Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.312
Filter
1.
Arq. bras. oftalmol ; 88(1): e2023, 2025. tab
Article in English | LILACS-Express | LILACS | ID: biblio-1568852

ABSTRACT

ABSTRACT Purpose: This study aimed to analyze variations in intraoperative corneal thickness during corneal cross-linking in patients with keratoconus and to investigate its possible correlation with presurgical maximal keratometry (Kmax) and pachymetry. Methods: This was a prospective case series. We used a method similar to the Dresden protocol, with the application of hydroxypropyl methylcellulose 0.1% hypo-osmolar riboflavin in corneas between 330 and 400 µm after epithelium removal. Corneal thickness was measured using portable calipers before and immediately after epithelium removal, and 30 and 60 min after the procedure. Results: The 30 patients in this study were followed up for one year. A statistically significant difference was observed in pachymetry values during the intraoperative period (p<0.0001) and an increase of 3.05 µm (95%C1: 0.56-5.54) for each diopter was seen after epithelium removal (p0.019). We found an average Kmax difference of —2.12 D between men and women (p0.013). One year after treatment, there was a statistically significant reduction in pachymetry (p<0.0001) and Kmax (p0.0170) values. Conclusions: A significant increase in pachymetry measurements was seen during the procedure, and most patients showed a regression in Kmax and pachymetry values one year after surgery.

2.
J Biol Chem ; : 107740, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39222684

ABSTRACT

Mitochondrial fusion requires the sequential merger of four bilayers to two. The outer-membrane solute carrier protein SLC25A46 interacts with both the outer and inner-membrane dynamin family GTPases Mfn1/2 and Opa1. While SLC25A46 levels are known to affect mitochondrial morphology, how SLC25A46 interacts with Mfn1/2 and Opa1 to regulate membrane fusion is not understood. In this study, we use crosslinking mass-spectrometry and AlphaFold 2 modeling to identify interfaces mediating a SLC25A46 interactions with Opa1 and Mfn2. We reveal that the bundle signaling element of Opa1 interacts with SLC25A46, and present evidence of a Mfn2 interaction involving the SLC25A46 cytosolic face. We validate these newly identified interaction interfaces and show that they play a role in mitochondrial network maintenance.

3.
Carbohydr Polym ; 345: 122599, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39227116

ABSTRACT

Uncontrolled hemorrhage stands as the primary cause of potentially preventable deaths following traumatic injuries in both civilian and military populations. Addressing this critical medical need requires the development of a hemostatic material with rapid hemostatic performance and biosafety. This work describes the engineering of a chitosan-based cryogel construct using thermo-assisted cross-linking with α-ketoglutaric acid after freeze-drying. The resulting cryogel exhibited a highly interconnected macro-porous structure with low thermal conductivity, exceptional mechanical properties, and great fluid absorption capacity. Notably, assessments using rabbit whole blood in vitro, as well as rat liver volume defect and femoral artery injury models simulating severe bleeding, showed the remarkable hemostatic performance of the chitosan cryogel. Among the cryogel variants with different chitosan molecular weights, the 150 kDa one demonstrated superior hemostatic efficacy, reducing blood loss and hemostasis time by approximately 73 % and 63 % in the hepatic model, and by around 60 % and 68 %, in the femoral artery model. Additionally, comprehensive in vitro and in vivo evaluations underscored the good biocompatibility of the chitosan cryogel. Taken together, these results strongly indicate that the designed chitosan cryogel configuration holds significant potential as a safe and rapid hemostatic material for managing severe hemorrhage.


Subject(s)
Chitosan , Cryogels , Hemorrhage , Hemostatics , Chitosan/chemistry , Chitosan/pharmacology , Cryogels/chemistry , Animals , Rabbits , Hemorrhage/therapy , Hemorrhage/drug therapy , Hemostatics/chemistry , Hemostatics/pharmacology , Rats , Male , Rats, Sprague-Dawley , Femoral Artery/injuries , Porosity , Liver/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cross-Linking Reagents/chemistry , Hemostasis/drug effects
4.
Carbohydr Polym ; 346: 122653, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39245511

