Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
Front Genet ; 15: 1462463, 2024.
Article in English | MEDLINE | ID: mdl-39100076

ABSTRACT

[This corrects the article DOI: 10.3389/fgene.2024.1396530.].

2.
Front Genet ; 15: 1396530, 2024.
Article in English | MEDLINE | ID: mdl-38903758

ABSTRACT

The karyotype of an organism is the set of gross features that characterize the way the genome is packaged into separate chromosomes. It has been known for decades that different taxonomic groups often have distinct karyotypic features, but whether selective forces act to maintain these differences over evolutionary timescales is an open question. In this paper we analyze a database of karyotype features and sperm head morphology in 103 mammal species with spatulate sperm heads and 90 sauropsid species (birds and non-avian reptiles) with vermiform heads. We find that mammal species with a larger head area have more chromosomes, while sauropsid species with longer heads have a wider range of chromosome lengths. These results remain significant after controlling for genome size, so sperm head morphology is the relevant variable. This suggest that post-copulatory sexual selection, by acting on sperm head shape, can influence genome architecture.

3.
Cells ; 13(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38391923

ABSTRACT

Birds (Aves) are the most speciose of terrestrial vertebrates, displaying Class-specific characteristics yet incredible external phenotypic diversity. Critical to agriculture and as model organisms, birds have adapted to many habitats. The only extant examples of dinosaurs, birds emerged ~150 mya and >10% are currently threatened with extinction. This review is a comprehensive overview of avian genome ("chromosomic") organization research based mostly on chromosome painting and BAC-based studies. We discuss traditional and contemporary tools for reliably generating chromosome-level assemblies and analyzing multiple species at a higher resolution and wider phylogenetic distance than previously possible. These results permit more detailed investigations into inter- and intrachromosomal rearrangements, providing unique insights into evolution and speciation mechanisms. The 'signature' avian karyotype likely arose ~250 mya and remained largely unchanged in most groups including extinct dinosaurs. Exceptions include Psittaciformes, Falconiformes, Caprimulgiformes, Cuculiformes, Suliformes, occasional Passeriformes, Ciconiiformes, and Pelecaniformes. The reasons for this remarkable conservation may be the greater diploid chromosome number generating variation (the driver of natural selection) through a greater possible combination of gametes and/or an increase in recombination rate. A deeper understanding of avian genomic structure permits the exploration of fundamental biological questions pertaining to the role of evolutionary breakpoint regions and homologous synteny blocks.


Subject(s)
Evolution, Molecular , Passeriformes , Animals , Phylogeny , Karyotype , Karyotyping , Passeriformes/genetics
4.
J Hered ; 115(2): 230-239, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38079393

ABSTRACT

Despite being quite specious (~10,000 extant species), birds have a fairly uniform genome size and karyotype (including the common occurrence of microchromosomes) relative to other vertebrate lineages. Storks (Family Ciconiidae) are a charismatic and distinct group of large wading birds with nearly worldwide distribution but few genomic resources. Here we present an annotated chromosome-level reference genome and chromosome orthology analysis for the wood stork (Mycteria americana), a species that has been federally protected under the Endangered Species Act since 1984. The annotated chromosome-level reference assembly was produced using the blood of a wild female wood stork chick, has a length of 1.35 Gb, a contig N50 of 37 Mb, a scaffold N50 of 80 Mb, and a BUSCO score of 98.8%. We identified 31 autosomal pairs and two sex chromosomes in the wood stork genome, but failed to identify four additional autosomal microchromosomes previously found via karyotyping. Orthology analyses confirmed reported synapomorphies unique to storks and identified the chromosomes participating in these fusions. This study highlights the difficulty and potential problems associated with delineating microchromosomes in reference genome assemblies. It also provides a foundation for studying karyotype evolution in the core water bird clade that includes penguins, albatrosses, storks, cormorants, herons, and ibises. Finally, our reference genome will allow for numerous genomic studies, such as genome-wide association studies of local adaptation, that will aid in wood stork conservation.


