Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 364
Filter
1.
Aquat Toxicol ; 276: 107106, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39317138

ABSTRACT

Ionizing radiation, as an increasingly serious environmental pollutant, has aroused widespread public concern. Melatonin, as an indole heterocyclic compound, is known to have anti-inflammatory and antioxidant effects. However, few studies have considered the comprehensive impact of melatonin on radiation damage. In this study, we used zebrafish as experimental materials and employed methods such as acridine orange staining, enzyme-linked immunosorbent assay (ELISA), video tracking for automated behavior analysis, microscope imaging, and real-time fluorescence quantitative analysis. Zebrafish embryos at 2 h post-fertilization (hpf) were treated under four different experimental conditions to assess their growth, development, and metabolic consequences. Our findings indicate that 0.10 Gy gamma radiation significantly augments body length, eye area, spine width, and tail fin length in zebrafish, along with a marked increase in oxidative stress (P < 0.05). Moreover, it enhances cumulative swimming distance, time, and average speed, suggesting elevated activity levels. We observed circadian rhythm phase shifts, peak increases, and cycle shortening, accompanied by abnormal expression of genes pivotal to biological rhythms, exercise, melatonin synthesis, apoptosis/anti-apoptosis, and oxidation/antioxidant balance. The inclusion of melatonin (1 × 10-5 mol/L MLT) ameliorated these radiation-induced anomalies, while its independent effect on zebrafish was negligible. Melatonin can regulate oxidative stress responses, hinders apoptosis responses, and reprogramming the expression of rhythm-related genes in zebrafish embryos after reprogramming radiation stimulation. Overall, our research highlights melatonin's critical role in countering the biological damage inflicted by gamma radiation, proposing its potential as a therapeutic agent in radiation protection.

2.
ACS Chem Neurosci ; 15(18): 3311-3320, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39185768

ABSTRACT

In recent years, there has been a drastic surge in neurological disorders with sporadic cases contributing more than ever to their cause. Radiation exposure through diagnostic or therapeutic routes often results in neurological injuries that may lead to neurodegenerative pathogenesis. However, the underlying mechanisms regulating the neurological impact of exposure to near-low doses of ionizing radiation are not known. In particular, the neurological changes caused by metabolomic reprogramming have not yet been elucidated. Hence, in the present study, C57BL/6 mice were exposed to a single whole-body X-ray dose of 0.5 Gy, and 14 days post-treatment, the hippocampus was subjected to metabolomic analysis. The hippocampus of the irradiated animals showed significant alterations in 15 metabolites, which aligned with altered tyrosine, phenylalanine, and alpha-linolenic acid metabolism and the biosynthesis of unsaturated fatty acids. Furthermore, a multiomics interaction network comprising metabolomics and RNA sequencing data analysis provided insights into gene-metabolite interactions. Tyrosine metabolism was revealed to be the most altered, which was demonstrated by the interaction of several crucial genes and metabolites. The present study revealed the regulation of low-dose radiation-induced neurotoxicity at the metabolomic level and its implications for the pathogenesis of neurological disorders. The present study also provides novel insights into metabolomic pathways altered following near-low-dose IR exposure and its link with neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.


Subject(s)
Fatty Acids , Hippocampus , Metabolomics , Mice, Inbred C57BL , Tyrosine , Animals , Hippocampus/metabolism , Hippocampus/radiation effects , Tyrosine/metabolism , Tyrosine/analogs & derivatives , Mice , Fatty Acids/metabolism , Metabolomics/methods , Male , Multiomics
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167443, 2024 10.
Article in English | MEDLINE | ID: mdl-39067536