ABSTRACT

A combination of maleic acid and sodium hypophosphite as a durable press finishing agent has been reported as a safer but equally effective alternative to conventional formaldehyde-based cross-linking agents for applications in cellulose-based fiber and textile finishing. However, the mechanistic details of this system have not yet been fully elucidated to allow optimization of the conditions. Effective cross-linking treatment requires high curing temperatures of ≥160 °C, which enhances oxidative and thermal degradation of cellulose. In this work, the sequential steps of the cross-linking mechanism were investigated both with model compounds and cellulosic substrates. Extensive NMR studies on model compounds revealed several side reactions alongside the synthesis of the targeted cross-linkable moiety. As an alternative, to circumvent side reactions, a two-step procedure was used by synthesizing the cross-linker sodium 2-[(1,2-dicarboxyethyl)phosphinate]succinic acid in a well-defined pre-condensation reaction before application onto the cellulosic substrate. Further, the effect of the cross-linking treatment on the molecular weight distribution of cellulose was studied by gel permeation chromatography, which showed degradation due to maleic acid/sodium hypophosphite treatment. By using sodium 2-[(1,2-dicarboxyethyl)phosphinate]succinic acid and sodium hypophosphite, this degradation could be significantly limited.

5.
Adv Mater ; : e2408136, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39246198

ABSTRACT

In this study, a novel customized corneal cross-linking (CXL) treatment is explored that utilizes microneedles (MNs) for targeted riboflavin (RF) administration prior to the CXL procedure. Unlike the conventional "one-size-fits-all" approach, this protocol offers an option for more precise and efficacious treatment. To simulate a customized corneal crosslinking technique, four distinct microneedle (MN) molds designs, including circular, semi-circular, annular and butterfly shaped, are crafted for loading an optimized RF-hyaluronic acid solution and for the subsequent fabrication of MN arrays with varying morphologies. These MNs can gently puncture the corneal epithelium while preserving the integrity of the underlying stromal layer. Following the application of these microneedles, RF solution is replenished to enhance the RF content within the stroma through the punctures created by the MNs, resulting in exceptional customized corneal cross-linking effects that are comparable to the conventional epi-off CXL protocol. Additionally, it flattened the corneal curvature within the treated zone and facilitated rapid postoperative recovery of corneal tissue. These findings suggest that the integration of customized microneedle RF delivery with corneal crosslinking technology represents a potential novel treatment modality, holding promise for the tailored treatment of corneal pathologies, and offering a more precise and efficient alternative to traditional methods.

6.
Biotechnol Prog ; : e3502, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39238226

ABSTRACT

The immobilization of free enzymes is crucial for enhancing their stability in different environments, enabling reusability, and expanding their applications. However, the development of a straightforward immobilization method that offers stability, high efficiency, biocompatibility, and modifiability remains a significant challenge. Silk fibroin (SF) is a good carrier for immobilized enzymes and drugs. Here, we employed urease as a model enzyme and utilized our developed technology called unidirectional nanopore dehydration (UND) to efficiently dehydrate a regenerated SF solution containing urease in a single step, resulting in the preparation of a highly functionalized SF membrane immobilizing urease (UI-SFM). The preparation process of UI-SFM is based on an all-water system, which is mild, green and able to efficiently and stably immobilize urease in the membranes, maintaining 92.7% and 82.8% relative enzyme activity after 30 days of storage in dry and hydrated states, respectively. Additionally, we performed additional post-treatments, including stretching and cross-linking with polyethylene glycol diglycidyl ether (PEGDE), to obtain two more robust immobilized urease membranes (UI-SFMs and UI-SFMc). The thermal and storage stability of these two membranes were significantly improved, and the recovery ratio of enzyme activity reached more than 90%. After 10 repetitions of the enzymatic reaction, the activity recovery of UI-SFMs and UI-SFMc remained at 92% and 88%, respectively. The results suggest that both UND-based and post-treatment-developed membranes exhibit excellent urease immobilization capabilities. Furthermore, the enzyme immobilization method offers a straightforward and versatile approach for efficient and stable enzyme immobilization, while its flexible modifiability caters to diverse application requirements.