Subject(s)
Genome-Wide Association Study , Wood , Female , Animals , Chromosomes , Genome , Chickens/genetics , Karyotype
5.
J Hered ; 114(5): 445-458, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37018459

ABSTRACT

In 2011, the first high-quality genome assembly of a squamate reptile (lizard or snake) was published for the green anole. Dozens of genome assemblies were subsequently published over the next decade, yet these assemblies were largely inadequate for answering fundamental questions regarding genome evolution in squamates due to their lack of contiguity or annotation. As the "genomics age" was beginning to hit its stride in many organismal study systems, progress in squamates was largely stagnant following the publication of the green anole genome. In fact, zero high-quality (chromosome-level) squamate genomes were published between the years 2012 and 2017. However, since 2018, an exponential increase in high-quality genome assemblies has materialized with 24 additional high-quality genomes published for species across the squamate tree of life. As the field of squamate genomics is rapidly evolving, we provide a systematic review from an evolutionary genomics perspective. We collated a near-complete list of publicly available squamate genome assemblies from more than half-a-dozen international and third-party repositories and systematically evaluated them with regard to their overall quality, phylogenetic breadth, and usefulness for continuing to provide accurate and efficient insights into genome evolution across squamate reptiles. This review both highlights and catalogs the currently available genomic resources in squamates and their ability to address broader questions in vertebrates, specifically sex chromosome and microchromosome evolution, while addressing why squamates may have received less historical focus and has caused their progress in genomics to lag behind peer taxa.


Subject(s)
Lizards , Animals , Lizards/genetics , Phylogeny , Genomics , Genome , Sex Chromosomes/genetics
6.
Proc Natl Acad Sci U S A ; 120(10): e2201504120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36867684

ABSTRACT

The slow-evolving invertebrate amphioxus has an irreplaceable role in advancing our understanding of the vertebrate origin and innovations. Here we resolve the nearly complete chromosomal genomes of three amphioxus species, one of which best recapitulates the 17 chordate ancestor linkage groups. We reconstruct the fusions, retention, or rearrangements between descendants of whole-genome duplications, which gave rise to the extant microchromosomes likely existed in the vertebrate ancestor. Similar to vertebrates, the amphioxus genome gradually establishes its three-dimensional chromatin architecture at the onset of zygotic activation and forms two topologically associated domains at the Hox gene cluster. We find that all three amphioxus species have ZW sex chromosomes with little sequence differentiation, and their putative sex-determining regions are nonhomologous to each other. Our results illuminate the unappreciated interspecific diversity and developmental dynamics of amphioxus genomes and provide high-quality references for understanding the mechanisms of chordate functional genome evolution.


Subject(s)
Lancelets , Animals , Chromatin , Sex Chromosomes , Gene Rearrangement , Multigene Family
7.
Genes (Basel) ; 14(2)2023 02 15.
Article in English | MEDLINE | ID: mdl-36833420

ABSTRACT

The genus Agave presents a bimodal karyotype with x = 30 (5L, large, +25S, small chromosomes). Bimodality within this genus is generally attributed to allopolyploidy in the ancestral form of Agavoideae. However, alternative mechanisms, such as the preferential accumulation of repetitive elements at the macrochromosomes, could also be important. Aiming to understand the role of repetitive DNA within the bimodal karyotype of Agave, genomic DNA from the commercial hybrid 11648 (2n = 2x = 60, 6.31 Gbp) was sequenced at low coverage, and the repetitive fraction was characterized. In silico analysis showed that ~67.6% of the genome is mainly composed of different LTR retrotransposon lineages and one satellite DNA family (AgSAT171). The satellite DNA localized at the centromeric regions of all chromosomes; however, stronger signals were observed for 20 of the macro- and microchromosomes. All transposable elements showed a dispersed distribution, but not uniform across the length of the chromosomes. Different distribution patterns were observed for different TE lineages, with larger accumulation at the macrochromosomes. The data indicate the differential accumulation of LTR retrotransposon lineages at the macrochromosomes, probably contributing to the bimodality. Nevertheless, the differential accumulation of the satDNA in one group of macro- and microchromosomes possibly reflects the hybrid origin of this Agave accession.