ABSTRACT

BACKGROUND: Atherosclerosis (AS) is the most prevalent cardiovascular disease, with an exceptionally high burden. High-fat diet (HFD) is a popular diet behavior, whereas low-dose radiation (LDR) is an environmental physical factor. There is evidence to suggest that an HFD may exacerbate the onset of atherosclerosis. Whether the combination effect of HFD and LDR would have potential on atherosclerosis development remains incompletely unclear. METHODS: In this study, ApoE-/- mice were used as atherosclerosis model animals to investigate the combination effects of HFD and LDR (10 × 0.01Gy, or 20 × 0.01Gy) on vascular lesions. Doppler ultrasound imaging, H&E staining, oil red O staining, western blotting, and immunohistochemistry (IHC) were used to assess the pro-atherosclerotic effects. LC-MS was used to detect the non-targeted lipidomic. RESULTS: Long-term exposure of low-dose radiation at an accumulated dose of 0.2Gy significantly increased the occurrence of vascular stiffness and the aortic lesion in ApoE-/- mice. The synergistic effect of HFD and LDR was observed in the development of atherosclerosis, which might be linked to both the dysbiosis of lipid metabolism and the stimulation of the inflammatory signaling system. Moreover, LDR but not HFD can activate the cGAS-STING signaling through increasing the yield of cytosolic mitochondrial DNAs as well as the expression of cGAS protein. The activation of cGAS-STING signal triggers the release of IFN-α/-ß, which functions as an inflammatory amplifier in the formation of atherosclerotic plaque. CONCLUSION: The current study offers fresh insights into the risks and mechanism that underlie the development of atherosclerosis by LDR, and there is a combination effect of LDR and HFD with the involvement of cGAS-STING signal pathway.


Subject(s)
Atherosclerosis , Diet, High-Fat , Nucleotidyltransferases , Signal Transduction , Animals , Male , Mice , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/metabolism , Atherosclerosis/etiology , Atherosclerosis/pathology , Diet, High-Fat/adverse effects , Disease Models, Animal , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Knockout, ApoE , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Signal Transduction/radiation effects
4.
Life (Basel) ; 14(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39063584

ABSTRACT

With the improvement of medical devices for diagnosis and radiotherapy, concerns about the effects of low doses of ionizing radiation are also growing. There is no consensus among scientists on whether they might have beneficial effects on humans in certain cases or pose more risks, making the exposure unreasonable. While the damaging consequences of high-dose radiation have been known since the discovery of radioactivity, low-dose effects present a much bigger investigative challenge. They are highly specific and include radio-adaptive responses, bystander effects, and genomic instability. Current data regarding the consequences of exposure to low-dose radiation on the quality of male gametes and fertility potential are contradictory. The reports suggest two directions: indirect impact on male gametes-through spermatogenesis-or direct effects at low doses on already mature spermatozoa. Although mature gametes are used for observation in both models, they are fundamentally different, leading to varied results. Due to their unique physiological characteristics, in certain cases, exposure of spermatozoa to low-dose ionizing radiation could have positive effects. Despite the findings indicating no beneficial effects of low-dose exposure on male fertility, it is essential to research its impact on mature spermatozoa, as well.

5.
Ecotoxicol Environ Saf ; 282: 116655, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38968871

ABSTRACT

Various biological effects of ionizing radiation, especially continuous exposure to low-dose radiation (LDR), have attracted considerable attention. Impaired bone structure caused by LDR has been reported, but little is known about the mechanism involved in the disruption of bone metabolism. In this study, given that LDR was found to (at a cumulative dose of 0.10 Gy) disturb the serum Mg2+ level and Notch1 signal in the mouse femur tissues, the effects of LDR on osteogenesis and the underlying molecular mechanisms were investigated based on an in vitro culture system for bone marrow stromal cells (BMSCs). Our data showed that cumulative LDR suppressed the osteogenic potential in BMSCs as a result of upregulation of Notch1 signaling. Further analyses indicated that the upregulation of NICD1 (Notch1 intracellular domain), the key intracellular domain for Notch1 signaling, under LDR was a consequence of enhanced protein stabilization caused by SUMOylation (small ubiquitin-like modification). Specifically, the downregulation of SENP1 (sentrin/SUMO-specific protease 1) expression induced by LDR enhanced the SUMOylation of NICD1, causing the accumulation of Notch1 signaling, which eventually inhibited the osteogenic potential of BMSCs. In conclusion, this work expounded on the mechanisms underlying the impacts of LDR on bone metabolism and shed light on the research on bone regeneration under radiation.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , Osteogenesis , Receptor, Notch1 , Sumoylation , Animals , Osteogenesis/radiation effects , Mice , Sumoylation/radiation effects , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Mesenchymal Stem Cells/radiation effects , Cell Differentiation/radiation effects , Signal Transduction/radiation effects , Male , Femur/radiation effects , Dose-Response Relationship, Radiation
6.
Parkinsonism Relat Disord ; 124: 107024, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843617