7.
J Biol Chem ; : 107735, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233231

ABSTRACT

VemP is a secretory protein in the Vibrio species that monitors cellular protein-transport activity through its translation arrest, allowing expression of the downstream secD2-secF2 genes in the same operon, which encode components of the protein translocation machinery. When cellular protein-transport function is fully active, secD2/F2 expression remains repressed as VemP translation arrest is canceled immediately. The VemP arrest-cancellation occurs on the SecY/E/G translocon in a late stage in the translocation process and requires both trans-factors, SecD/F and PpiD/YfgM, and a cis-element, Arg-85 in VemP; however, the detailed molecular mechanism remains elusive. This study aimed to elucidate how VemP passing through SecY specifically monitors SecD/F function. Genetic and biochemical studies showed that SecY is involved in the VemP arrest-cancellation and that the arrested VemP is stably associated with a specific site in the protein-conducting pore of SecY. VemP-Bla reporter analyses revealed that a short hydrophobic segment adjacent to Arg-85 plays a critical role in the regulated arrest-cancellation with its hydrophobicity correlating with the stability of the VemP arrest. We identified Gln-65 and Pro-67 in VemP as novel elements important for the regulation. We propose a model for the regulation of the VemP arrest cancellation by multiple cis-elements and trans-factors with different roles.

8.
Front Plant Sci ; 15: 1380969, 2024.
Article in English | MEDLINE | ID: mdl-39220006

ABSTRACT

Introduction: Equipped with a photosynthetic apparatus that uses the energy of solar radiation to fuel biosynthesis of organic compounds, chloroplasts are the metabolic factories of mature leaf cells. The first steps of energy conversion are catalyzed by a collection of protein complexes, which can dynamically interact with each other for optimizing metabolic efficiency under changing environmental conditions. Materials and methods: For a deeper insight into the organization of protein assemblies and their roles in chloroplast adaption to changing environmental conditions, an improved complexome profiling protocol employing a MS-cleavable cross-linker is used to stabilize labile protein assemblies during the organelle isolation procedure. Results and discussion: Changes in protein:protein interaction patterns of chloroplast proteins in response to four different light intensities are reported. High molecular mass assemblies of central chloroplast electron transfer chain components as well as the PSII repair machinery react to different light intensities. In addition, the chloroplast encoded RNA-polymerase complex was found to migrate at a molecular mass of ~8 MDa, well above its previously reported molecular mass. Complexome profiling data produced during the course of this study can be interrogated by interested readers via a web-based online resource (https://complexomemap.de/projectsinteraction-chloroplasts).

9.
Chemosphere ; : 143282, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39243902

ABSTRACT

The recovery of gold (Au) from electronic waste (e-waste) has gained significant attention due to its high Au content and economic feasibility compared to natural ores. This study presents a facile, single-step approach to prepare the chitosan-thioglycolic acid composite crosslinked with glutaraldehyde (CS-TGA-GA) and demonstrates its unique capability for precious metal management, which is a less investigated application area for thiolated chitosan materials. The novel cost-effective biosorbent CS-TGA-GA demonstrated a very high adsorption capacity of 1351.9 ± 96 mg/g and selectivity for Au(III) from an acidic e-waste solution at pH 1 and 298 K. The high adsorption capacity and selectivity of the sorbent can be attributed to the abundance of -NH2, -OH, and -SH groups present on its surface. Various characterizations, such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffractometry, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy, as well as sorption experiments, including pH, kinetic, and isotherm studies, were performed. The kinetic data align with a pseudo-second-order model and the isotherm data can be well expressed by the Freundlich model. The CS-TGA-GA composite effectively facilitated the conversion of Au(III) to Au(0), leading to the formation of Au nanoparticles that aggregated in the reaction vessel over time. Subsequently, the Au-loaded CS-TGA-GA underwent an incineration procedure, yielding recovered Au with a purity of 99.6%, as measured by X-ray fluorescence. In addition to its large uptake capacity, acid stability, and recyclability, the prepared sorbent showed a highly selective uptake of Au(III) ions in a solution containing various metal ions leached from waste printed circuit boards. These results highlight the potential of CS-TGA-GA as an adsorbent for the recovery of Au from e-waste leachate, thereby contributing to sustainable resource management.

10.
J Biol Eng ; 18(1): 46, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223667

ABSTRACT

Effective enzyme stabilization through immobilization is essential for the functional usage of enzymatic reactions. We propose a new method for synthesizing elastic hydroxyapatite microgel (E-HAp-M) materials and immobilizing lipase using this mesoporous mineral via the ship-in-a-bottle-neck strategy. The physicochemical parameters of E-HAp-M were thoroughly studied, revealing that E-HAp-M provides efficient space for enzyme immobilization. As a model enzyme, lipase (LP) was entrapped and then cross-linked enzyme structure, preventing leaching from mesopores, resulting in highly active and stable LP/E-HAp-M composites. By comparing LP activity under different temperature and pH conditions, it was observed that the cross-linked LP exhibited improved thermal stability and pH resistance compared to the free enzyme. In addition, they demonstrated a 156% increase in catalytic activity compared with free LP in hydrolysis reactions at room temperature. The immobilized LP maintained 45% of its initial activity after 10 cycles of recycling and remained stable for over 160 days. This report presents the first demonstration of a stabilized cross-linked LP in E-HAp-M, suggesting its potential application in enzyme-catalyzed processes within biocatalysis technology.

11.
Article in English | MEDLINE | ID: mdl-39105842

ABSTRACT

INTRODUCTION: Effective tools to evaluate bone quality preoperatively are scarce and the standard method to determine bone quality requires an invasive biopsy. A non-invasive, and preoperatively available method for bone quality assessment would be of clinical value. The purpose of this study is to investigate the associations of bone formation marker, serum bone alkaline phosphatase (BAP), and bone resorption marker, urine collagen cross-linked N-telopeptide (uNTX) to volumetric bone mineral density (vBMD), fluorescent advanced glycation endproducts (fAGEs) and bone microstructure. MATERIALS AND METHODS: A cross-secional analysis using prospective data of patients undergoing lumbar spinal fusion was performed. BAP and uNTX were preoperatively collected. Quantitative computed tomography (QCT) was performed at the lumbar spine (vBMD ≤ 120 mg/cm3 osteopenic/osteoporotic). Bone biopsies from the posterior superior iliac spine were obtained and evaluated with multiphoton fluorescence microscopy for fAGEs and microcomputed tomography (µCT) for bone microarchitecture. Correlations between BAP/uNTX to vBMD, fAGEs and µCT parameters were assessed with Spearman's ρ. Receiver operating characteristic (ROC) analysis evaluated BAP and uNTX as predictors for osteopenia/osteoporosis. Multivariable linear regression models adjusting for age, sex, BMI, race and diabetes mellitus determined associations between BAP/uNTX and fAGEs. RESULTS: 127 prospectively enrolled patients (50.4% female, 62.5 years, BMI 28.7 kg/m2) were analyzed. uNTX (ρ=-0.331,p < 0.005) and BAP (ρ=-0.245,p < 0.025) decreased with cortical fAGEs, and uNTX (ρ=-0.380,p < 0.001) decreased with trabecular fAGEs. BAP and uNTX revealed no significant correlation with vBMD. ROC analysis for BAP and uNTX discriminated osteopenia/osteoporosis with AUC of 0.477 and 0.561, respectively. In the multivariable analysis, uNTX decreased with increasing trabecular fAGEs after adjusting for covariates (ß = 0.923;p = 0.031). CONCLUSION: This study demonstrated an inverse association of bone turnover markers and fAGEs. Both uNTX and BAP could not predict osteopenia/osteoporosis in the spine. uNTX reflects collagen characteristics and might have a complementary role to vBMD, as a non-invasive tool for bone quality assessment in spine surgery.

12.
Materials (Basel) ; 17(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39124333

ABSTRACT

Waste from non-degradable packaging materials poses a serious environmental risk and has led to interest in developing sustainable bio-based packaging materials. Sustainable packaging materials have been made from diverse naturally derived materials such as bamboo, sugarcane, and corn starch. In this study, we made a sustainable packaging film using chitosan extracted from the biomass of yellow mealworm (Tenebrio molitor) shell waste. The extracted chitosan was used to create films, cross-linked with citric acid (CA) and with the addition of glycerol to impart flexibility, using the solvent casting method. The successful cross-linking was evaluated using Fourier-Transform Infrared (FTIR) analysis. The CA cross-linked mealworm chitosan (CAMC) films exhibited improved water resistance with moisture content reduced from 19.9 to 14.5%. Improved barrier properties were also noted, with a 28.7% and 10.2% decrease in vapor permeability and vapor transmission rate, respectively. Bananas were selected for food preservation, and significant changes were observed over a duration of 10 days. Compared to the control sample, bananas packaged in CAMC pouches exhibited a lesser loss in weight because of excellent barrier properties against water vapor. Moreover, the quality and texture of bananas packaged in CAMC pouch remained intact over the duration of the experiment. This indicates that adding citric acid and glycerol to the chitosan structure holds promise for effective food wrapping and contributes to the enhancement of banana shelf life. Through this study, we concluded that chitosan film derived from mealworm biomass has potential as a valuable resource for sustainable packaging solutions, promoting the adoption of environmentally friendly practices in the food industry.

13.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125875

ABSTRACT

Parasites have been associated with possible anticancer activity, including Trypanosoma cruzi, which has been linked to inhibiting the growth of solid tumors. To better understand this antitumor effect, we investigated the association of anti-T. cruzi antibodies with B cells of the acute lymphoblastic leukemia (ALL) SUPB15 cell line. The antibodies were generated in rabbits. IgGs were purified by affinity chromatography. Two procedures (flow cytometry (CF) and Western blot(WB)) were employed to recognize anti-T. cruzi antibodies on SUPB15 cells. We also used CF to determine whether the anti-T. cruzi antibodies could suppress SUPB15 cells. The anti-T. cruzi antibodies recognized 35.5% of the surface antigens of SUPB15. The complement-dependent cytotoxicity (CDC) results demonstrate the cross-suppression of anti-T. cruzi antibodies on up to 8.4% of SUPB15 cells. For the WB analysis, a band at 100 kDa with high intensity was sequenced using mass spectrometry, identifying the protein as nucleolin. This protein may play a role in the antitumor effect on T. cruzi. The anti-T. cruzi antibodies represent promising polyclonal antibodies that have the effect of tumor-suppressive cross-linking on cancer cells, which should be further investigated.


Subject(s)
Antibodies, Protozoan , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Trypanosoma cruzi , Trypanosoma cruzi/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Humans , Cell Line, Tumor , Animals , Rabbits , Antibodies, Protozoan/immunology , RNA-Binding Proteins/immunology , RNA-Binding Proteins/metabolism , Nucleolin , Phosphoproteins/immunology , Phosphoproteins/metabolism
14.
J Pept Sci ; : e3647, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39091086

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) strains, which produce the heat-stable enterotoxin (ST) either alone or in combination with the heat-labile enterotoxin, contribute to the bulk of the burden of child diarrheal disease in resource-limited countries and are associated with mortality. Developing an effective vaccine targeting ST presents challenges due to its potent enterotoxicity, non-immunogenicity, and the risk of autoimmune reaction stemming from its structural similarity to the human endogenous ligands, guanylin, and uroguanylin. This study aimed to assess a novel synthetic vaccine carrier platform employing a single chemical coupling step for making human ST (STh) immunogenic. Specifically, the method involved cross-linking STh to an 8-arm N-hydroxysuccinimide (NHS) ester-activated PEG cross-linker. A conjugate of STh with 8-arm structure was prepared, and its formation was confirmed through immunoblotting analysis. The impact of conjugation on STh epitopes was assessed using ELISAs with polyclonal and monoclonal antibodies targeting various epitopes of STh. Immunization of mice with the conjugate induced the production of anti-STh antibodies, exhibiting neutralizing activity against STh.

15.
Clin Oral Investig ; 28(9): 500, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39186077

ABSTRACT

OBJECTIVES: To investigate urushiol's potential as a dentin cross-linking agent, promoting remineralization of etched dentin and preventing activation of endogenous proteases causing collagen degradation within the hybrid layer. The goal is to improve bond strength and durability at the resin-dentin interface. METHODS: Urushiol primers with varying concentrations were prepared using ethanol and dimethyl sulfoxide (DMSO) as solvents. Dentin from healthy molars underwent grinding and acid etching for 15 s, followed by a 1min application of urushiol primer. After 14 and 28 days of remineralization incubation and remineralization were used to assess by Attenuated Total Reflection Fourier Transform Infrared spectroscopy (ATR-FTIR), Micro-Raman spectroscopy, X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), Vickers Hardness, Scanning Electron Microscopy (SEM), and Energy X-ray dispersive spectroscopy (EDS). The overall performance of urushiol primers as dentin adhesives was observed by microtensile bond strength (µTBS) testing and nanoleakage assessment. Investigated the inhibitory properties of the urushiol primers on endogenous metalloproteinases (MMPs) utilizing in situ zymography, and the cytotoxicity of the primers was tested. RESULTS: Based on ATR-FTIR, Raman, XRD, EM-EDS and Vickers hardness analyses, the 0.7%-Ethanol group significantly enhanced dentin mineral content and improved mechanical properties the most. Pretreatment notably increased the µTBS of restorations, promoted the stability of the mixed layer, and reduced nanoleakage and MMPs activity after 28 days. SIGNIFICANCE: The urushiol primer facilitates remineralization in demineralized dentin, enhancing remineralization in etched dentin, effectively improving the bonding interface stability, with optimal performance observed at a 0.7 wt% concentration of the urushiol primer.