Subject(s)
Agave , DNA, Satellite , Agave/genetics , Retroelements , Karyotype , Centromere
8.
Animals (Basel) ; 12(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36552484

ABSTRACT

Vipera berus is the species with the largest range of snakes on Earth and one of the largest among reptiles in general. It is also the only snake species found in the Arctic Circle. Vipera berus is the most involved species of the genus Vipera in the process of interspecific hybridization in nature. The taxonomy of the genus Vipera is based on molecular markers and morphology and requires clarification using SC-karyotyping. This work is a detailed comparative study of the somatic and meiotic karyotypes of V. berus, with special attention to DNA and protein markers associated with synaptonemal complexes. The karyotype of V. berus is a remarkable example of a bimodal karyotype containing both 16 large macrochromosomes and 20 microchromosomes. We traced the stages of the asynchronous assembly of both types of bivalents. The number of crossing-over sites per pachytene nucleus, the localization of the nucleolar organizer, and the unique heterochromatin block on the autosomal bivalent 6-an important marker-were determined. Our results show that the average number of crossing-over sites per pachytene nucleus is 49.5, and the number of MLH1 sites per bivalent 1 reached 11, which is comparable to several species of agamas.

9.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36555478

ABSTRACT

The veiled chameleon (Chamaeleo calyptratus) is a typical member of the family Chamaeleonidae and a promising object for comparative cytogenetics and genomics. The karyotype of C. calyptratus differs from the putative ancestral chameleon karyotype (2n = 36) due to a smaller chromosome number (2n = 24) resulting from multiple chromosome fusions. The homomorphic sex chromosomes of an XX/XY system were described recently using male-specific RADseq markers. However, the chromosomal pair carrying these markers was not identified. Here we obtained chromosome-specific DNA libraries of C. calyptratus by chromosome flow sorting that were assigned by FISH and sequenced. Sequence comparison with three squamate reptiles reference genomes revealed the ancestral syntenic regions in the C. calyptratus chromosomes. We demonstrated that reducing the chromosome number in the C. calyptratus karyotype occurred through two fusions between microchromosomes and four fusions between micro-and macrochromosomes. PCR-assisted mapping of a previously described Y-specific marker indicates that chromosome 5 may be the sex chromosome pair. One of the chromosome 5 conserved synteny blocks shares homology with the ancestral pleurodont X chromosome, assuming parallelism in the evolution of sex chromosomes from two basal Iguania clades (pleurodonts and acrodonts). The comparative chromosome map produced here can serve as the foundation for future genome assembly of chameleons and vertebrate-wide comparative genomic studies.


Subject(s)
Lizards , Animals , Male , Synteny/genetics , Lizards/genetics , Sex Chromosomes/genetics , Chromosomes , Genome , Karyotype , Evolution, Molecular
10.
Front Cell Dev Biol ; 10: 1009776, 2022.
Article in English | MEDLINE | ID: mdl-36313577

ABSTRACT

During meiotic prophase I, tightly regulated processes take place, from pairing and synapsis of homologous chromosomes to recombination, which are essential for the generation of genetically variable haploid gametes. These processes have canonical meiotic features conserved across different phylogenetic groups. However, the dynamics of meiotic prophase I in non-mammalian vertebrates are poorly known. Here, we compare four species from Sauropsida to understand the regulation of meiotic prophase I in reptiles: the Australian central bearded dragon (Pogona vitticeps), two geckos (Paroedura picta and Coleonyx variegatus) and the painted turtle (Chrysemys picta). We first performed a histological characterization of the spermatogenesis process in both the bearded dragon and the painted turtle. We then analyzed prophase I dynamics, including chromosome pairing, synapsis and the formation of double strand breaks (DSBs). We show that meiosis progression is highly conserved in reptiles with telomeres clustering forming the bouquet, which we propose promotes homologous pairing and synapsis, along with facilitating the early pairing of micro-chromosomes during prophase I (i.e., early zygotene). Moreover, we detected low levels of meiotic DSB formation in all taxa. Our results provide new insights into reptile meiosis.

11.
Genome Biol Evol ; 13(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33751101

ABSTRACT

A manually curated set of ohnolog families has been assembled, for seven species of bony vertebrates, that includes 255 four-member families and 631 three-member families, encompassing over 2,900 ohnologs. Across species, the patterns of chromosomes upon which the ohnologs reside fall into 17 distinct categories. These 17 paralogons reflect the 17 ancestral chromosomes that existed in our chordate ancestor immediately prior to the two rounds of whole-genome duplication (2R-WGD) that occurred around 600 Ma. Within each paralogon, it has now been possible to assign those pairs of ohnologs that diverged from each other at the first round of duplication, through analysis of the molecular phylogeny of four-member families. Comparison with another recent analysis has identified four apparently incorrect assignments of pairings following 2R, along with several omissions, in that study. By comparison of the patterns between paralogons, it has also been possible to identify nine chromosomal fusions that occurred between 1R and 2R, and three chromosomal fusions that occurred after 2R, that generated an ancestral bony-vertebrate karyotype comprising 47 chromosomes. At least 27 of those ancestral bony-vertebrate chromosomes can, in some extant species, be shown not to have undergone any fusion or fission events. Such chromosomes are here termed "archeochromosomes," and have each survived essentially unchanged in their content of genes for some 400 Myr. Their utility lies in their potential for tracking the various fusion and fission events that have occurred in different lineages throughout the expansion of bony vertebrates.


Subject(s)
Chromosomes , Evolution, Molecular , Vertebrates/genetics , Animals , Chickens/genetics , Finches/genetics , Fishes/genetics , Genome , Humans , Karyotype , Synteny
12.
Genes (Basel) ; 12(2)2021 02 22.
Article in English | MEDLINE | ID: mdl-33671814

ABSTRACT

Our novel Python-based tool EVANGELIST allows the visualization of GC and repeats percentages along chromosomes in sequenced genomes and has enabled us to perform quantitative large-scale analyses on the chromosome level in fish and other vertebrates. This is a different approach from the prevailing analyses, i.e., analyses of GC% in the coding sequences that make up not more than 2% in human. We identified GC content (GC%) elevations in microchromosomes in ancient fish lineages similar to avian microchromosomes and a large variability in the relationship between the chromosome size and their GC% across fish lineages. This raises the question as to what extent does the chromosome size drive GC% as posited by the currently accepted explanation based on the recombination rate. We ascribe the differences found across fishes to varying GC% of repetitive sequences. Generally, our results suggest that the GC% of repeats and proportion of repeats are independent of the chromosome size. This leaves an open space for another mechanism driving the GC evolution in vertebrates.


Subject(s)
Cytogenetics , Evolution, Molecular , Fishes/genetics , Vertebrates/genetics , Animals , Base Composition/genetics , Birds/classification , Birds/genetics , Chromosomes/genetics , Fishes/classification , Genome/genetics , Recombination, Genetic/genetics , Repetitive Sequences, Nucleic Acid , Vertebrates/classification
13.
Neotrop. ichthyol ; 19(4): e210056, 2021. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1351150

ABSTRACT

Moenkhausia is a highly specious genus among the Characidae, composed of 96 valid species. Only twelve species have a known karyotype. Thus, here are presented the first cytogenetic data of two allopatric populations of Moenkhausia bonita and one of M. forestii, both belonging to the upper Paraná River basin (PR) with discussion on the evolutionary and cytotaxonomic aspects of the genus. The two species presented 2n = 50 chromosomes but different karyotype formulas and occurrence of 1-2 B chromosomes. These elements are small metacentrics in M. bonita and small acrocentrics in M. forestii. In both species, B chromosomes were euchromatic. Ag-NOR sites were found in pair 3 (metacentric), coinciding with fluorescent in situ hybridization (FISH) by the 18S rDNA probe in both species. However, the species differed in terms of the number and position of 5S rDNA sites. Heterochromatic blocks, mapped in M. bonita showed the least amount of heterochromatin in the terminal and pericentromeric regions, while the M. forestii karyotype revealed a greater amount of interstitial heterochromatic blocks. The karyotype distinctions between the two species, including the morphology of B chromosomes, may contribute as a reference in the taxonomic studies in this group.(AU)


