Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.242
Filter
1.
Nutrients ; 16(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38931262

ABSTRACT

The skin, serving as the body's primary defense against external elements, plays a crucial role in protecting the body from infections and injuries, as well as maintaining overall homeostasis. Skin aging, a common manifestation of the aging process, involves the gradual deterioration of its normal structure and repair mechanisms. Addressing the issue of skin aging is increasingly imperative. Multiple pieces of evidence indicate the potential anti-aging effects of exogenous nucleotides (NTs) through their ability to inhibit oxidative stress and inflammation. This study aims to investigate whether exogenous NTs can slow down skin aging and elucidate the underlying mechanisms. To achieve this objective, senescence-accelerated mouse prone-8 (SAMP8) mice were utilized and randomly allocated into Aging, NTs-low, NTs-middle, and NTs-high groups, while senescence-accelerated mouse resistant 1 (SAMR1) mice were employed as the control group. After 9 months of NT intervention, dorsal skin samples were collected to analyze the pathology and assess the presence and expression of substances related to the aging process. The findings indicated that a high-dose NT treatment led to a significant increase in the thickness of the epithelium and dermal layers, as well as Hyp content (p < 0.05). Additionally, it was observed that low-dose NT intervention resulted in improved aging, as evidenced by a significant decrease in p16 expression (p < 0.05). Importantly, the administration of high doses of NTs could improve, in some ways, mitochondrial function, which is known to reduce oxidative stress and promote ATP and NAD+ production significantly. These observed effects may be linked to NT-induced autophagy, as evidenced by the decreased expression of p62 and increased expression of LC3BI/II in the intervention groups. Furthermore, NTs were found to upregulate pAMPK and PGC-1α expression while inhibiting the phosphorylation of p38MAPK, JNK, and ERK, suggesting that autophagy may be regulated through the AMPK and MAPK pathways. Therefore, the potential induction of autophagy by NTs may offer benefits in addressing skin aging through the activation of the AMPK pathway and the inhibition of the MAPK pathway.


Subject(s)
AMP-Activated Protein Kinases , Autophagy , Nucleotides , Skin Aging , Animals , Skin Aging/drug effects , Autophagy/drug effects , Mice , AMP-Activated Protein Kinases/metabolism , Nucleotides/pharmacology , Oxidative Stress/drug effects , Skin/drug effects , Skin/metabolism , Male , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Mitogen-Activated Protein Kinases/metabolism
2.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38931403

ABSTRACT

Hearing loss is one of the most common types of disability; however, there is only one FDA-approved drug to prevent any type of hearing loss. Treatment with the highly effective chemotherapy agent, cisplatin, and exposure to high-decibel noises are two of the most common causes of hearing loss. The mitogen-activated protein kinase (MAPK) pathway, a phosphorylation cascade consisting of RAF, MEK1/2, and ERK1/2, has been implicated in both types of hearing loss. Pharmacologically inhibiting BRAF or ERK1/2 is protective against noise- and cisplatin-induced hearing loss in multiple mouse models. Trametinib, a MEK1/2 inhibitor, protects from cisplatin-induced outer hair cell death in mouse cochlear explants; however, to the best of our knowledge, inhibiting MEK1/2 has not yet been shown to be protective against hearing loss in vivo. In this study, we demonstrate that trametinib protects against cisplatin-induced hearing loss in a translationally relevant mouse model and does not interfere with cisplatin's tumor-killing efficacy in cancer cell lines. Higher doses of trametinib were toxic to mice when combined with cisplatin, but lower doses of the drug were protective against hearing loss without any known toxicity. Trametinib also protected mice from noise-induced hearing loss and synaptic damage. This study shows that MEK1/2 inhibition protects against both insults of hearing loss, as well as that targeting all three kinases in the MAPK pathway protects mice from cisplatin- and noise-induced hearing loss.

3.
Clin Immunol ; : 110299, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936524

ABSTRACT

Adult orbital xanthogranulomatous disease (AOXGD) is a spectrum of histiocytoses with four subtypes. Mitogen-activated protein kinase (MAPK) pathway mutations have been detected in various histiocytic neoplasms, little is known about this in AOXGD. Targeted regions of cancer- and histiocytosis-related genes were analyzed and immunohistochemical staining of phosphorylated ERK (pERK), cyclin D1 and PU.1 was performed in 28 AOXGD and 10 control xanthelasma biopsies to assess MAPK pathway activation. Mutations were detected in 7/28 (25%) patients. Positive staining for pERK and/or cyclin D1 was found across all subtypes in 17/27 (63%) patients of whom 12/17 (71%) did not harbour a mutation. Xanthelasma tissue stained negative for pERK and cyclin D1. Relapse occurred in 5/7 (71%) patients with a MAPK pathway mutation compared to 8/21 (38%) patients in whom no mutation could be detected. Molecular analysis and evaluation for systemic disease is warranted to identify patients at risk of recurrent xanthomatous disease.

4.
bioRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38826449

ABSTRACT

Hearing loss is one of the most common types of disability; however, there is only one FDA-approved drug to prevent any type of hearing loss. Treatment with the highly effective chemotherapy agent, cisplatin, and exposure to high decibel noises are two of the most common causes of hearing loss. The mitogen activated protein kinase (MAPK) pathway, a phosphorylation cascade consisting of RAF, MEK1/2, and ERK1/2, has been implicated in both types of hearing loss. Pharmacologically inhibiting BRAF or ERK1/2 is protective from noise and cisplatin-induced hearing loss in multiple mouse models. Trametinib, a MEK1/2 inhibitor, protects from cisplatin induced outer hair cell death in mouse cochlear explants; however, to the best of our knowledge, inhibiting MEK1/2 has not yet been shown to be protective from hearing loss in vivo. In this study, we demonstrate that trametinib protects from cisplatin-induced hearing loss in a translationally relevant mouse model and does not interfere with cisplatin's tumor killing efficacy in cancer cell lines. Higher doses of trametinib were toxic to mice when combined with cisplatin but lower doses of the drug were protective from hearing loss without any known toxicity. Trametinib also protected mice from noise-induced hearing loss and synaptic damage. This study shows that MEK1/2 inhibition protects from both insults of hearing loss and that targeting all three kinases in the MAPK pathway protect from cisplatin and noise-induced hearing loss in mice.

5.
Aging (Albany NY) ; 16(11): 9933-9943, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38850526

ABSTRACT

BACKGROUND: Ginsenoside Rg3 is an active saponin isolated from ginseng, which can reduce renal inflammation. However, the role and mechanism of Rg3 in diabetic kidney disease (DKD) are far from being studied. METHODS: The effects of Rg3 and miR-216a-5p on the proliferation, apoptosis, and MAPK pathway in high glucose (HG)-induced SV40 MES 13 were monitored by CCK-8, TUNEL staining, and western blot. RESULTS: Rg3 treatment could accelerate proliferation and suppress apoptosis in HG-induced SV40 MES. Moreover, miR-216a-5p inhibition also could alleviate renal injury, prevent apoptosis, and activate the MAPK pathway in kidney tissues of diabetic model mice. CONCLUSION: Rg3 could attenuate DKD progression by downregulating miR-216a-5p, suggesting Rg3 and miR-216a-5p might be the potential drug and molecular targets for DKD therapy.


Subject(s)
Apoptosis , Cell Proliferation , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Ginsenosides , MAP Kinase Signaling System , Mesangial Cells , MicroRNAs , Ginsenosides/pharmacology , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Diabetic Nephropathies/drug therapy , Apoptosis/drug effects , Cell Proliferation/drug effects , Mice , Mesangial Cells/drug effects , Mesangial Cells/metabolism , MAP Kinase Signaling System/drug effects , Diabetes Mellitus, Experimental/metabolism , Male , Cell Line
6.
Cell Mol Immunol ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902348

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are a main driver of immunosuppression in tumors. Understanding the mechanisms that determine the development and immunosuppressive function of these cells could provide new therapeutic targets to improve antitumor immunity. Here, using preclinical murine models, we discovered that exportin 1 (XPO1) expression is upregulated in tumor MDSCs and that this upregulation is induced by IL-6-induced STAT3 activation during MDSC differentiation. XPO1 blockade transforms MDSCs into T-cell-activating neutrophil-like cells, enhancing the antitumor immune response and restraining tumor growth. Mechanistically, XPO1 inhibition leads to the nuclear entrapment of ERK1/2, resulting in the prevention of ERK1/2 phosphorylation following the IL-6-mediated activation of the MAPK signaling pathway. Similarly, XPO1 blockade in human MDSCs induces the formation of neutrophil-like cells with immunostimulatory functions. Therefore, our findings revealed a critical role for XPO1 in MDSC differentiation and suppressive functions; exploiting these new discoveries revealed new targets for reprogramming immunosuppressive MDSCs to improve cancer therapeutic responses.

7.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928244

ABSTRACT

Obesity and metabolic syndrome alter serum lipid profiles. They also increase vulnerability to viral infections and worsen the survival rate and symptoms after infection. How serum lipids affect influenza virus proliferation is unclear. Here, we investigated the effects of lysophosphatidylcholines on influenza A virus (IAV) proliferation. IAV particles in the culture medium were titrated using extraction-free quantitative PCR, and viral RNA and protein levels were assessed using real-time PCR and Western blot, respectively. RNA sequencing data were analyzed using PCA and heatmap analysis, and pathway analysis was performed using the KEGG mapper and PathIN tools. Statistical analysis was conducted using SPSS21.0. LPC treatment of THP-1 cells significantly increased IAV proliferation and IAV RNA and protein levels, and saturated LPC was more active in IAV RNA expression than unsaturated LPC was. The functional analysis of genes affected by LPCs showed that the expression of genes involved in IAV signaling, such as suppressor of cytokine signaling 3 (SOCS3), phosphoinositide-3-kinase regulatory subunit 3 (PI3K) and AKT serine/threonine kinase 3 (AKT3), Toll-like receptor 7 (TKR7), and interferon gamma receptor 1 (IFNGR1), was changed by LPC. Altered influenza A pathways were linked with MAPK and PI3K/AKT signaling. Treatment with inhibitors of MAPK or PI3K attenuated viral gene expression changes induced by LPCs. The present study shows that LPCs stimulated virus reproduction by modifying the cellular environment to one in which viruses proliferated better. This was mediated by the MAPK, JNK, and PI3K/AKT pathways. Further animal studies are needed to confirm the link between LPCs from serum or the respiratory system and IAV proliferation.


Subject(s)
Influenza A virus , Lysophosphatidylcholines , MAP Kinase Signaling System , Virus Replication , Humans , Lysophosphatidylcholines/pharmacology , Lysophosphatidylcholines/metabolism , Virus Replication/drug effects , MAP Kinase Signaling System/drug effects , Influenza A virus/physiology , Macrophages/metabolism , Macrophages/virology , Macrophages/drug effects , THP-1 Cells , Cell Differentiation/drug effects , Influenza, Human/virology , Influenza, Human/metabolism , Signal Transduction/drug effects , Animals
8.
Antioxidants (Basel) ; 13(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38929121

ABSTRACT

Co-fermentation with bacteria and enzymes can reduce sugar content in palm kernel cake (PKC); however, the chemical changes and their effects on cell functionality are unclear. This study investigated the active components in pre-treated PKC extracts and their effects on pig small intestine IPEC-J2 cell proliferation and LPS-induced inflammation. The extracts contained 60.75% sugar, 36.80% mannose, 1.75% polyphenols and 0.59% flavone, as determined by chemical analyses, suggesting that the extracts were palm kernel cake oligosaccharides (PKCOS). Then, we found that 1000 µg/mL PKCOS counteracted the decrease in cell viability (CCK8 kit) caused by LPS induction by 5 µg/mL LPS (p < 0.05). Mechanistic studies conducted by RNA-seq and qPCR analyses suggested PKCOS promoted cell proliferation through the upregulation of TNF-α, PI3KAP1, MAP3K5 and Fos in the PI3K/MAPK signalling pathway; alleviated inflammation caused by LPS via the downregulation of the target genes Casp3 and TNF-α in association with apoptosis; and regulated the expression of the antioxidant genes SOD1, SOD2 and GPX4 to exert positive antioxidant effects (p < 0.05). Furthermore, PKCOS upregulated SLC5A1 (encoding SLGT1), HK and MPI in the glycolytic pathway (p < 0.05), suggesting cell survival. In summary, PKCOS has positive effects on promoting swine intestine cell proliferation against inflammation.

9.
Childs Nerv Syst ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926169

ABSTRACT

The World Health Organization's 5th edition classification of Central Nervous System (CNS) tumors differentiates diffuse gliomas into adult and pediatric variants. Pediatric-type diffuse low-grade gliomas (pDLGGs) are distinct from adult gliomas in their molecular characteristics, biological behavior, clinical progression, and prognosis. Various molecular alterations identified in pDLGGs are crucial for treatment. There are four distinct entities of pDLGGs. All four of these tumor subtypes exhibit diffuse growth and share overlapping histopathological and imaging characteristics. Molecular analysis is essential for differentiating these lesions.

10.
Biochim Biophys Acta Gen Subj ; 1868(8): 130651, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38825256

ABSTRACT

Cannabidiol (CBD) has antioxidant and anti-inflammatory activities. However, the anti-tumor effect of CBD on hepatocellular carcinoma (HCC) remains unclear. Here, we investigated whether CBD displays anti-tumorigenic effects in HCC cells and whether it could reduce tumorigenesis and metastases in vivo. First, this study treated HCC cells with different concentrations of CBD, followed by analyzing the changes in the proliferative, apoptotic, migratory and invasive abilities. The effects of CBD on the growth and metastasis of HCC cells in vivo were verified by tumorigenesis and metastasis assays. Subsequently, the target genes of CBD were predicted through the SwissTarget website and the genes differentially expressed in cells after CBD treatment were analyzed by microarray for intersection. The enrichment of the pathways after CBD treatment was analyzed by KEGG enrichment analysis, followed by western blot validation. Finally, rescue assays were used to validate the functions of genes as well as pathways in the growth and metastasis of HCC cells. A significant weakening of the ability of HCC cells to grow and metastasize in vitro and in vivo was observed upon CBD treatment. Mechanistically, CBD reduced GRP55 expression in HCC cells, along with increased TP53 expression and blocked MAPK signaling activation. In CBD-treated cells, the anti-tumor of HCC cells was restored after overexpression of GRP55 or deletion of TP53. CBD inhibits the MAPK signaling activation and increases the TP53 expression by downregulating GRP55 in HCC cells, thereby suppressing the growth and metastasis of HCC cells.


Subject(s)
Cannabidiol , Carcinoma, Hepatocellular , Liver Neoplasms , Receptors, Cannabinoid , Tumor Suppressor Protein p53 , Cannabidiol/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Humans , Tumor Suppressor Protein p53/metabolism , Receptors, Cannabinoid/metabolism , Receptors, Cannabinoid/genetics , Animals , Cell Proliferation/drug effects , Cell Line, Tumor , Mice , Gene Expression Regulation, Neoplastic/drug effects , MAP Kinase Signaling System/drug effects , Apoptosis/drug effects , Cell Movement/drug effects , Phenotype , Mice, Nude
11.
Expert Opin Ther Pat ; 34(5): 383-396, 2024 May.
Article in English | MEDLINE | ID: mdl-38842843

ABSTRACT

INTRODUCTION: SHP2 (Src homology region 2-containing protein tyrosine phosphatase 2) is a target of interest for cancer therapy due to its key role in the regulation of the RAS/MAPK signal transduction pathway downstream of Receptor Tyrosine Kinases (RTKs). Moreover, SHP2 can inhibit T cells via the PD-1/PD-L1 pathway. SHP2 plays a critical role in numerous physiological and pathological cellular processes, such as cell proliferation, survival, and migration. AREAS COVERED: This review examines SHP2 allosteric inhibitors reported in patents published in Espacenet and Scifinder databases from 2018 to present. An overview of claimed structures is conducted, focusing attention on structural modifications compared to SHP099, the first described allosteric inhibitor of SHP2. EXPERT OPINION: Multiple potent allosteric SHP2 inhibitors have been discovered, disclosed, and tested in a variety of preclinical cancer models with strong evidence of efficacy. Fifteen compounds are currently in clinical development, but none of them have been approved for marketing. Until now, long-term benefit of SHP2 inhibitors as monotherapy agents have not been demonstrated due to acquired mechanisms of resistance and/or lack of efficacy. However, combination therapies with a variety of agents, such as MEK, BRAF, EGFR, RAS-G12C and PDL-1 inhibitors, have high potential and are currently an extensive area of investigation.


Subject(s)
Antineoplastic Agents , Drug Development , Neoplasms , Patents as Topic , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Animals , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/enzymology , Allosteric Regulation/drug effects , Antineoplastic Agents/pharmacology , Signal Transduction/drug effects
12.
Article in English | MEDLINE | ID: mdl-38833209

ABSTRACT

Human dental pulp stem cells (DPSCs) have become an important component for bone tissue engineering and regenerative medicine due to their ability to differentiate into osteoblast precursors. Two miRNA chip datasets (GSE138180 and E-MTAB-3077) of DPSCs osteogenic differentiation were analyzed respectively to find the expression of miR-483-3p significantly increased in the differentiated groups. We further confirmed that miR-483-3p continued to overexpress during osteogenic differentiation of DPSCs, especially reaching its peak on the 7th day. Moreover, miR-483-3p could significantly promote the expression of osteogenic markers including RUNX2 and OSX, and activate MAPK signaling pathway by inducing phosphorylation of ERK, p38, and JNK. In addition, as a significant gene within the MAPK signaling pathway, ARRB2 was identified as the target gene of miR-483-3p by bioinformatic prediction and experimental verification. In conclusion, we identified miR-483-3p could promote osteogenic differentiation of DPSCs via the MAPK signaling pathway by targeting ARRB2.

13.
Int J Biol Macromol ; : 133025, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852737

ABSTRACT

The Rosa cymosa Tratt, an herbal plant from the Rosaceae family, has historically been valued in China for its medicinal and edible properties. In this study, a novel polysaccharide from R. cymosa fruit, termed PRCP (purified R. cymosa polysaccharide), was isolated using water extraction, decolorization, deproteinization, and ion-exchange chromatography. The structural characteristics of PRCP were investigated using monosaccharide composition analysis, methylation, GPC, FTIR, CD, and NMR spectroscopy. The immunomodulatory effect and potential mechanism of PRCP were evaluated in vitro using a macrophage cell model. Results indicated that PRCP (37.28 kDa) is a highly branched polysaccharide (72.61 %) primarily composed of arabinogalactan, rhamnogalacturonan, and galactoglucan domains with 13 types of glycosidic linkage fragments. Furthermore, PRCP appears to modulate immunomodulatory effects by influencing the phosphorylation of P38 and JNK proteins in the MAPK pathway. Collectively, these findings highlight the potential of PRCP as a promising natural functional food ingredient for immunostimulation.

14.
Cancer Cell Int ; 24(1): 191, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822350

ABSTRACT

Mitogen-activated protein kinase inhibitors (MAPKi) were the first line drugs for advanced melanoma patients with BRAF mutation. Targeted therapies have significant therapeutic effects; however, drug resistance hinders their long-term efficacy. Therefore, the development of new therapeutic strategies against MAPKi resistance is critical. Our previous results showed that MAPKi promote feedback activation of STAT3 signaling in BRAF-mutated cancer cells. Studies have shown that alantolactone inhibited the activation of STAT3 in a variety of tumor cells. Our results confirmed that alantolactone suppressed cell proliferation and promoted apoptosis by inhibiting STAT3 feedback activation induced by MAPKi and downregulating the expression of downstream Oct4 and Sox2. The inhibitory effect of alantolactone combined with a MAPKi on melanoma cells was significantly stronger than that on normal cells. In vivo and in vitro experiments showed that combination treatment was effective against drug-resistant melanomas. Our research indicates a potential novel combination therapy (alantolactone and MAPKi) for patients with BRAF-mutated melanoma.

15.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892436

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest of human malignancies and carries an exceptionally poor prognosis. It is mostly driven by multiple oncogenic alterations, with the highest mutation frequency being observed in the KRAS gene, which is a key oncogenic driver of tumorogenesis and malignant progression in PDAC. However, KRAS remained undruggable for decades until the emergence of G12C mutation specific KRAS inhibitors. Despite this development, this therapeutic approach to target KRAS directly is not routinely used for PDAC patients, with the reasons being the rare presence of G12C mutation in PDAC with only 1-2% of occurring cases, modest therapeutic efficacy, activation of compensatory pathways leading to cell resistance, and absence of effective KRASG12D or pan-KRAS inhibitors. Additionally, indirect approaches to targeting KRAS through upstream and downstream regulators or effectors were also found to be either ineffective or known to cause major toxicities. For this reason, new and more effective treatment strategies that combine different therapeutic modalities aiming at achieving synergism and minimizing intrinsic or adaptive resistance mechanisms are required. In the current work presented here, pancreatic cancer cell lines with oncogenic KRAS G12C, G12D, or wild-type KRAS were treated with specific KRAS or SOS1/2 inhibitors, and therapeutic synergisms with concomitant MEK inhibition and irradiation were systematically evaluated by means of cell viability, 2D-clonogenic, 3D-anchorage independent soft agar, and bioluminescent ATP assays. Underlying pathophysiological mechanisms were examined by using Western blot analyses, apoptosis assay, and RAS activation assay.


Subject(s)
Pancreatic Neoplasms , Protein Kinase Inhibitors , Proto-Oncogene Proteins p21(ras) , Humans , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/radiotherapy , Carcinoma, Pancreatic Ductal/therapy , Signal Transduction/drug effects , Apoptosis , Mutation , Cell Proliferation/drug effects , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism
16.
Nutrients ; 16(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892587

ABSTRACT

Longan (Dimcarpus longan Lour.) is a kind of traditional fruit used as a medicine and a food. Fresh longan is primarily consumed as a fruit, whereas dried longan is commonly employed for medicinal purposes. The differences in the immunomodulatory activities and mechanisms of polysaccharides between dried and fresh longan remain unclear. The present study comparatively analyzed the mechanisms of macrophage activation induced by polysaccharides from dried (LPG) and fresh longan (LPX). The results revealed that LPG and LPX differentially promoted macrophage phagocytosis and the secretion of NO, TNF-α, and IL-6. RNA-seq analysis revealed that LPG and LPX differentially affected gene expression in macrophages. The LPG treatment identified Tnf and chemokine-related genes as core genes, while myd88 and interferon-related genes were the core genes affected by LPX. A comprehensive analysis of the differentially expressed genes showed that LPG initiated macrophage activation primarily through the TLR2/4-mediated TRAM/TRAF6 and CLR-mediated Src/Raf1 NF-κB signaling pathways. LPX initiated macrophage activation predominantly via the CLR-mediated Bcl10/MALT1 and NLR-mediated Rip2/TAK1 MAPK and NF-κB signaling pathways. Interestingly, the non-classical NF-κB signaling pathway was activated by polysaccharides in both dried and fresh longan to elicit a slow, mild immune response. LPG tends to promote immune cell migration to engage in the immune response, while LPX facilitates antigen presentation to promote T cell activation. These findings contribute insights into the mechanisms underlying the differences in bioactivity between dried and fresh longan and their potential applications in immune-enhancing strategies and functional-food development.


Subject(s)
Fruit , Macrophage Activation , Macrophages , Phagocytosis , Polysaccharides , Sapindaceae , Signal Transduction , Macrophage Activation/drug effects , Polysaccharides/pharmacology , Animals , Mice , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Signal Transduction/drug effects , Fruit/chemistry , Sapindaceae/chemistry , Phagocytosis/drug effects , NF-kappa B/metabolism
17.
Mol Biotechnol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907071

ABSTRACT

This study was aimed to uncover the character and potential regulatory mechanism of EPB41L3 in cervical cancer (CC). CC cells were injected into BALB/c nude mice (female) to construct a xenograft tumor model. Real-time quantitative polymerase chain reaction (qRT-PCR) and western blot were performed to evaluate the expression of EPB41L3, ERK/p38 MAPK signal markers in CC tissues and cells. Cell counting kit-8 (CCK-8) and Transwell was applied to analyze the viability, invasion, and migration of CC cell lines. EPB41L3 was substantially decreased both in CC tissues and cells. Cell viability, invasion, and migration of CC cells were reduced by overexpressing EPB41L3. Bioinformatics analysis prerdicted that EPB41L3 was strongly related to the ERK/p38 MAPK pathway. Compared with Ad-nc mice, the volume and weight of tumors and ERK/p38 MAPK signal markers were down-regulated in Ad-EPB41L3 mice. After knocking down EPB41L3 with EPB41L3 siRNA (siEPB41L3), the ERK/p38 MAPK pathway was activated. Moreover, SB203580 treatment reversed the effect of EPB41L3 silencing on the improvement in viability, migration, and invasion of CC cells. EPB41L3 suppresses the progression of CC via activating the ERK/p38 MAPK pathway. EPB41L3 may serve as an effective therapeutic target for CC.

18.
BMC Med ; 22(1): 229, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853264

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder affecting women of reproductive ages. Our previous study has implicated a possible link between RNA editing and PCOS, yet the actual role of RNA editing, its association with clinical features, and the underlying mechanisms remain unclear. METHODS: Ten RNA-Seq datasets containing 269 samples of multiple tissue types, including granulosa cells, T helper cells, placenta, oocyte, endometrial stromal cells, endometrium, and adipose tissues, were retrieved from public databases. Peripheral blood samples were collected from twelve PCOS and ten controls and subjected to RNA-Seq. Transcriptome-wide RNA-Seq data analysis was conducted to identify differential RNA editing (DRE) between PCOS and controls. The functional significance of DRE was evaluated by luciferase reporter assays and overexpression in human HEK293T cells. Dehydroepiandrosterone and lipopolysaccharide were used to stimulate human KGN granulosa cells to evaluate gene expression. RESULTS: RNA editing dysregulations across multiple tissues were found to be associated with PCOS in public datasets. Peripheral blood transcriptome analysis revealed 798 DRE events associated with PCOS. Through weighted gene co-expression network analysis, our results revealed a set of hub DRE events in PCOS blood. A DRE event in the eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2:chr2:37,100,559) was associated with PCOS clinical features such as luteinizing hormone (LH) and the ratio of LH over follicle-stimulating hormone. Luciferase assays, overexpression, and knockout of RNA editing enzyme adenosine deaminase RNA specific (ADAR) showed that the ADAR-mediated editing cis-regulated EIF2AK2 expression. EIAF2AK2 showed a higher expression after dehydroepiandrosterone and lipopolysaccharide stimulation, triggering changes in the downstrean MAPK pathway. CONCLUSIONS: Our study presented the first evidence of cross-tissue RNA editing dysregulation in PCOS and its clinical associations. The dysregulation of RNA editing mediated by ADAR and the disrupted target EIF2AK2 may contribute to PCOS development via the MPAK pathway, underlining such epigenetic mechanisms in the disease.


Subject(s)
Polycystic Ovary Syndrome , RNA Editing , eIF-2 Kinase , Humans , Polycystic Ovary Syndrome/genetics , Female , RNA Editing/genetics , eIF-2 Kinase/genetics , Adult , HEK293 Cells , Gene Expression Profiling , Clinical Relevance
19.
BMC Complement Med Ther ; 24(1): 227, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862934

ABSTRACT

OBJECTIVE: Endometrial cancer (EC) is an oestrogen-dependent tumour, the occurrence of which is closely related to an imbalance of oestrogen homeostasis. Our previous studies explored the effects of Resveratrol(Res) on oestrogen metabolism. However, systematic research on the exact mechanism of action of Res is still lacking. Based on network pharmacology, molecular docking and animal experiments, the effects and molecular mechanisms of Res on endometrial cancer were investigated. METHODS: The target of Res was obtained from the high-throughput experiment and reference-guided database of TCM (HERB) and the Encyclopedia of Traditional Chinese Medicine (ETCM) databases, and the target of endometrial cancer was obtained by using the Genecards database. Venny map was used to obtain the intersection target of Res in the treatment of endometrial cancer, and the protein interaction network of the intersection target was constructed by importing the data into the STRING database. Then, the drug-disease-target interaction network was constructed based on Cytoscape 3.9.1 software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for intersection targets using the OmicShare cloud platform. Res and core targets were analysed by molecular docking. EC model mice induced by MNNG were randomly divided into the control group, Res group, MNNG group, MNNG + Res group, and MNNG + Res + MAPK/ERKi group. The protein levels of ERK and p-ERK in the mouse uterus were detected by Western blot. The levels of E1, E2, E3, 16-epiE3, 17-epiE3, 2-MeOE1, 4-MeOE1, 2-MeOE2, 4-MeOE2, 3-MeOE1, 2-OHE1, 4-OHE1, 2-OHE2, 4-OHE2, and 16α-OHE1 in the serum and endometrial tissue of mice were measured by LC‒MS/MS. RESULTS: A total of 174 intersection targets of Res anti-endometrial cancer were obtained. The signalling pathways analysed by KEGG enrichment included the AGE-RAGE signalling pathway in diabetic complications, the PI3K-Akt signalling pathway and the MAPK signalling pathway. The top 10 core targets were MAPK3, JUN, TP53, CASP3, TNF, IL1B, AKT1, FOS, VEGFA and INS. Molecular docking showed that in addition to TNF, other targets had good affinity for Res, and the binding activity with MAPK3 was stable. Western blot results showed that Res increased the phosphorylation level of ERK and that MAPK/ERKi decreased ERK activation. In the LC-MS/MS analysis, the levels of 2-MeOE1, 2-MeOE2 and 4-MeOE1 in serum and uterine tissue showed a significantly decreasing trend in the MNNG group, while that of 4-OHE2 was increased (P < 0.05). The concentrations of 4-MeOE1 in serum and 2-MeOE1 and 2-MeOE2 in the endometrial tissue of mice were significantly increased after Res treatment, and those of 4-OHE2 in the serum and uterus of mice were significantly decreased (P < 0.05). Meanwhile, in the MAPK/ERKi intervention group, the effect of Res on the reversal of oestrogen homeostasis imbalance was obviously weakened. CONCLUSION: Res has multiple targets and multiple approaches in the treatment of endometrial cancer. In this study, it was found that Res regulates oestrogen metabolism by activating the MAPK/ERK pathway. This finding provides a new perspective for subsequent research on the treatment of endometrial cancer.


Subject(s)
Endometrial Neoplasms , Estrogens , MAP Kinase Signaling System , Molecular Docking Simulation , Resveratrol , Female , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/metabolism , Animals , Resveratrol/pharmacology , Mice , MAP Kinase Signaling System/drug effects , Estrogens/metabolism , Estrogens/pharmacology , Humans , Mice, Inbred BALB C , Network Pharmacology , Protein Interaction Maps
20.
Chin Med ; 19(1): 81, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38858762

ABSTRACT

BACKGROUND: Psoriasis is a long-term inflammatory skin disease. A novel herbal formula containing nine Chinese herbal medicines, named Inflammation Skin Disease Formula (ISDF), has been prescribed in clinics for decades. AIMS: To investigate the efficacy and action mechanisms of ISDF on psoriasis using imiquimod (IMQ) and Interleukin-23 (IL-23)-induced models in mice and reveal the pharmacokinetics profile of ISDF in rats. METHODS: Topical administration of IMQ and intradermal injection with IL-23 respectively induced skin lesions like psoriasis on the dorsal area of Balb/c and C57 mice. The mice's body weight, skin thickness, and psoriasis area and severity index (PASI) were assessed weekly. SD rats were used in the pharmacokinetics study and the contents of berberine and baicalin were determined. RESULTS: The PASI scores and epidermal thickness of mice were markedly decreased after ISDF treatment in both models. ISDF treatment significantly decreased the contents of IL-17A and IL-22 in the serum of IMQ- and IL-23-treated mice. Importantly, ISDF markedly downregulated IL-4, IL-6, IL-1ß, and tumor necrosis factor α (TNF-α) gene expression, and the phosphorylation of NF-κB p65, JNK, ERKs and MAPK p38 in IMQ-treated mice. The protein phosphorylation of Jak1, Jak2, Tyk2 and Stat3 was significantly mitigated in the ISDF-treated groups. The absorption of baicalin and berberine of ISDF through the gastrointestinal tract of rats was limited, and their distribution and metabolism in rats were also very slow, which suggested ISDF could be used in the long-term application. CONCLUSIONS: ISDF has a strong anti-psoriatic therapeutic effect on mouse models induced with psoriasis through IMQ and IL-23, which is achieved by inhibiting the activation of the Jak/Stat3-activated IL-23/Th17 axis and the downstream NF-κB signalling and MAPK signalling pathways. ISDF holds great potential to be a therapy for psoriasis and should be further developed for this purpose.

SELECTION OF CITATIONS
SEARCH DETAIL
...