ABSTRACT

INTRODUCTION: Among gene mutations and variants linked to an increased risk of PD, mutations of leucine-rich repeat kinase 2 gene (LRRK2) are among the most frequently associated with early- and late-onset PD. Clinical and neuropathological characteristics of idiopathic-PD (iPD) and LRRK2-PD are similar, and these similarities suggest that the pathomechanisms between these two conditions are shared. LRRK2 mutations determine a gain-of-function and yield higher levels of lrrk2 across body tissues, including brain. On another side, recent animal studies supported the potential use of low dose radiation (LDR) to modify the pathomechanisms of diseases such as Alzheimer's disease (AD). METHODS: We assessed if a single total-body LDR (sLDR) exposure in normal swine could alter expression levels of the following PD-associated molecules: alpha-synuclein (α-syn), phosphorylated-α-synuclein (pα-syn), parkin, tyrosine hydroxylase (th), lrrk2, phosphorylated-lrrk2 (pS935-lrrk2), and some LRRK2 substrates (Rab8a, Rab12) across different brain regions. These proteins were measured in frontal cortex, hippocampus, striatum, thalamus/hypothalamus, and cerebellum of 9 radiated (RAD) vs. 6 sham (SH) swine after 28 days from a sLDR of 1.79Gy exposure. RESULTS: Western Blot analyses showed lowered lrrk2 levels in the striatum of RAD vs. SH swine (p < 0.05), with no differences across the remaining brain regions. None of the other protein levels differed between RAD and SH swine in any examined brain regions. No lrrk2 and p-lrrk2 (S935) levels differed in the lungs of RAD vs. SH swine. CONCLUSIONS: These findings show a specific striatal lrrk2 lowering effect due to LDR and support the potential use of LDR to interfere with the pathomechanisms of PD.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Animals , Female , Male , alpha-Synuclein/metabolism , Corpus Striatum/metabolism , Corpus Striatum/radiation effects , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease/metabolism , Parkinson Disease/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Swine , Tyrosine 3-Monooxygenase/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
7.
Br J Radiol ; 97(1160): 1378-1390, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38833685

ABSTRACT

Immune checkpoint inhibitors (ICI) have revolutionized cancer treatment; yet their efficacy remains variable across patients. This review delves into the intricate interplay of tumour characteristics contributing to resistance against ICI therapy and suggests that combining with radiotherapy holds promise. Radiation, known for its ability to trigger immunogenic cell death and foster an in situ vaccination effect, may counteract these resistance mechanisms, enhancing ICI response and patient outcomes. However, particularly when delivered at high-dose, it may trigger immunosuppressive mechanism and consequent side-effects. Notably, low-dose radiotherapy (LDRT), with its capacity for tumour reprogramming and reduced side effects, offers the potential for widespread application. Preclinical and clinical studies have shown encouraging results in this regard.


Subject(s)
Immune Checkpoint Inhibitors , Immunotherapy , Neoplasms , Humans , Neoplasms/radiotherapy , Neoplasms/immunology , Neoplasms/therapy , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Drug Resistance, Neoplasm , Radiotherapy Dosage
8.
Sci Rep ; 14(1): 11524, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773212

ABSTRACT

The biological mechanisms triggered by low-dose exposure still need to be explored in depth. In this study, the potential mechanisms of low-dose radiation when irradiating the BEAS-2B cell lines with a Cs-137 gamma-ray source were investigated through simulations and experiments. Monolayer cell population models were constructed for simulating and analyzing distributions of nucleus-specific energy within cell populations combined with the Monte Carlo method and microdosimetric analysis. Furthermore, the 10 × Genomics single-cell sequencing technology was employed to capture the heterogeneity of individual cell responses to low-dose radiation in the same irradiated sample. The numerical uncertainties can be found both in the specific energy distribution in microdosimetry and in differential gene expressions in radiation cytogenetics. Subsequently, the distribution of nucleus-specific energy was compared with the distribution of differential gene expressions to guide the selection of differential genes bioinformatics analysis. Dose inhomogeneity is pronounced at low doses, where an increase in dose corresponds to a decrease in the dispersion of cellular-specific energy distribution. Multiple screening of differential genes by microdosimetric features and statistical analysis indicate a number of potential pathways induced by low-dose exposure. It also provides a novel perspective on the selection of sensitive biomarkers that respond to low-dose radiation.