Moenkhausia é um gênero altamente especioso dentre os Characidae, composto por 96 espécies válidas, mas apenas doze espécies têm seus cariótipos conhecidos. Portanto, são apresentados aqui os primeiros dados citogenéticos de duas populações alopátricas de Moenkhausia bonita e uma de M. forestii, ambas pertencentes à bacia do alto rio Paraná (PR), com uma ampla discussão sobre os aspectos evolutivos e citotaxonômicos do gênero. As duas espécies apresentaram 2n = 50 cromossomos, mas diferentes fórmulas cariotípicas e ocorrência de 1-2 cromossomos B. Esses elementos são pequenos metacêntricos em M. bonita e acrocêntricos pequenos em M. forestii. Em ambas as espécies, os cromossomos B apresentaram-se eucromáticos. Sítios Ag-NOR foram encontrados no par 3 (metacêntrico), coincidindo com a hibridização fluorescente in situ (FISH) pela sonda 18S rDNA em ambas as espécies. No entanto, as espécies diferiram em termos de número e posição dos sítios de 5S rDNA. Blocos heterocromáticos mapeados em M. bonita revelaram pequena quantidade de heterocromatina nas regiões terminal e pericentromérica, enquanto o cariótipo de M. forestii revelou uma maior quantidade de blocos heterocromáticos intersticiais. As distinções cariotípicas entre as duas espécies, incluindo a morfologia dos cromossomos B, podem contribuir como uma referência em estudos taxonômicos neste grupo.(AU)


Subject(s)
Animals , Heterochromatin , Chromosomes , Cytogenetics , Characidae , In Situ Hybridization, Fluorescence
14.
Genes (Basel) ; 11(6)2020 06 08.
Article in English | MEDLINE | ID: mdl-32521831

ABSTRACT

The Columbidae species (Aves, Columbiformes) show considerable variation in their diploid numbers (2n = 68-86), but there is limited understanding of the events that shaped the extant karyotypes. Hence, we performed whole chromosome painting (wcp) for paints GGA1-10 and bacterial artificial chromosome (BAC) probes for chromosomes GGA11-28 for Columbina passerina, Columbina talpacoti, Patagioenas cayennensis, Geotrygon violacea and Geotrygon montana. Streptopelia decaocto was only investigated with paints because BACs for GGA10-28 had been previously analyzed. We also performed phylogenetic analyses in order to trace the evolutionary history of this family in light of chromosomal changes using our wcp data with chicken probes and from Zenaida auriculata, Columbina picui, Columba livia and Leptotila verreauxi, previously published. G-banding was performed on all these species. Comparative chromosome paint and G-banding results suggested that at least one interchromosomal and many intrachromosomal rearrangements had occurred in the diversification of Columbidae species. On the other hand, a high degree of conservation of microchromosome organization was observed in these species. Our cladistic analysis, considering all the chromosome rearrangements detected, provided strong support for L. verreauxi and P. cayennensis, G. montana and G. violacea, C. passerina and C. talpacoti having sister taxa relationships, as well as for all Columbidae species analyzed herein. Additionally, the chromosome characters were mapped in a consensus phylogenetic topology previously proposed, revealing a pericentric inversion in the chromosome homologous to GGA4 in a chromosomal signature unique to small New World ground doves.


Subject(s)
Chromosomes/genetics , Columbidae/genetics , Cytogenetic Analysis , Passeriformes/genetics , Animals , Biological Evolution , Chickens/genetics , Chromosome Inversion/genetics , Chromosome Painting/methods , Chromosomes/classification , Columbidae/classification , Columbiformes/genetics , Karyotype , Passeriformes/classification , Phylogeny , Synteny/genetics
15.
Mol Biol Evol ; 37(5): 1272-1294, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31926008

ABSTRACT

Meiotic recombination in vertebrates is concentrated in hotspots throughout the genome. The location and stability of hotspots have been linked to the presence or absence of PRDM9, leading to two primary models for hotspot evolution derived from mammals and birds. Species with PRDM9-directed recombination have rapid turnover of hotspots concentrated in intergenic regions (i.e., mammals), whereas hotspots in species lacking PRDM9 are concentrated in functional regions and have greater stability over time (i.e., birds). Snakes possess PRDM9, yet virtually nothing is known about snake recombination. Here, we examine the recombination landscape and test hypotheses about the roles of PRDM9 in rattlesnakes. We find substantial variation in recombination rate within and among snake chromosomes, and positive correlations between recombination rate and gene density, GC content, and genetic diversity. Like mammals, snakes appear to have a functional and active PRDM9, but rather than being directed away from genes, snake hotspots are concentrated in promoters and functional regions-a pattern previously associated only with species that lack a functional PRDM9. Snakes therefore provide a unique example of recombination landscapes in which PRDM9 is functional, yet recombination hotspots are associated with functional genic regions-a combination of features that defy existing paradigms for recombination landscapes in vertebrates. Our findings also provide evidence that high recombination rates are a shared feature of vertebrate microchromosomes. Our results challenge previous assumptions about the adaptive role of PRDM9 and highlight the diversity of recombination landscape features among vertebrate lineages.