Subject(s)
Dentin , Materials Testing , Microscopy, Electron, Scanning , Solvents , Tensile Strength , Tooth Remineralization , Humans , Spectroscopy, Fourier Transform Infrared , Dentin/drug effects , Tooth Remineralization/methods , Solvents/chemistry , X-Ray Diffraction , Dentin-Bonding Agents/chemistry , Spectrum Analysis, Raman , Surface Properties , Dental Bonding/methods , Microscopy, Atomic Force , In Vitro Techniques , Acid Etching, Dental , Spectrometry, X-Ray Emission , Molar , Cross-Linking Reagents/chemistry , Hardness
16.
Carbohydr Polym ; 343: 122441, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39174122

ABSTRACT

Plant-derived biomaterials have great application prospects in solving environmental pollution and sustainable resource utilization, but the insufficient mechanical strength and lack of functional responsiveness often limit their further development. Inspired by natural small molecules functionalization, a vacuum-assisted filtration nanofibrillated cellulose (NFC)-based film with excellent antibacterial properties, mechanical strength, and electrothermal/photothermal dual-responsiveness was fabricated. As a natural bioactive molecule, antibacterial cinnamaldehyde (CA) is grafted onto tannic acid (TA) rich in pyrogallols via a small molecule self-assembly strategy, and then co-assembled with zinc acetate (ZA) through ion crosslinking to synthesize the functional TACA@ZA nanospheres. After incorporating the MXene and TACA@ZA, an inorganic-organic 3D network system was established in the NFC matrix through dynamic intermolecular hydrogen bonding and strong ionic cross-linking. The mechanical strength and toughness of hybrid composites are remarkably improved by 83.6 % and 418.9 %, respectively. Due to the synergistic effects of MXene and TACA@ZA, the designed NFC-based film also shows significantly enhanced antibacterial activity, UV-blocking ability, as well as photothermal and electrothermal performance. This bioinspired small molecule functionalization strategy opens an innovative design concept for the fabrication of multirole NFC-based biomaterials, which has great application prospects in the commercial fields of multifunctional adhesives, electronic devices, UV shielding coatings, and antibacterial materials.

17.
Trends Mol Med ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39152082

ABSTRACT

Type 1 diabetes (T1D) is a devastating autoimmune disease for which advanced mass spectrometry (MS) methods are increasingly used to identify new biomarkers and better understand underlying mechanisms. For example, integration of MS analysis and machine learning has identified multimolecular biomarker panels. In mechanistic studies, MS has contributed to the discovery of neoepitopes, and pathways involved in disease development and identifying therapeutic targets. However, challenges remain in understanding the role of tissue microenvironments, spatial heterogeneity, and environmental factors in disease pathogenesis. Recent advancements in MS, such as ultra-fast ion-mobility separations, and single-cell and spatial omics, can play a central role in addressing these challenges. Here, we review recent advancements in MS-based molecular measurements and their role in understanding T1D.