Subject(s)
Dose-Response Relationship, Radiation , Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Monte Carlo Method , Radiometry/methods , Cell Line , Gamma Rays/adverse effects
9.
Discov Med ; 36(184): 898-912, 2024 May.
Article in English | MEDLINE | ID: mdl-38798250

ABSTRACT

Radiation therapy targeting the central nervous system is widely utilized for the management of various brain tumors, significantly prolonging patient survival. Presently, investigations are assessing both clinical and preclinical applications of low-dose radiation (LDR) for the treatment of neuropathological conditions beyond tumor therapy. Special focus is given to refractory neurodegenerative diseases linked to neuroinflammation, such as Alzheimer's and Parkinson's diseases, where LDR has shown promising results. This comprehensive review examines the existing experimental data regarding the utilization of LDR in neurological disorders. It covers potential advantages in reducing neurodegenerative alterations and inflammation, as well as possible adverse effects, including neurological impairments. The review underscores the importance of the exposure protocol and the age at which LDR is administered in the context of the nervous system's pathological and physiological states, as these elements are crucial in determining LDR's therapeutic and toxic outcomes. The article concludes with a discussion on the future directions and challenges in optimizing LDR use, aiming to reduce toxicity while effectively managing neurological disorders.


Subject(s)
Nervous System Diseases , Humans , Nervous System Diseases/etiology , Nervous System Diseases/radiotherapy , Animals , Radiotherapy Dosage , Neurodegenerative Diseases/radiotherapy , Neurodegenerative Diseases/therapy , Radiotherapy/methods , Radiotherapy/adverse effects , Dose-Response Relationship, Radiation
10.
Front Bioinform ; 4: 1280971, 2024.
Article in English | MEDLINE | ID: mdl-38812660

ABSTRACT

Radiation exposure poses a significant threat to human health. Emerging research indicates that even low-dose radiation once believed to be safe, may have harmful effects. This perception has spurred a growing interest in investigating the potential risks associated with low-dose radiation exposure across various scenarios. To comprehensively explore the health consequences of low-dose radiation, our study employs a robust statistical framework that examines whether specific groups of genes, belonging to known pathways, exhibit coordinated expression patterns that align with the radiation levels. Notably, our findings reveal the existence of intricate yet consistent signatures that reflect the molecular response to radiation exposure, distinguishing between low-dose and high-dose radiation. Moreover, we leverage a pathway-constrained variational autoencoder to capture the nonlinear interactions within gene expression data. By comparing these two analytical approaches, our study aims to gain valuable insights into the impact of low-dose radiation on gene expression patterns, identify pathways that are differentially affected, and harness the potential of machine learning to uncover hidden activity within biological networks. This comparative analysis contributes to a deeper understanding of the molecular consequences of low-dose radiation exposure.

11.
Int J Radiat Biol ; 100(7): 982-995, 2024.
Article in English | MEDLINE | ID: mdl-38718325

ABSTRACT

PURPOSE: The Organisation for Economic Co-operation and Development (OECD) Adverse Outcome Pathway (AOP) Development Programme is being explored in the radiation field, as an overarching framework to identify and prioritize research needs that best support strengthening of radiation risk assessment and risk management strategies. To advance the use of AOPs, an international horizon-style exercise (HSE) was initiated through the Radiation/Chemical AOP Joint Topical Group (JTG) formed by the OECD Nuclear Energy Agency (NEA) High-Level Group on Low Dose Research (HLG-LDR) under the auspices of the Committee on Radiological Protection and Public Health (CRPPH). The intent of the HSE was to identify key research questions for consideration in AOP development that would help to reduce uncertainties in estimating the health risks following exposures to low dose and low dose-rate ionizing radiation. The HSE was conducted in several phases involving the solicitation of relevant questions, a collaborative review of open-ended candidate questions and an elimination exercise that led to the selection of 25 highest priority questions for the stated purpose. These questions were further ranked by over 100 respondents through an international survey. This final set of questions was judged to provide insights into how the OECD's AOP approach can be put into practice to meet the needs of hazard and risk assessors, regulators, and researchers. This paper examines the 25 priority questions in the context of hazard/risk assessment framework for ionizing radiation. CONCLUSION: By addressing the 25 priority questions, it is anticipated that constructed AOPs will have a high level of specificity, making them valuable tools for simplifying and prioritizing complex biological processes for use in developing revised radiation hazard and risk assessment strategies.


Subject(s)
Adverse Outcome Pathways , Humans , Risk Assessment , Radiation Protection/methods , Internationality , Radiation Injuries/prevention & control , Radiation Injuries/etiology
12.
Dose Response ; 22(2): 15593258241245804, 2024.
Article in English | MEDLINE | ID: mdl-38617388

ABSTRACT

Radiation therapy has been a critical and effective treatment for cancer. However, not all cells are destroyed by radiation due to the presence of tumor cell radioresistance. In the current study, we investigated the effect of low-dose radiation (LDR) on the tumor suppressive effect of high-dose radiation (HDR) and its mechanism from the perspective of tumor cell death mode and DNA damage repair, aiming to provide a foundation for improving the efficacy of clinical tumor radiotherapy. We found that LDR pre-irradiation strengthened the HDR-inhibited A549 cell proliferation, HDR-induced apoptosis, and G2 phase cell cycle arrest under co-culture conditions. RNA-sequencing showed that differentially expressed genes after irradiation contained pyroptosis-related genes and DNA damage repair related genes. By detecting pyroptosis-related proteins, we found that LDR could enhance HDR-induced pyroptosis. Furthermore, under co-culture conditions, LDR pre-irradiation enhances the HDR-induced DNA damage and further suppresses the DNA damage-repairing process, which eventually leads to cell death. Lastly, we established a tumor-bearing mouse model and further demonstrated that LDR local pre-irradiation could enhance the cancer suppressive effect of HDR. To summarize, our study proved that LDR pre-irradiation enhances the tumor-killing function of HDR when cancer cells and immune cells were coexisting.

13.
Radiat Med Prot ; 5(1): 1-6, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38585336

ABSTRACT

The concept of low-dose radiation (LDR)-induced hormetic responses was initially observed approximately 70 years ago and systematically reviewed along with the discovery of LDR-induced adaptive responses in a cytogenetic in vitro study in 1980s. By the end of the 1990s, discussions regarding the potential applications of LDR-induced hormesis and adaptive responses for preventing or treating chronic diseases, such as Alzheimer's disease (AD) had taken place. Until 2016, reports on radiotherapy for the subjects with AD and for genetic AD model mice were published. Subsequently, several preclinical studies with animal models of AD and clinical studies in AD subjects were conducted. A significant milestone was achieved with the online availability of a new Systematic Review based on qualified publications from these preclinical and clinical studies. This mini-review provides a concise historical introduction to LDR-induced hormesis and adaptive responses with discussion of AD radiotherapy with either LDR or relatively high dose radiation. Highlights of this Systematic Review cover promising outcomes, challenges, and new questions, followed by discussion of potential mechanisms.

14.
J Alzheimers Dis ; 98(3): 1001-1016, 2024.
Article in English | MEDLINE | ID: mdl-38489181

ABSTRACT

Background: Low-dose radiation therapy (LD-RT) has demonstrated in preclinical and clinical studies interesting properties in the perspective of targeting Alzheimer's disease (AD), including anti-amyloid and anti-inflammatory effects. Nevertheless, studies were highly heterogenous with respect to total doses, fractionation protocols, sex, age at the time of treatment and delay post treatment. Recently, we demonstrated that LD-RT reduced amyloid peptides and inflammatory markers in 9-month-old TgF344-AD (TgAD) males. Objective: As multiple studies demonstrated a sex effect in AD, we wanted to validate that LD-RT benefits are also observed in TgAD females analyzed at the same age. Methods: Females were bilaterally treated with 2 Gy×5 daily fractions, 2 Gy×5 weekly fractions, or 10 fractions of 1 Gy delivered twice a week. The effect of each treatment on amyloid load and inflammation was evaluated using immunohistology and biochemistry. Results: A daily treatment did not affect amyloid and reduced only microglial-mediated inflammation markers, the opposite of the results obtained in our previous male study. Moreover, altered fractionations (2 Gy×5 weekly fractions or 10 fractions of 1 Gy delivered twice a week) did not influence the amyloid load or neuroinflammatory response in females. Conclusions: A daily treatment consequently appears to be the most efficient for AD. This study also shows that the anti-amyloid and anti-inflammatory response to LD-RT are, at least partly, two distinct mechanisms. It also emphasizes the necessity to assess the sex impact when evaluating responses in ongoing pilot clinical trials testing LD-RT against AD.