Subject(s)
Crotalus/genetics , Histone-Lysine N-Methyltransferase/genetics , Recombination, Genetic , Animals , Female , Male , Whole Genome Sequencing
16.
Cytogenet Genome Res ; 159(1): 32-38, 2019.
Article in English | MEDLINE | ID: mdl-31542782

ABSTRACT

Despite the variation observed in the diploid chromosome number of storks (Ciconiiformes, Ciconiidae), from 2n = 52 to 2n = 78, most reports have relied solely on analyses by conventional staining. As most species have similar macrochromosomes, some authors propose that karyotype evolution involves mainly fusions between microchromosomes, which are highly variable in species with different diploid numbers. In order to verify this hypothesis, in this study, the karyotypes of 2 species of storks from South America with different diploid numbers, the jabiru (Jabiru mycteria, 2n = 56) and the maguary stork (Ciconia maguary, 2n = 72), were analyzed by chromosome painting using whole chromosome probes from the macrochromosomes of Gallus gallus (GGA) and Leucopternis albicollis (LAL). The results revealed that J. mycteria and C. maguary share synteny within chromosome pairs 1-9 and Z. The syntenies to the macrochromosomes of G. gallus are conserved, except for GGA4, which is homologous to 2 different pairs, as in most species of birds. A fusion of GGA8 and GGA9 was observed in both species. Additionally, chromosomes corresponding to GGA4p and GGA6 are fused to other segments that did not hybridize to any of the macrochromosome probes used, suggesting that these segments correspond to microchromosomes. Hence, our data corroborate the proposed hypothesis that karyotype evolution is based on fusions involving microchromosomes. In view of the morphological constancy of the macrochromosome pairs in most Ciconiidae, we propose a putative ancestral karyotype for the family, including the GGA8/GGA9 fusion, and a diploid number of 2n = 78. The use of probes for microchromosome pairs should be the next step in identifying other synapomorphies that may help to clarify the phylogeny of this family.


Subject(s)
Birds/genetics , Chromosome Painting/veterinary , Chromosomes/genetics , Genetic Variation/genetics , Karyotype , Animals , Brazil , Diploidy , Evolution, Molecular , Female , Phylogeny
17.
Cytogenet Genome Res ; 157(1-2): 7-20, 2019.
Article in English | MEDLINE | ID: mdl-30645998

ABSTRACT

Studies of reptile (nonavian reptiles) chromosomes began well over a century ago (1897) with the initial report on the description of sand lizard (Lacerta agilis) chromosomes. Since then, chromosome analysis in reptiles has contributed significantly to understanding chromosome evolution in vertebrates. Reptile karyotypes are also unique, as being the only vertebrate group where the majority of the species possess variable numbers of macro- and microchromosomes, which was first reported for iguanids and teiids in 1921. In addition, many reptiles have microchromosomes as sex chromosomes, highlighting their evolutionary significance, yet very little is known about their evolutionary origin and significance in shaping amniote genomes. Advances in genomic technologies in recent years have accelerated our capacity to understand how sequences are arranged within a genome. However, genomic and cytogenetic analyses have been combined for only 3 species to provide a deeper understanding of reptile chromosome evolution and sequence organization. In this review, we highlight how a combined approach of cytogenetic analysis and sequence analysis in reptiles can help us answer fundamental questions of chromosome evolution in reptiles, including evolution of microchromosomes and sex chromosomes.


Subject(s)
Chromosomes/genetics , Cytogenetics/methods , Genomics/methods , Lizards/genetics , Reptiles/genetics , Animals , Evolution, Molecular , Genome/genetics , Karyotyping , Phylogeny , Reptiles/classification
18.
Mol Ecol Resour ; 19(3): 648-658, 2019 May.
Article in English | MEDLINE | ID: mdl-30672119

ABSTRACT

Telomere length (TL) is increasingly being used as a biomarker of senescence, but measuring telomeres remains a challenge. Within tissue samples, TL varies between cells and chromosomes. Class I telomeres are (presumably static) interstitial telomeric sequences, while terminal telomeres have been divided in shorter (Class II) telomeres and ultralong (Class III) telomeres, and the presence of the latter varies strongly between species. Class II telomeres typically shorten with age, but little is known of Class III telomere dynamics. Using multiple experimental approaches, we show great tits to have ultralong telomeres, and we investigated age effects on Class II and III telomeres using a longitudinal approach (our method excludes Class I telomeres). In adults, TL averaged over the whole distribution did not significantly change with age. However, more detailed analyses showed that Class II TL did shorten with age, and, as in other species, the longest Class II telomeres within individuals shortened more quickly with age. In contrast, Class III TL did not shorten with age within individual adults. Surprisingly, we found the opposite pattern in nestlings: Class III TL shortened significantly with age, while the age effect on Class II TL was close to zero. Thus, Class III TL may provide information on developmental history, while Class II TL provides information on telomere dynamics in adulthood. These findings have practical implications for telomere studies and raise the interesting question of what causes variation in TL dynamics between chromosomes within individuals and how this is related to development.


Subject(s)
Birds/genetics , Telomere , Age Factors , Aging , Animals
19.
Cytogenet Genome Res ; 152(1): 46-54, 2017.
Article in English | MEDLINE | ID: mdl-28564645

ABSTRACT

Lampbrush chromosomes are giant, transcriptionally active, meiotic chromosomes found in oocytes of all vertebrates with the exception of mammals. Lampbrush chromosomes offer a convenient tool for cytogenetic mapping and, in particular, have been instrumental in mapping genes and linkage groups on chicken (GGA) chromosomes. Whereas cytogenetic maps of macrochromosome GGA1-10 and microchromosome GGA11-16 lampbrush bivalents have been established, identification and description of smaller microchromosome bivalents are still missing. In this work, we used specific FISH probes for the identification of 12 chicken lampbrush chromosomes formed by GGA17-28. Our observations on chromomere and lateral loop arrangement and chiasma position allowed us to construct the respective cytogenetic maps for these microchromosomes. For the 10 smallest chicken microchromosomes, GGA29-38, no individual molecular tags are available, yet they can be collectively marked using the PO41 repeat. The reported results contribute to building of working cytogenetic maps of the chicken karyotype.


Subject(s)
Chickens/genetics , Chromosomes/genetics , Cytogenetics/methods , Animals , Chromosomes, Artificial, Bacterial/genetics , Metaphase/genetics
20.
Cytogenet Genome Res ; 151(4): 216-227, 2017.
Article in English | MEDLINE | ID: mdl-28315870

ABSTRACT

Chromosomal locations and amounts of 5-methylcytosine-rich chromosome regions were detected in the karyotypes of 13 bird species by indirect immunofluorescence using a monoclonal anti-5-methylcytosine antibody. These species belong to 7 orders and 10 families of modern (Neognathae) and primitive (Palaeognathae) birds and are characterized by macro- and microchromosomes as well as ZW sex chromosomes. In all 13 species, the hypermethylated chromosome segments are confined to constitutive heterochromatin. The chromosomal locations of hypermethylated DNA regions in the karyotypes are constant and species-specific. There is no general rule with regard to the distribution of these hypermethylated chromosome regions in the genomes of birds. In most instances, hypermethylated segments are located in the centromeric regions of chromosomes, but in the sex chromosomes, these can also be found in telomeric and interstitial postitions. In most of the species studied, the centromeric heterochromatin in many, if not all, of the microchromosomes is hypermethylated. However, in one species, the only detectable hypermethylated heterochromatic regions are located in one pair of macroautosomes and in the Z sex chromosome, but none of the microchromosomes contains visible quantities of 5-methylcytosine. The analysis of 5-methylcytosine-rich chromosome regions can be very helpful for the comparative cytogenetics of closely related species or subspecies. It also reflects the dynamic evolutionary process operating in the highly repetitive DNA of eukaryotic chromosomes.


Subject(s)
Birds/genetics , Chromosomes/genetics , DNA Methylation/genetics , Animals , Biological Evolution , DNA/genetics , Genome/genetics , Heterochromatin/genetics , Karyotype , Karyotyping/methods , Repetitive Sequences, Nucleic Acid/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL