CECT 508 was the most efficient strain for butanol production, attaining final values of 4.14 ± 0.21 g/L acetone, 7.02 ± 0.27 g/L butanol and 0.25 ± 0.01 g/L ethanol, consuming 76.5 ± 0.8% sugars and reaching a butanol yield of 0.269 ± 0.008 gB/gS under optimal conditions. CONCLUSIONS: Coffee silverskin could be an adequate feedstock for butanol production in biorefineries. When working with complex matrices like lignocellulosic biomass, it is essential to select an adequate bacterial strain and to optimize its fermentation conditions (such as pH, temperature or CaCO3 concentration).


Subject(s)
Butanols/chemical synthesis , Carbohydrates/chemistry , Coffee/chemistry , Fermentation
19.
Bioresour Technol ; 268: 371-381, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30096645

ABSTRACT

Co-digestion of residual sludge (RS) and different lignocellulosic wastes (LWs) including greening waste (GW), decocted Chinese herbs waste (DCHW) and sugarcane bagasse waste (SCBW) was investigated in batch digester. Results show that the application of GW presented the highest specific methane yield (161 mL CH4/g VSadded) due to its high carbohydrate fraction and more balanced C/N ratio in co-substrate mixture. Buswell equation was applied and it is found that biodegradability index (BI) for co-digestion varied from 68.1% to 74.2% (53.0% for RS mono-digestion) depending on the lignin fractions of the LWs. Variation of pH, VFAs, alkalinity and ammonia throughout the digestion were also examined. The addition of LWs induced VFAs formation, as well as their conversion to methane. The higher microbial diversity in RS/LWs co-digestion further confirmed the positive effect of LWs addition in co-digestion.


Subject(s)
Bioreactors , Methane , Sewage , Ammonia , Anaerobiosis
20.
N Biotechnol ; 46: 54-60, 2018 Nov 25.
Article in English | MEDLINE | ID: mdl-30044962

ABSTRACT

Potato peel from a snack factory was assessed as possible feedstock for biobutanol production. This lignocellulosic biomass was subjected to various physicochemical pretreatments (autohydrolysis and hydrolysis with dilute acids, alkalis, organic solvents or surfactants) under different conditions of time, temperature and reagent concentrations, in order to favour the release of sugars and reduce the generation of fermentation inhibitors. Thereafter, the pretreated potato peel was treated enzymatically to complete the hydrolysis. Autohydrolysis at 140 °C and 56 min was the most effective pretreatment, releasing 37.9 ± 2.99 g/L sugars from an aqueous mixture containing 10% (w/w) potato peel (sugar recovery efficiency 55 ± 13%). The fermentability of the hydrolysates was checked with six strains of Clostridium beijerinckii, C. acetobutylicum, C. saccharobutylicum and C. saccaroperbutylacetonicum. C. saccharobutylicum DSM 13864 produced 2.1 g/L acetone, 7.6 g/L butanol and 0.6 g/L ethanol in 96 h (0.186 gB/gS), whereas C. saccharoperbutylacetonicum DSM 2152 generated 1.8 g/L acetone, 8.1 g/L butanol and 1.0 g/L ethanol in 120 h (0.203 gB/gS). Detoxification steps of the hydrolysate before fermentation were not necessary. Potato peel may be an interesting feedstock for biorefineries focused on butanol production.


Subject(s)
Butanols/metabolism , Butanols/supply & distribution , Industrial Waste , Snacks , Solanum tuberosum/metabolism , Butanols/chemistry , Clostridium/metabolism , Fermentation , Hydrolysis , Solanum tuberosum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL