Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.049
Filter
1.
Int J Antimicrob Agents ; : 107293, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094752

ABSTRACT

PURPOSE: The incidence of pneumonia caused by multidrug-resistant gram-negative bacteria (MDR GNB) is increasing, which imposes significant burden on public health. Inhalation combined with intravenous polymyxins has emerged as a viable treatment option. However, pharmacokinetic studies focusing on intravenous and inhaled polymyxin B (PMB) are limited. METHODS: This study included seven patients with MDR GNB-induced pneumonia who were treated with intravenous plus inhaled PMB from March 1 to November 30, 2022, in the intensive care unit of the First Affiliated Hospital of Zhejiang University School of Medicine. Clinical outcomes and therapeutic drug monitoring data of PMB in both plasma and epithelial lining fluid (ELF) were retrospectively reviewed. RESULTS: Median PMB concentrations in the ELF were 7.83 (0.72-66.5), 116.72 (17.37-571.26), 41.1 (3.69-133.78), and 33.82 (0.83-126.68) mg/L at 0, 2, 6, and 12 h, respectively, and were much higher than those detected in the serum. ELF concentrations of PMB at 0, 2, 6, and 12 h were higher than the minimum inhibitory concentrations of pathogens isolated from the patients. Steady-state concentrations of PMB in the plasma were > 2 mg/L in most patients. Of the patients, 57.14 % were cured and 71.43 % showed a favorable microbiological response. The incidence of side effects with PMB was low. CONCLUSIONS: Inhaled plus intravenous PMB can achieve high ELF concentrations and favorable clinical outcomes without an increased adverse effect profile. This treatment approach appears promising for the treatment of patients with pneumonia caused by MDR-GNB.

2.
BMC Microbiol ; 24(1): 256, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987681

ABSTRACT

BACKGROUND: The emergence of multi-drug-resistant Klebsiella pneumoniae (MDR-KP) represents a serious clinical health concern. Antibiotic resistance and virulence interactions play a significant role in the pathogenesis of K. pneumoniae infections. Therefore, tracking the clinical resistome and virulome through monitoring antibiotic resistance genes (ARG) and virulence factors in the bacterial genome using computational analysis tools is critical for predicting the next epidemic. METHODS: In the current study, one hundred extended spectrum ß-lactamase (ESBL)-producing clinical isolates were collected from Mansoura University Hospital, Egypt, in a six-month period from January to June 2022. One isolate was selected due to the high resistance phenotype, and the genetic features of MDR-KP recovered from hospitalized patient were investigated. Otherwise, the susceptibility to 25 antimicrobials was determined using the DL Antimicrobial Susceptibility Testing (AST) system. Whole genome sequencing (WGS) using Illumina NovaSeq 6000 was employed to provide genomic insights into K. pneumoniae WSF99 clinical isolate. RESULTS: The isolate K. pneumoniae WSF99 was phenotypically resistant to the antibiotics under investigation via antibiotic susceptibility testing. WGS analysis revealed that WSF99 total genome length was 5.7 Mb with an estimated 5,718 protein-coding genes and a G + C content of 56.98 mol%. Additionally, the allelic profile of the WSF99 isolate was allocated to the high-risk clone ST147. Furthermore, diverse antibiotic resistance genes were determined in the genome that explain the high-level resistance phenotypes. Several ß-lactamase genes, including blaCTX-M-15, blaTEM-1, blaTEM-12, blaSHV-11, blaSHV-67, and blaOXA-9, were detected in the WSF99 isolate. Moreover, a single carbapenemase gene, blaNDM-5, was predicted in the genome, positioned within a mobile cassette. In addition, other resistance genes were predicted in the genome including, aac(6')-Ib, aph(3')-VI, sul1, sul2, fosA, aadA, arr-2, qnrS1, tetA and tetC. Four plasmid replicons CoIRNAI, IncFIB(K), IncFIB(pQil), and IncR were predicted in the genome. The draft genome analysis revealed the occurrence of genetic mobile elements positioned around the ARGs, suggesting the ease of dissemination via horizontal gene transfer. CONCLUSIONS: This study reports a comprehensive pathogenomic analysis of MDR-KP isolated from a hospitalized patient. These findings could be relevant for future studies investigating the diversity of antimicrobial resistance and virulence in Egypt.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Virulence Factors , Whole Genome Sequencing , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/classification , Humans , Egypt , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Genome, Bacterial/genetics , beta-Lactamases/genetics , Bacterial Proteins/genetics , Plasmids/genetics
3.
Heliyon ; 10(13): e33863, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39050428