18.
ACS Appl Bio Mater ; 7(8): 5702-5718, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39105701

ABSTRACT

Injectable hydrogels have been extensively used as promising therapeutic scaffolds for a wide range of biomedical applications, such as tissue regeneration and drug delivery. However, their low fracture toughness and brittleness often limit their scope of application. Double-network (DN) hydrogel, which is composed of independently cross-linked rigid and ductile polymer networks, has been proposed as an alternative technique to compensate for the weak mechanical properties of hydrogels. Nevertheless, some challenges still remain, such as the complicated and time-consuming process for DN formation, and the difficulty in controlling the mechanical properties of DN hydrogels. In this study, we introduce a simple, rapid, and controllable method to prepare in situ cross-linkable injectable DN hydrogels composed of acrylamide (AAm) and 4-arm-PPO-PEO-tyramine (TTA) via dual Fenton- and enzyme-mediated reactions. By varying the concentration of Fenton's reagent, the DN hydrogels were rapidly formed with controllable gelation rate. Importantly, the DN hydrogels showed a 13-fold increase in compressive strength and a 14-fold increase in tensile strength, compared to the single network hydrogels. The mechanical properties, elasticity, and plasticity of DN hydrogels could also be modulated by simply varying the preparation conditions, including the cross-linking density and reagent concentrations. At low cross-linker concentration (<0.05 wt %), the plastic DN hydrogel stretched to over 6,500%, whereas high cross-linker concentration (≥0.05 wt %) induced fully elastic hydrogels, without hysteresis. Besides, DN hydrogels were endowed with rapid self-recovery and highly enhanced adhesion, which can be further applied to wearable devices. Moreover, human dermal fibroblasts treated with DN hydrogels retained viability, demonstrating the biocompatibility of the cross-linking system. Therefore, we expect that the dual Fenton-/enzyme-mediated cross-linkable DN hydrogels offer great potential as advanced biomaterials applied for hard tissue regeneration and replacement.


Subject(s)
Biocompatible Materials , Hydrogels , Hydrogen Peroxide , Materials Testing , Hydrogels/chemistry , Hydrogels/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/pharmacology , Hydrogen Peroxide/chemistry , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/chemical synthesis , Polymers/chemistry , Particle Size , Iron/chemistry , Molecular Structure , Humans , Cell Survival/drug effects
19.
Int J Biol Macromol ; 278(Pt 2): 134703, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151853

ABSTRACT

New hybrid hydrogel composites based on a mixture of natural polysaccharides (sodium alginate, κ-carrageenan, and chitosan) filled with the clay mineral of natural origin, montmorillonite (MMT), were studied. The structure of intercalated/flocculated MMT distribution in the interpenetrating network of polysaccharide matrix was characterized using FTIR, X-ray diffraction, and SEM techniques. Swelling kinetics was investigated using the weight analysis, whereas the phase transition of water in the composition of hybrid hydrogels, by DSC method. Their biosafety was estimated using the Nelyubov method, germination test on cress (L. sativum) seeds, and metabolic fingerprinting of microbial communities and dehydrogenase assay. The obtained results indicated promising water-retaining properties of the synthesized materials. The hydrogels had a good sorption affinity for cadmium (Cd) ions confining bioavailability of the selected toxic heavy metal. They were safe for soil microorganisms and did not generate metabolic stress for them. Moreover, they did not reduce the viability of pea seeds. Thus, the development of biosafe hybrid hydrogel composites with a comprehensive, good effect on the environment could be considered as successful.

20.
Int J Public Health ; 69: 1607366, 2024.
Article in English | MEDLINE | ID: mdl-39206139

ABSTRACT

Objectives: To identify official sources that routinely collect data on functioning in Switzerland, to provide an overview of the existing data and its comparability, and to assess the extent to which the data is suitable for developing a functioning metric and indicator. Methods: Data sources were identified through an iterative search. Standardized rules were applied to map the functioning information assessed by the sources using a current WHO functioning and disability survey as a reference framework for the content comparison. Results: Four sources were identified: the Swiss Survey of Health, Ageing and Retirement in Europe (SHARE), the Swiss Health Survey (SHS), the Lausanne cohort 65+ (Lc65+), and the Swiss Household Panel (SHP). All tools addressed sleep functions, energy level, emotional functions, and sensation of pain. Additionally, nine functioning categories were common across three sources. Conclusion: Population data sources in Switzerland routinely collect comparable functioning data, which can serve as the basis for creating a functioning indicator. Among others, this indicator is relevant to complement mortality and morbidity data and to support both the estimation of rehabilitation and long-term care needs.


Subject(s)
Mortality , Humans , Switzerland , Aged , Morbidity , Mortality/trends , Health Surveys , Health Status Indicators , Male , Female , Middle Aged , Activities of Daily Living
SELECTION OF CITATIONS
SEARCH DETAIL