Subject(s)
Alzheimer Disease , Rats , Male , Female , Animals , Alzheimer Disease/pathology , Microglia/pathology , Disease Models, Animal , Amyloid , Inflammation/radiotherapy , Inflammation/drug therapy , Amyloidogenic Proteins , Anti-Inflammatory Agents/therapeutic use , Amyloid beta-Peptides/therapeutic use
15.
Int J Radiat Biol ; 100(5): 756-766, 2024.
Article in English | MEDLINE | ID: mdl-38489594

ABSTRACT

PURPOSE: People are exposed to low-dose radiation in medical diagnosis, occupational, or life circumstances, but the effect of low-dose radiation on human health is still controversial. The biological effects of radiation below 100 mGy are still unproven. In this study, we observed the effects of low-dose radiation (100 mGy) on gene expression in human coronary artery endothelial cells (HCAECs) and its effect on molecular signaling. MATERIALS AND METHODS: HCAECs were exposed to 100 mGy ionizing radiation at 6 mGy/h (low-dose-rate) or 288 mGy/h (high-dose-rate). After 72 h, total RNA was extracted from sham or irradiated cells for Quant-Seq 3'mRNA-Seq, and bioinformatic analyses were performed using Metascape. Gene profiling was validated using qPCR. RESULTS: Compared to the non-irradiated control group, 100 mGy of ionizing radiation at 6 mGy/h altered the expression of 194 genes involved in signaling pathways related to heart contraction, blood circulation, and cardiac myofibril assembly differentially. However, 100 mGy at 288 mGy/h altered expression of 450 genes involved in cell cycle-related signaling pathways, including cell division, nuclear division, and mitosis differentially. Additionally, gene signatures responding to low-dose radiation, including radiation dose-specific gene profiles (HIST1H2AI, RAVER1, and POTEI) and dose-rate-specific gene profiles (MYL2 for the low-dose-rate and DHRS9 and CA14 for the high-dose-rate) were also identified. CONCLUSIONS: We demonstrated that 100 mGy low-dose radiation could alter gene expression and molecular signaling pathways at the low-dose-rate and the high-dose-rate differently. Our findings provide evidence for further research on the potential impact of low-dose radiation on cardiovascular function.


Subject(s)
Computational Biology , Coronary Vessels , Dose-Response Relationship, Radiation , Endothelial Cells , Transcriptome , Humans , Coronary Vessels/radiation effects , Coronary Vessels/cytology , Endothelial Cells/radiation effects , Endothelial Cells/metabolism , Transcriptome/radiation effects , Gene Expression Profiling , Gene Expression Regulation/radiation effects , Radiation Dosage , Signal Transduction/radiation effects
16.
Case Rep Oncol ; 17(1): 256-263, 2024.
Article in English | MEDLINE | ID: mdl-38362441

ABSTRACT

Introduction: Extranodal marginal zone lymphoma (MZL) arises in a number of epithelial tissues, including the stomach, salivary gland, lung, small bowel, thyroid, ocular adnexa, skin, and elsewhere. It has also been called low-grade B-cell lymphoma of mucosa-associated lymphoid tissue (MALT). MALT lymphoma predominantly occurs in adults and is rare in children. Case Presentation: We report a case of MALT lymphoma involving the stomach, which is the most common subtype, in a 12-year-old girl. Initially, the patient relapsed after antibiotic therapy but achieved successful treatment subsequently through irradiation. Conclusion: Helicobacter pylori eradication therapy should be given to all patients with gastric MZL, irrespective of stage. In patients who do not respond to antibiotic therapy, treatment options such as irradiation and systemic cancer therapies should be considered, depending on the disease stage.

17.
Clin Epigenetics ; 16(1): 19, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38303056

ABSTRACT

BACKGROUND: Environmental exposure, medical diagnostic and therapeutic applications, and industrial utilization of radionuclides have prompted a growing focus on the risks associated with low-dose radiation (< 100 mGy). Current evidence suggests that such radiation can induce epigenetic changes. Nevertheless, whether exposure to low-dose radiation can disrupt endothelial cell function at the molecular level is unclear. Because endothelial cells play crucial roles in cardiovascular health and disease, we aimed to investigate whether low-dose radiation could lead to differential DNA methylation patterns at the genomic level in endothelial cell (EC) lines. METHODS: We screened for changes in DNA methylation patterns in primary human aortic (HAECs) and coronary artery endothelial cells following exposure to low-dose ionizing radiation. Using a subset of genes altered via DNA methylation by low-dose irradiation, we performed gene ontology (GO) analysis to predict the possible biological network mediating the effect of low-dose radiation. In addition, we performed comprehensive validation using methylation and gene expression analyses, and ChIP assay to identify useful biomarkers among candidate genes for use in detecting low-dose radiation exposure in human primary normal ECs. RESULTS: Low-dose radiation is sufficient to induce global DNA methylation alterations in normal EC lines. GO analysis demonstrated that these hyper- or hypo-methylated genes were linked to diverse biological pathways. Our findings indicated a robust correlation between promoter hypermethylation and transcriptional downregulation of four genes (PGRMC1, UNC119B, RERE, and FNDC3B) in response to low-dose ionizing radiation in HAECs. CONCLUSIONS: Based on these findings, the identified genes can serve as potential DNA methylation biomarkers for the assessment of cardiovascular risk upon exposure to low-dose radiation.


Subject(s)
Cardiovascular Diseases , DNA Methylation , Humans , Epigenome , Endothelial Cells , Cardiovascular Diseases/genetics , Biomarkers , Radiation, Ionizing , Membrane Proteins/genetics , Receptors, Progesterone/genetics
18.
Pediatr Blood Cancer ; 71(4): e30844, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38217082

ABSTRACT

BACKGROUND: Hematopoietic stem cell transplantation can be curative for children with difficult-to-treat leukemia. The conditioning regimen utilized is known to influence outcomes. We report outcomes of the conditioning regimen used at the Alberta Children's Hospital, consisting of busulfan (with pharmacokinetic target of 3750 µmol*min/L/day ±10%) for 4 days, higher dose (250 mg/m2 ) fludarabine and 400 centigray (cGy) of total body irradiation. PROCEDURE: This retrospective study involved children receiving transplant for acute lymphoblastic leukemia (ALL). It compared children who fell within the target range for busulfan with those who were either not measured or were measured and fell outside this range. All other treatment factors were identical. RESULTS: Twenty-nine children (17 within target) were evaluated. All subjects engrafted neutrophils with a median [interquartile range] time of 14 days [8-30 days]. The cumulative incidence of acute graft-versus-host disease was 44.8% [95% confidence interval, CI: 35.6%-54.0%], while chronic graft-versus-host disease was noted in 16.0% [95% CI: 8.7%-23.3%]. At 2 years, the overall survival was 78.1% [95% CI: 70.8%-86.4%] and event-free survival was 74.7% [95% CI: 66.4%-83.0%]. Cumulative incidence of relapse was 11.3% [95% CI: 5.1%-17.5%]. There were no statistically significant differences in between the group that received targeted busulfan compared with the untargeted group. CONCLUSION: Our conditioning regiment for children with ALL resulted in outcomes comparable to standard treatment with acceptable toxicities and significant reduction in radiation dose. Targeting busulfan dose in this cohort did not result in improved outcomes.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Vidarabine/analogs & derivatives , Child , Humans , Busulfan/therapeutic use , Whole-Body Irradiation/adverse effects , Retrospective Studies , Hematopoietic Stem Cell Transplantation/adverse effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Vidarabine/therapeutic use , Graft vs Host Disease/drug therapy , Transplantation Conditioning/methods , Leukemia, Myeloid, Acute/drug therapy
19.
Sci Total Environ ; 917: 170178, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38280586

ABSTRACT

The health impacts of low-dose ionizing radiation exposures have been a subject of debate over the last three to four decades. While there has been enough evidence of "no adverse observable" health effects at low doses and low dose rates, the hypothesis of "Linear No Threshold" continues to rule and govern the principles of radiation protection and the formulation of regulations and public policies. In adopting this conservative approach, the role of the biological processes underway in the human body is kept at abeyance. This review consolidates the available studies that discuss all related biological pathways and repair mechanisms that inhibit the progression of deleterious effects at low doses and low dose rates of ionizing radiation. It is pertinent that, taking cognizance of these processes, there is a need to have a relook at policies of radiation protection, which as of now are too stringent, leading to undue economic losses and negative public perception about radiation.


Subject(s)
Radiation Exposure , Radiation Protection , Humans , Dose-Response Relationship, Radiation , Hormesis , Radiation Exposure/adverse effects , Radiation, Ionizing
20.
Dose Response ; 22(1): 15593258231225914, 2024.
Article in English | MEDLINE | ID: mdl-38204760
SELECTION OF CITATIONS
SEARCH DETAIL