ABSTRACT

Introduction: Tuberculosis (TB) is the second leading cause of mortality from an infectious disease worldwide. Multidrug-resistant tuberculosis (MDR-TB), where rifampicin-resistant TB is the biggest contributor, remains a global health threat. There is scant data on MTB and rifampicin resistance (RR-MTB) using Gene Xpert MTB/RIF assay in Ethiopia. This study aimed to determine the prevalence of MTB and RR-MTB among presumptive TB patients in Tigray, Northern Ethiopia. Methods: A multi-center retrospective cross-sectional study was conducted from October 2019 to December 2019 among presumptive MTB patients from four hospitals in Tigray. Records of sputum sample results of presumptive MTB patients analyzed with Gene Xpert MTB/RIF assay from January 2016 to December 2019 were investigated. Data were extracted using a data-extraction tool from registration books and analyzed using SPSS ver.21. Statistically significant was set at p-value ≤0.05. Results: From 17,329 presumptive adult MTB patients who had submitted sputum samples for TB diagnosis, 16,437 (94.9 %) had complete records and were included in the study. More than half (60.2 %) of them were males and ages ranged from 18 to 98 years. Majority of the participants: 15,047(91.5 %) were new cases and 11,750 (71.5 %) were with unknown HIV status. Prevalence of MTB was 9.7 % (95 % CI: 9.2-10.2 %) of these, rifampicin resistant-MTB was 8.7 % (95 % CI: 7.32-10.09 %). Age (being >29 years) [p < 0.001] and new cases [AOR = 0.46; 95%CI = 0.39, 0.53, p < 0.001] were associated with low TB infection. Age groups of 18-29 years were associated with higher RR-MTB [AOR = 3.08; 95 % CI = 1.07, 8.72, p = 0.036]. Conclusion: Nearly one-tenth of the presumptive tuberculosis patients tested positive for MTB; out of these, 8.7 % were RR-MTB. The high prevalence of TB and RR-MTB at a young age and previously treated cases calls for a concerted effort to improve and monitor TB treatment to reduce the problem.

4.
Cureus ; 16(6): e63070, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39055401

ABSTRACT

Enteric fever, predominantly caused by Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi, remains a significant global health challenge. This comprehensive review examines the evolving epidemiology and antibiotic resistance associated with enteric fever. We provide an overview of the disease's definition and historical context, highlighting the substantial impact of antibiotic resistance on treatment efficacy. The review details the global burden, incidence trends, and risk factors of enteric fever while elucidating the pathogenesis and clinical manifestations of the disease. A critical analysis of antibiotic resistance mechanisms reveals the alarming rise of multi-drug resistant (MDR) and extensively drug-resistant (XDR) strains, complicating treatment regimens and underscoring the need for novel therapeutic strategies. Current treatment protocols, the role of empirical therapy, and the rational use of antibiotics are discussed in depth. Additionally, we explore prevention and control strategies, emphasizing the importance of vaccination programs, sanitation improvements, and effective public health interventions. The review concludes with recommendations for future actions, including enhanced surveillance, research and development of new antibiotics, expansion of vaccination efforts, and improved public health infrastructure. The findings highlight the necessity for updated clinical guidelines and sustained global efforts to address the challenges of enteric fever and its evolving antibiotic resistance patterns. Through coordinated action and continued innovation, it is possible to mitigate the impact of this enduring public health threat.

5.
Microb Pathog ; : 106823, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39059698

ABSTRACT

Antibiotic resistance is increasing among Gram-negative bacteria, prompting the development of new antibiotics as well as alternative treatment approaches. Klebsiella pneumoniae Carbapenemases (KPC) has become a major concern in the treatment of infections, since KPC-producing bacteria are resistant to a number of ß -lactam and non ß-lactam antibiotics in addition to hydrolyzing carbapenemases. The aim of this study is to examine the synergistic effect of human Glucose-dependent Insulinotropic Polypeptide (GIP) on KPC producer. The K. pneumoniae isolates were identified by using biochemical tests and PCR genotyping. The disc diffusion method was used to assess the antimicrobial susceptibility of each isolate, and the modified Hodge test (MHT) was used to find carbapenemases. Agar well diffusion and minimum inhibitory concentration (MIC) assays were used to validate the synergistic effect of GIP against Klebsiella species. MIC values of chosen antimicrobial compounds demonstrated a considerable synergism impact when combined with human GIP, particularly against KPC strains. The antibacterial activity of the antimicrobial compounds was boosted by 4 to 16 times due to human GIP, reducing the MIC values. The fractional inhibitory concentration (FIC) ranged from 0.032 to 0.25 for examined antibiotics. Thus, GIP can be considered an antibacterial adjuvant with the potential to supplement the current antibiotic spectrum.

6.
New Microbes New Infect ; 60-61: 101444, 2024.
Article in English | MEDLINE | ID: mdl-39040124

ABSTRACT

Background: Multidrug resistant bacterial and fungal pathogens are resistant to a number of significant front-line drugs, hence, identification of new inhibitory agents to combat them is crucial. In this study, we aim to evaluate the activity of Pandemic Box compounds from Malaria Medicines Venture (MMV) against A. baumannii and P. aeruginosa bacterial, C. auris, C. albicans and A. niger fungal clinical isolates. Methods: Isolates were initially screened with 201 antibacterial and 46 antifungal compounds (10 µM) using a microbroth dilution in triplicates to determine MIC. A persister assay was performed for bacterial pathogens. Results: Out of 201 antibacterial compounds, twenty-nine and seven compounds inhibited the growth of A. baumannii and P. aeruginosa at 10 µM, respectively. MMV1580854, MMV1579788, eravacycline and epetraborole inhibited both the bacterial test isolates. In a persister assay, MMV1634390 showed complete bactericidal effect against A. baumannii. With antifungal activity compounds, C. auris responded to15 compounds, Six compounds inhibited C. albicans and one was effective against A. niger at 10 µM. The ratio of Minimum Fungicidal Concentration (MFC): Minimum Inhibitory Concentration (MIC) of MMV1782110 was 2 against C. auris. Eberconazole, amorolfine and luliconazole are fungicidal targeting C. albicans at a MFC: MIC ratio of 2. Conclusion: Five compounds from MMV Pandemic Box were found to be inhibiting colistin and ceftazidime resistant A. baumannii clinical isolate, also against colistin and ß-lactam resistant P. aeruginosa clinical isolate. MMV1634390 showed complete bactericidal effect against A. baumannii in a persister assay. MMV1782110, Eberconazole, amorolfine and luliconazole exhibited potent anti-fungal activity. Further investigations are warranted to identify the targets and mechanism.

7.
Life Sci ; 353: 122920, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39047898

ABSTRACT

AIMS: Antibiotic resistance including multidrug resistance (MDR) is a negative symbol to the human health system because it loses the capability to treat infections. Unfortunately, the available antibiotics do not show an effective therapeutic response against bacterial infections. In the situation of global antibiotic unresponsiveness, enzymatic therapy especially in combinatorial form seems an effective approach to control bacterial infection and combat resistance. The article is important because it focuses on combinatorial enzymatic therapy that has multiple properties (effective antibacterial performances, antibiofilm capacity, immunomodulators, targeted actions, synergistic actions, multiple targeting, and resistance-proof properties) and can address antibiotic resistance effectively. MATERIALS AND METHODS: We searched the related topics with Pubmed, Scopus, and Google Scholar databases and finally 73 relevant papers were reviewed in detail and cited in this article. KEY FINDINGS: Discusses properties of combinatorial therapeutic enzymes made it an accomplished means over antibiotic therapy. This article discusses the need for combinatorial enzymatic therapy against bacterial infection, its distinguished features, and properties with multi-mechanistic antibacterial action. It discussed the European Medicine Agency and Food and Drug Administration-approved therapeutic enzymes (antibacterial and antibiofilm). SIGNIFICANCE: This article provided the possible combination of the enzyme that may be used as an antibacterial agent along with limitations and future scope of combinatorial antibacterial enzymatic agents. This article could draw the attention of researchers to combinatorial therapeutic enzymatic molecules as effective and futuristic therapy to overcome the problem of multiple antibiotic resistance in bacteria.

8.
Euro Surveill ; 29(28)2024 Jul.
Article in English | MEDLINE | ID: mdl-38994601

ABSTRACT

This report documents the case of a Ukrainian patient infected with an extensively drug-resistant (XDR) lineage 2 Mycobacterium tuberculosis strain harbouring the rifampicin resistance mutation RpoB I491F. This mutation is not detected by routine molecular WHO-recommended rapid diagnostics, complicating the detection and treatment of these strains. The occurrence of such mutations underscores the need for enhanced diagnostic techniques and tailored treatment regimens, especially in eastern Europe where lineage 2 strains and XDR-tuberculosis are prevalent.


Subject(s)
Antitubercular Agents , Bacterial Proteins , DNA-Directed RNA Polymerases , Extensively Drug-Resistant Tuberculosis , Mutation , Mycobacterium tuberculosis , Rifampin , Adult , Humans , Antitubercular Agents/therapeutic use , Bacterial Proteins/genetics , DNA-Directed RNA Polymerases/genetics , Extensively Drug-Resistant Tuberculosis/diagnosis , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/microbiology , Germany , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/drug effects , Rifampin/therapeutic use , Ukraine , Female
9.
Curr Med Chem ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39021173

ABSTRACT

To overcome the limits of traditional antibiotic medications, novel approaches are needed to combat the growing global epidemic of Multidrug-resistant (MDR) infections. As drug-resistant bacteria develop, the importance of innovative antimicrobial methods is underscored by antibiotic abuse and misuse. The global threat of MDR microorganisms is increasing, which calls for a coordinated global response. Lipid Nanoparticles (LNPs) possess several characteristics that make them attractive choices for managing multidrug resistant (MDR) infections, as well as potential delivery systems for antimicrobial agents. Thus, LNPs improve drug solubility, stability, and targeted delivery, thereby mitigating the drawbacks of conventional antibiotic therapy. Several characteristics of LNPs, which stop MDR bacteria from developing resistance mechanisms, serve as guidelines for precision medicine. It presents a powerful approach for combating the growing concern of MDR bacteria by increasing Anti-Microbial Peptides (AMPs) bioavailability and targeting distribution to bacterial cells. LNPs have the potential to redefine antibacterial treatments for MDR illnesses in the context of this study. Further, it discusses LNP use in larger applications, such as fighting Anti-Microbial Resistance (AMR) and MDR. A complete understanding of the unique features, many uses, and importance of collaborative efforts to overcome the global challenge of antibiotic resistance are also conveyed in the study.

10.
Curr Top Med Chem ; 24(13): 1101-1119, 2024.
Article in English | MEDLINE | ID: mdl-39005059

ABSTRACT

This review highlights the advantages of combination therapy using polymer conjugates as drug delivery systems for cancer treatment. In this review, the specific structures and materials of polymer conjugates, as well as the different types of combination chemotherapy strategies, are discussed. Specific targeting strategies, such as monoclonal antibody therapy and small molecule ligands, are also explored. Additionally, self-assembled polymer micelles and overcoming multidrug resistance are described as potential strategies for combination therapy. The assessment of combinational therapeutic efficacy and the challenges associated with polymer conjugates are also addressed. The future outlook aims to overcome these challenges and improve the effectiveness of drug delivery systems for combination therapy. The conclusion emphasizes the potential of polymer conjugates in combination therapy while acknowledging the need for further research and development in this field.


Subject(s)
Drug Delivery Systems , Neoplasms , Polymers , Humans , Polymers/chemistry , Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , Micelles
11.
Indian J Microbiol ; 64(2): 540-547, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39011018

ABSTRACT

Klebsiella pneumoniae is considered as the most common pathogen of hospital-acquired pneumonia. K. pneumoniae has emerged as the superbug which had shown multidrug resistance (MDR) as well as extensively drug resistance. Carbapenem resistant K. pneumoniae (CRKP) has become a menace for the treatment with monotherapy of the patients mainly admitted in intensive care units. Hence, in the present study we collected total 187 sputum isolates of K. pneumoniae and performed the antimicrobial susceptibility testing by using the automated Vitek-2 system and broth micro-dilution method (67 CRKP). The combination study of solithromycin with meropenem, colistin, cefotaxime, piperacillin and tazobactam, nitrofurantoin, tetracycline, levofloxacin, curcumin and nalidixic acid was performed by using checkerboard assay. We observed the high rate of resistance towards ampicillin, cefotaxime, ceftriaxone, cefuroxime and aztreonam. The colistin and tigecycline were the most sensitive drugs. The CRKP were 36%, maximum were from the patients of ICUs. The best synergistic effect of solithromycin was with meropenem and cefotaxime (100%), colistin and tetracycline (80%). So, these combinations can be a choice of treatment for the infections caused by MDR CRKP and other Gram-negative bacteria where the monotherapy could not work.

12.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999924

ABSTRACT

Acinetobacter baumannii represents a significant concern in nosocomial settings, particularly in critically ill patients who are forced to remain in hospital for extended periods. The challenge of managing and preventing this organism is further compounded by its increasing ability to develop resistance due to its extraordinary genomic plasticity, particularly in response to adverse environmental conditions. Its recognition as a significant public health risk has provided a significant impetus for the identification of new therapeutic approaches and infection control strategies. Indeed, currently used antimicrobial agents are gradually losing their efficacy, neutralized by newer and newer mechanisms of bacterial resistance, especially to carbapenem antibiotics. A deep understanding of the underlying molecular mechanisms is urgently needed to shed light on the properties that allow A. baumannii enormous resilience against standard therapies. Among the most promising alternatives under investigation are the combination sulbactam/durlobactam, cefepime/zidebactam, imipenem/funobactam, xeruborbactam, and the newest molecules such as novel polymyxins or zosurabalpin. Furthermore, the potential of phage therapy, as well as deep learning and artificial intelligence, offer a complementary approach that could be particularly useful in cases where traditional strategies fail. The fight against A. baumannii is not confined to the microcosm of microbiological research or hospital wards; instead, it is a broader public health dilemma that demands a coordinated, global response.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Bacterial/drug effects
13.
Braz J Microbiol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985434

ABSTRACT

An Actinomycetia isolate, designated as PBR19, was derived from the rhizosphere soil of Pobitora Wildlife Sanctuary (PWS), Assam, India. The isolate, identified as Streptomyces sp., shares a sequence similarity of 93.96% with its nearest type strain, Streptomyces atrovirens. This finding indicates the potential classification of PBR19 as a new taxon within the Actinomycetota phylum. PBR19 displayed notable antibacterial action against some ESKAPE pathogens. The ethyl acetate extract of PBR19 (EtAc-PBR19) showed the lowest minimum inhibitory concentration (MIC) of ≥ 0.195 µg/mL against Acinetobacter baumannii ATCC BAA-1705. A lower MIC indicates higher potency against the tested pathogen. Scanning electron microscope (SEM) findings revealed significant changes in the cytoplasmic membrane structure of the pathogen. This suggests that the antibacterial activity may be linked to the disruption of the microbial membrane. The predominant chemical compound detected in the EtAc-PBR19 was identified as phenol, 3,5-bis(1,1-dimethylethyl), comprising 48.59% of the area percentage. Additionally, PBR19 was found to contain the type II polyketide synthases (PKS type II) gene associated with antibiotic synthesis. The predicted gene product of PKSII was identified as the macrolide antibiotic Megalomicin A. The taxonomic distinctiveness, potent antibacterial effects, and the presence of a gene associated with antibiotic synthesis suggest that PBR19 could be a valuable candidate for further exploration in drug development and synthetic biology. The study contributes to the broader understanding of microbial diversity and the potential for discovering bioactive compounds in less-explored environments.

14.
IJTLD Open ; 1(6): 274-278, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39021446

ABSTRACT

BACKGROUND: A post-authorisation safety study (PASS) on delamanid (DLM) was conducted as part of a post-approval commitment to the European Medicines Agency. The aim of this study was to evaluate the use of DLM in a real-life setting, its safety, and treatment outcomes in patients with multidrug-resistant TB (MDR-TB). METHODS: This was a prospective, multicentric, non-interventional study conducted in the European Union. MDR-TB Regimen selection and patient monitoring were conducted in accordance with existing medical practices. Data on the use of DLM, related adverse events, and treatment outcomes were collected for up to 30 months after the first DLM dose. Descriptive summary statistics were used for continuous and categorical variables. RESULTS: Out of 86 patients, one had extrapulmonary TB. Two-thirds of the patients were treated with DLM for more than 24 weeks. The most frequent adverse drug reaction to DLM was QT interval prolongation. Resistance to DLM was detected in one patient during treatment. The treatment success rate was 77%. CONCLUSION: No new safety concerns were revealed, including in patients treated with DLM for more than 24 weeks. QT interval prolongations were well managed and did not lead to any clinically significant cardiac effects. The treatment outcomes were in line with the WHO target for Europe.


CONTEXTE: Une étude de sécurité post-autorisation (PASS) sur le délamanide (DLM) a été menée dans le cadre d'un engagement post-approbation auprès de l'Agence européenne des médicaments. L'objectif de cette étude était d'évaluer l'utilisation du DLM dans un contexte réel, son innocuité et les résultats du traitement chez les patients atteints de TB multirésistante (MDR-TB). MÉTHODES: Il s'agissait d'une étude prospective, multicentrique et non interventionnelle menée dans l'Union européenne. La sélection du schéma thérapeutique de la MDR-TB et le suivi des patients ont été effectués conformément aux pratiques médicales existantes. Les données sur l'utilisation du DLM, les effets indésirables connexes et les résultats du traitement ont été recueillies jusqu'à 30 mois après la première dose de DLM. Des statistiques sommaires descriptives ont été utilisées pour les variables continues et catégorielles. RÉSULTATS: Sur 86 patients, un avait une TB extrapulmonaire. Les deux tiers des patients ont été traités avec du DLM pendant plus de 24 semaines. L'effet indésirable le plus fréquent du DLM était l'allongement de l'intervalle QT. Une résistance au DLM a été détectée chez un patient pendant le traitement. Le taux de réussite du traitement était de 77%. CONCLUSION: Aucun nouveau problème de sécurité n'a été révélé, y compris chez les patients traités par le DLM pendant plus de 24 semaines. Les allongements de l'intervalle QT ont été bien gérés et n'ont pas entraîné d'effets cardiaques cliniquement significatifs. Les résultats du traitement étaient conformes à l'objectif de l'OMS pour l'Europe.

15.
J Drug Target ; : 1-10, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38946465

ABSTRACT

Overexpression of permeability-glycoprotein (P-gp) transporter leads to multidrug resistance (MDR) through cellular exclusion of chemotherapeutics. Co-administration of P-gp inhibitors and chemotherapeutics is a promising approach for improving the efficacy of therapy. Nevertheless, problems in pharmacokinetics, toxicity and solubility limit the application of P-gp inhibitors. Herein, we developed a novel all-in-one hybrid nanoparticle system to overcome MDR in doxorubicin (DOX)-resistant breast cancer. First, folic acid-modified DOX-loaded mesoporous silica nanoparticles (MSNs) were prepared and then loaded into PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles along with a P-gp inhibitor, elacridar. This hybrid nanoparticle system had high drug loading capacity, enabled both passive and active targeting of tumour tissues, and exhibited sequential and pH-triggered release of drugs. In vitro and in vivo studies in DOX-resistant breast cancer demonstrated the ability of the hybrid nanoparticles to reverse P-gp-mediated drug resistance. The nanoparticles were efficiently taken up by the breast cancer cells and delivered elacridar, in vitro. Biodistribution studies demonstrated substantial accumulation of the folate receptor-targeted PLGA/MSN hybrid nanoparticles in tumour-bearing mice. Moreover, deceleration of the tumour growth was remarkable in the animals administered with the DOX and elacridar co-loaded hybrid nanoparticles when compared to those treated with the marketed liposomal DOX (Caelyx®) or its combination with elacridar.

16.
BMC Infect Dis ; 24(1): 711, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030479

ABSTRACT

BACKGROUND: Enterobacter cloacae complex (ECC) including different species are isolated from different human clinical samples. ECC is armed by many different virulence genes (VGs) and they were also classified among ESKAPE group by WHO recently. The present study was designed to find probable association between VGs and antibiotic susceptibility in different ECC species. METHODS: Forty-five Enterobacter isolates that were harvested from different clinical samples were classified in four different species. Seven VGs were screened by PCR technique and antibiotic susceptibility assessment was performed by disk-diffusion assay. RESULT: Four Enterobacter species; Enterobacter cloacae (33.3%), Enterobacter hormaechei (55.6%), Enterobacter kobei (6.7%) and Enterobacter roggenkampii (4.4%) were detected. Minimum antibiotic resistance was against carbapenem agents and amikacin even in MDR isolates. 33.3% and 13.3% of isolates were MDR and XDR respectively. The rpoS (97.8%) and csgD (11.1%) showed maximum and minimum frequency respectively. Blood sample isolated were highly virulent but less resistant in comparison to the other sample isolates. The csgA, csgD and iutA genes were associated with cefepime sensitivity. CONCLUSION: The fepA showed a predictory role for differentiating of E. hormaechei from other species. More evolved iron acquisition system in E. hormaechei was hypothesized. The fepA gene introduced as a suitable target for designing novel anti-virulence/antibiotic agents against E. hormaechei. Complementary studies on other VGs and ARGs and with bigger study population is recommended.


Subject(s)
Anti-Bacterial Agents , Enterobacter cloacae , Enterobacteriaceae Infections , Microbial Sensitivity Tests , Virulence Factors , Humans , Anti-Bacterial Agents/pharmacology , Enterobacter cloacae/genetics , Enterobacter cloacae/drug effects , Enterobacter cloacae/isolation & purification , Enterobacter cloacae/pathogenicity , Enterobacteriaceae Infections/microbiology , Virulence Factors/genetics , Virulence/genetics , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Enterobacter/genetics , Enterobacter/drug effects , Enterobacter/isolation & purification , Male , Female
17.
BMC Pediatr ; 24(1): 464, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030549

ABSTRACT

BACKGROUND: Helicobacter pylori eradication therapy based on antimicrobial susceptibility in Vietnamese children currently get low efficiency. There are causes of treatment failure, among host genetic factors namely MDR1 C3435T and CYP2C19 affect the absorption and metabolism of proton pump inhibitors - a crucial component of eradication therapy. The study aimed to investigate the effect of MDR1 C3435T and CYP2C19 genetic polymorphisms on the cure rate. METHODS: 207 pediatric patients with gastritis and peptic ulcer infecting Helicobacter pylori completed the eradication therapy based on antimicrobial susceptibility with proton pump inhibitor esomeprazole. Eradication efficacy was assessed after at least 4 weeks by the urease breath test. MDR1 C3435T genetic polymorphism and CYP2C19 genotype were determined using a sequencing method based on Sanger's principle. RESULTS: Among 207 children recruited in this study, the ratio of CYP2C19 EM, IM, and PM phenotypes was 40.1%, 46.4%, and 16.9%, respectively. The patient with MDR1 3435 C/C polymorphism accounted for 43.0%, MDR1 3435 C/T was 40.1%, and MDR1 3435T/T was 16.9%. The cure rate of Helicobacter pylori infection in patients with CYP2C19 EM genotype was 78.3%; 83.3% of those with the IM genotype, and PM genotype was 96,4% (p = 0.07). Successful eradication rates for Helicobacter pylori were 85.4%, 86.7%, and 68.6% in patients with the MDR1 3435 C/C, C/T, and T/T, respectively (p = 0.02). Multiple logistic regression analysis found that MDR1 C3435T genetic polymorphisms of patients were significant independent risk factors for treatment failure, and CYP2C19 genotype did not affect Helicobacter pylori eradication. CONCLUSIONS: The Helicobacter pylori eradication rates by regimens based on antibiotic susceptibility and esomeprazole were not significantly different between the CYP2C19 phenotypes. The MDR1 C3435T polymorphism is one of the factors impacting Helicobacter pylori eradication results in children.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Cytochrome P-450 CYP2C19 , Gastritis , Helicobacter Infections , Helicobacter pylori , Peptic Ulcer , Proton Pump Inhibitors , Humans , Cytochrome P-450 CYP2C19/genetics , Helicobacter Infections/drug therapy , Helicobacter Infections/genetics , Helicobacter pylori/drug effects , Child , Male , Female , Vietnam , Gastritis/drug therapy , Gastritis/microbiology , Gastritis/genetics , Peptic Ulcer/drug therapy , Peptic Ulcer/genetics , Peptic Ulcer/microbiology , ATP Binding Cassette Transporter, Subfamily B/genetics , Proton Pump Inhibitors/therapeutic use , Adolescent , Child, Preschool , Genotype , Polymorphism, Genetic , Treatment Outcome , Esomeprazole/therapeutic use , Anti-Bacterial Agents/therapeutic use
18.
Antibiotics (Basel) ; 13(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39061274

ABSTRACT

Enterobacter hormaechei has emerged as a significant pathogen within healthcare settings due to its ability to develop multidrug resistance (MDR) and survive in hospital environments. This study presents a genome-based analysis of carbapenem-resistant Enterobacter hormaechei isolates from two major hospitals in the United Arab Emirates. Eight isolates were subjected to whole-genome sequencing (WGS), revealing extensive resistance profiles including the blaNDM-1, blaOXA-48, and blaVIM-4 genes. Notably, one isolate belonging to ST171 harbored dual carbapenemase genes, while five isolates exhibited colistin resistance without mcr genes. The presence of the type VI secretion system (T6SS), various adhesins, and virulence genes contributes to the virulence and competitive advantage of the pathogen. Additionally, our isolates (87.5%) possessed ampC ß-lactamase genes, predominantly blaACT genes. The genomic context of blaNDM-1, surrounded by other resistance genes and mobile genetic elements, highlights the role of horizontal gene transfer (HGT) in the spread of resistance. Our findings highlight the need for rigorous surveillance, strategic antibiotic stewardship, and hospital-based WGS to manage and mitigate the spread of these highly resistant and virulent pathogens. Accurate identification and monitoring of Enterobacter cloacae complex (ECC) species and their resistance mechanisms are crucial for effective infection control and treatment strategies.

19.
Antibiotics (Basel) ; 13(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39061277

ABSTRACT

The ability of Salmonella species to adhere to surfaces and form biofilms, leading to persistent environmental reservoirs, might represent a direct link between environmental contamination and food processing contamination. The purpose of this study was to investigate the biofilm-forming ability of 80 multidrug-resistant (MDR) and extended-spectrum beta-lactamase (ESBL) producing Salmonella enterica serovar Infantis strains isolated from the broiler food chain production through whole genome sequencing (WGS), PCR, and morphotype association assays. Biofilm formation was quantified by testing the strains at two different temperatures, using 96-well polystyrene plates. The rough and dry colony (rdar) morphotype was assessed visually on Congo red agar (CRA) plates. Based on our results, all tested S. Infantis strains produced biofilm at 22 °C with an rdar morphotype, while at 37 °C, all the isolates tested negative, except one positive. Most isolates (58.75%) exhibited strong biofilm production, while 36.25% showed moderate production. Only 5 out of 80 (6.25%) were weak biofilm producers. WGS analysis showed the presence of the fim cluster (fimADF) and the csg cluster (csgBAC and csgDEFG), also described in S. Typhimurium, which are responsible for fimbriae production. PCR demonstrated the presence of csgD, csgB, and fimA in all 80 S. Infantis strains. To our knowledge, this is the first study comparing the effects of two different temperatures on the biofilm formation capacity of ESBL producing S. Infantis from the broiler production chain. This study highlights that the initial biofilm components, such as curli and cellulose, are specifically expressed at lower temperatures. It is important to emphasize that within the broiler farm, the environmental temperature ranges between 18-22 °C, which is the optimum temperature for in vitro biofilm formation by Salmonella spp. This temperature range facilitates the expression of biofilm-associated genes, contributing to the persistence of S. Infantis in the environment. This complicates biosecurity measures and makes disinfection protocols on the farm and in the production chain more difficult, posing serious public health concerns.

20.
Antibiotics (Basel) ; 13(7)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39061311

ABSTRACT

Nosocomial pneumonia, including hospital-acquired pneumonia and ventilator-associated pneumonia, is the leading cause of death related to hospital-acquired infections among critically ill patients. A growing proportion of these cases are attributed to multi-drug-resistant (MDR-) Gram-negative bacteria (GNB). MDR-GNB pneumonia often leads to delayed appropriate treatment, prolonged hospital stays, and increased morbidity and mortality. This issue is compounded by the increased toxicity profiles of the conventional antibiotics required to treat MDR-GNB infections. In recent years, several novel antibiotics have been licensed for the treatment of GNB nosocomial pneumonia. These novel antibiotics are promising therapeutic options for treatment of nosocomial pneumonia by MDR pathogens with certain mechanisms of resistance. Still, antibiotic resistance remains an evolving global crisis, and resistance to novel antibiotics has started emerging, making their judicious use crucial to prolong their shelf-life. This article presents an up-to-date review of these novel antibiotics and their current role in the antimicrobial armamentarium. We critically present data for the pharmacokinetics/pharmacodynamics, the in vitro spectrum of antimicrobial activity and resistance, and in vivo data for their clinical and microbiological efficacy in trials. Where possible, available data are summarized specifically in patients with nosocomial pneumonia, as this cohort may exhibit 'critical illness' physiology that affects drug efficacy.

SELECTION OF CITATIONS
SEARCH DETAIL