Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 341
Filter
1.
iScience ; 27(8): 110464, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39104416

ABSTRACT

Peripheral viral infection disrupts oligodendrocyte (OL) homeostasis such that endogenous remyelination may be affected. Here, we demonstrate that influenza A virus infection perpetuated a demyelination- and disease-associated OL phenotype following cuprizone-induced demyelination that resulted in delayed OL maturation and remyelination in the prefrontal cortex. Furthermore, we assessed cellular metabolism ex vivo, and found that infection altered brain OL and microglia metabolism in a manner that opposed the metabolic profile induced by remyelination. Specifically, infection increased glycolytic capacity of OLs and microglia, an effect that was recapitulated by lipopolysaccharide (LPS) stimulation of mixed glia cultures. In contrast, mitochondrial dependence was increased in OLs during remyelination, which was similarly observed in OLs of myelinating P14 mice compared to adult and aged mice. Collectively, our data indicate that respiratory viral infection is capable of suppressing remyelination, and suggest that metabolic dysfunction of OLs is implicated in remyelination impairment.

2.
iScience ; 27(7): 110294, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39100928

ABSTRACT

The blood-nerve-barrier (BNB) that regulates peripheral nerve homeostasis is formed by endoneurial capillaries and perineurial cells surrounding the Schwann cell (SC)-rich endoneurium. Barrier dysfunction is common in human tumorigenesis, including in some nerve tumors. We identify barrier disruption in human NF1 deficient neurofibromas, which were characterized by reduced perineurial cell glucose transporter 1 (GLUT1) expression and increased endoneurial fibrin(ogen) deposition. Conditional Nf1 loss in murine SCs recapitulated these alterations and revealed decreased tight junctions and decreased caveolin-1 (Cav1) expression in mutant nerves and in tumors, implicating reduced Cav1-mediated transcytosis in barrier disruption and tumorigenesis. Additionally, elevated receptor tyrosine kinase activity and genetic deletion of Cav1 increased endoneurial fibrin(ogen), and promoted SC tumor formation. Finally, when SC lacked Nf1, genetic loss or pharmacological inhibition of P2RY14 rescued Cav1 expression and barrier function. Thus, loss of Nf1 in SC causes dysfunction of the BNB via P2RY14-mediated G-protein coupled receptor (GPCR) signaling.

3.
iScience ; 27(7): 110256, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39109174

ABSTRACT

We examined the function of heparan-sulfate-modified proteoglycans (HSPGs) in pathways affecting Alzheimer disease (AD)-related cell pathology in human cell lines and mouse astrocytes. Mechanisms of HSPG influences on presenilin-dependent cell loss were evaluated in Drosophila using knockdown of the presenilin homolog, Psn, together with partial loss-of-function of sulfateless (sfl), a gene specifically affecting HS sulfation. HSPG modulation of autophagy, mitochondrial function, and lipid metabolism were shown to be conserved in human cell lines, Drosophila, and mouse astrocytes. RNA interference (RNAi) of Ndst1 reduced intracellular lipid levels in wild-type mouse astrocytes or those expressing humanized variants of APOE, APOE3, and APOE4. Neuron-directed knockdown of Psn in Drosophila produced apoptosis and cell loss in the brain, phenotypes suppressed by reductions in sfl expression. Abnormalities in mitochondria, liposomes, and autophagosome-derived structures in animals with Psn knockdown were also rescued by reduction of sfl. These findings support the direct involvement of HSPGs in AD pathogenesis.

4.
iScience ; 27(8): 110348, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39148714

ABSTRACT

Gut microbiome dysbiosis is linked to many neurological disorders including Alzheimer's disease (AD). A major risk factor for AD is polymorphism in the apolipoprotein E (APOE) gene, which affects gut microbiome composition. To explore the gut-brain axis in AD, long-lived animal models of naturally developing AD-like pathologies are needed. Octodon degus (degu) exhibit spontaneous AD-like symptoms and ApoE mutations, making them suitable for studying the interplay between AD genetic determinants and gut microbiome. We analyzed the association between APOE genotype and gut microbiome in 50 humans and 32 degu using16S rRNA gene amplicon sequencing. Significant associations were found between the degu ApoE mutation and gut microbial changes in degu, notably a depletion of Ruminococcaceae and Akkermansiaceae and an enrichment of Prevotellaceae, mirroring patterns seen in people with AD. The altered taxa were previously suggested to be involved in AD, validating the degu as an unconventional model for studying the AD/microbiome crosstalk.

5.
iScience ; 27(8): 110552, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39171292

ABSTRACT

Noxious stimuli activate nociceptive sensory neurons, causing action potential firing and the release of diverse signaling molecules. Several peptides have already been identified to be released by sensory neurons and shown to modulate inflammatory responses and inflammatory pain. However, it is still unclear whether lipid mediators can be released upon sensory neuron activation to modulate intercellular communication. Here, we analyzed the lipid secretome of capsaicin-stimulated nociceptive neurons with LC-HRMS, revealing that oleic acid is strongly released from sensory neurons by capsaicin. We further demonstrated that oleic acid inhibits capsaicin-induced calcium transients in sensory neurons and reverses bradykinin-induced TRPV1 sensitization by a calcineurin (CaN) and GPR40 (FFAR1) dependent pathway. Additionally, oleic acid alleviated zymosan-mediated thermal hypersensitivity via the GPR40, suggesting that the capsaicin-mediated oleic acid release from sensory neurons acts as a protective and feedback mechanism, preventing sensory neurons from nociceptive overstimulation via the GPR40/CaN/TRPV1-axis.

6.
iScience ; 27(8): 110549, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39171288

ABSTRACT

Vagal innervation is well known to be crucial to the maintenance of cardiac health, and to protect and recover the heart from injury. Only recently has this role been shown to depend on the activity of the underappreciated dorsal motor nucleus of the vagus (DMV). By combining neural tracing, transcriptomics, and anatomical mapping in male and female Sprague-Dawley rats, we characterize cardiac-specific neuronal phenotypes in the DMV. We find that the DMV cardiac-projecting neurons differentially express pituitary adenylate cyclase-activating polypeptide (PACAP), cocaine- and amphetamine-regulated transcript (CART), and synucleins, as well as evidence that they participate in neuromodulatory co-expression involving catecholamines. The significance of these findings is enhanced by previous knowledge of the role of PACAP at the heart and of the other neuromodulators in peripheral vagal targets.

7.
iScience ; 27(8): 110564, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39165841

ABSTRACT

There is an unmet need for objective disease-specific biomarkers in the heterogeneous autoimmune neuromuscular disorder myasthenia gravis (MG). This cross-sectional study identified a signature of 23 inflammatory serum proteins with proximity extension assay (PEA) that distinguishes acetylcholine receptor antibody seropositive (AChR+) MG patients from healthy controls (HCs). CCL28, TNFSF14, 4E-BP1, transforming growth factor alpha (TGF-α), and ST1A1 ranked top biomarkers. TGF-ß1 and osteoprotegerin (OPG) differed between early- and late-onset MG, whereas CXCL10, TNFSF14, CCL11, interleukin-17C (IL-17C), and TGF-α differed significantly with immunosuppressive treatment. MG patients with moderate to high disease severity had lower uPA. Previously defined MG-associated microRNAs, miR-150-5p, miR-30e-5p, and miR-21-5p, correlated inversely with ST1A1 and TNFSF14. The presented inflammatory proteins that distinguish AChR+ MG are promising serum biomarkers for validation in prospective studies to allow for molecular signatures for patient subgroup stratification and monitoring of treatment response.

8.
iScience ; 27(8): 110380, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39165843

ABSTRACT

Histone H3K9 methylated heterochromatin silences repetitive non-coding sequences and lineage-specific genes during development, but how tissue-specific genes escape from heterochromatin in differentiated cells is unclear. Here, we examine age-dependent transcriptomic profiling of terminally differentiated mouse retina to identify epigenetic regulators involved in heterochromatin reorganization. The single-cell RNA sequencing analysis reveals a gradual downregulation of Kdm3b in cone photoreceptors during aging. Disruption of Kdm3b (Kdm3b +/- ) of 12-month-old mouse retina leads to the decreasing number of cones via apoptosis, and it changes the morphology of cone ribbon synapses. Integration of the transcriptome with epigenomic analysis in Kdm3b +/- retinas demonstrates gains of heterochromatin features in synapse assembly and vesicle transport genes that are downregulated via the accumulation of H3K9me1/2. Contrarily, losses of heterochromatin in apoptotic genes exacerbated retinal neurodegeneration. We propose that the KDM3B-centered epigenomic network is crucial for balancing of cone photoreceptor homeostasis via the modulation of gene set-specific heterochromatin features during aging.

9.
iScience ; 27(7): 110235, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39040060

ABSTRACT

N6-methyladenosine (m6A) methylation and abnormal immune responses are implicated in neurodegenerative diseases, yet their relationship in Alzheimer's disease (AD) remains unclear. We obtained AD datasets from GEO databases and used AD mouse and cell models, observing abnormal expression of m6A genes in the AD group, alongside disruptions in the immune microenvironment. Key m6A genes (YTHDF2, LRPPRC, and FTO) selected by machine learning were associated with the Notch pathway, with FTO and Notch1 displaying the strongest correlation. Specifically, FTO expression decreased and m6A methylation of Notch1 increased in AD mouse and cell models. We further silenced FTO expression in HT22 cells, resulting in upregulation of the Notch1 signaling pathway. Additionally, increased Notch1 expression in dendritic cells heightened inflammatory cytokine secretion in vitro. These results suggest that reduced FTO expression may contribute to the pathogenesis of AD by activating the Notch1 pathway to interfere with the immune response.

10.
iScience ; 27(7): 110266, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39040064

ABSTRACT

As observed in human language learning and song learning in birds, the fruit fly Drosophila melanogaster changes its auditory behaviors according to prior sound experiences. This phenomenon, known as song preference learning in flies, requires GABAergic input to pC1 neurons in the brain, with these neurons playing a key role in mating behavior. The neural circuit basis of this GABAergic input, however, is not known. Here, we find that GABAergic neurons expressing the sex-determination gene doublesex are necessary for song preference learning. In the brain, only four doublesex-expressing GABAergic neurons exist per hemibrain, identified as pCd-2 neurons. pCd-2 neurons directly, and in many cases mutually, connect with pC1 neurons, suggesting the existence of reciprocal circuits between them. Moreover, GABAergic and dopaminergic inputs to doublesex-expressing GABAergic neurons are necessary for song preference learning. Together, this study provides a neural circuit model that underlies experience-dependent auditory plasticity at a single-cell resolution.

11.
iScience ; 27(7): 110355, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39045099

ABSTRACT

Social interactions are encoded by the coordinated activity of heterogeneous cell types within distributed brain regions including the medial prefrontal cortex (mPFC). However, our understanding of the cell types which comprise the social ensemble has been limited by available mouse lines and reliance on single marker genes. We identified differentially active neuronal populations during social interactions by quantifying immediate-early gene (IEG) expression using snRNA-sequencing. These studies revealed that distinct prefrontal neuron populations composed of heterogeneous cell types are activated by social interaction. Evaluation of IEG expression within these recruited neuronal populations revealed cell-type and region-specific programs, suggesting that reliance on a single molecular marker is insufficient to quantify activation across all cell types. Our findings provide a comprehensive description of cell-type specific transcriptional programs invoked by social interactions and reveal insights into the neuronal populations which compose the social ensemble.

12.
iScience ; 27(7): 110340, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39055932

ABSTRACT

The process of how neuronal identity confers circuit organization is intricately related to the mechanisms underlying neurodegeneration and neuropathologies. Modeling this process, the olfactory circuit builds a functionally organized topographic map, which requires widely dispersed neurons with the same identity to converge their axons into one a class-specific neuropil, a glomerulus. In this article, we identified Fat2 (also known as Kugelei) as a regulator of class-specific axon organization. In fat2 mutants, axons belonging to the highest fat2-expressing classes present with a more severe phenotype compared to axons belonging to low fat2-expressing classes. In extreme cases, mutations lead to neural degeneration. Lastly, we found that Fat2 intracellular domain interactors, APC1/2 (Adenomatous polyposis coli) and dop (Drop out), likely orchestrate the cytoskeletal remodeling required for axon condensation. Altogether, we provide a potential mechanism for how cell surface proteins' regulation of cytoskeletal remodeling necessitates identity specific circuit organization.

13.
iScience ; 27(7): 110342, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39055955

ABSTRACT

The astrocyte-neuron lactate shuttle (ANLS) model posits that astrocyte-generated lactate is transported to neurons to fuel memory processes. However, neurons express high levels of lactate dehydrogenase A (LDHA), the rate-limiting enzyme of lactate production, suggesting a cognitive role for neuronally generated lactate. It was hypothesized that lactate metabolism in neurons is critical for learning and memory. Here transgenic mice were generated to conditionally induce or knockout (KO) the Ldha gene in CNS neurons of adult mice. High pattern separation memory was enhanced by neuronal Ldha induction in young females, and by neuronal Ldha KO in aged females. In older mice, Ldha induction caused cognitive deficits whereas Ldha KO caused cognitive improvements. Genotype-associated cognitive changes were often only observed in one sex or oppositely in males and females. Thus, neuronal-generated lactate has sex-specific cognitive effects, is largely indispensable at young age, and may be detrimental to learning and memory with aging.

14.
iScience ; 27(7): 110308, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39045101

ABSTRACT

The Par3 polarity protein is critical for subcellular compartmentalization in different developmental processes. Variants of PARD3, encoding PAR3, are associated with intelligence and neurodevelopmental disorders. However, the role of Par3 in glutamatergic synapse formation and cognitive functions in vivo remains unknown. Here, we show that forebrain-specific Par3 conditional knockout leads to increased long, thin dendritic spines in vivo. In addition, we observed a decrease in the amplitude of miniature excitatory postsynaptic currents. Surprisingly, loss of Par3 enhances hippocampal-dependent spatial learning and memory and repetitive behavior. Phosphoproteomic analysis revealed proteins regulating cytoskeletal dynamics are significantly dysregulated downstream of Par3. Mechanistically, we found Par3 deletion causes increased Rac1 activation and dysregulated microtubule dynamics through CAMSAP2. Together, our data reveal an unexpected role for Par3 as a molecular gatekeeper in regulating the pool of immature dendritic spines, a rate-limiting step of learning and memory, through modulating Rac1 activation and microtubule dynamics in vivo.

15.
iScience ; 27(7): 110148, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38989467

ABSTRACT

Many addictive drugs increase stress hormone levels. They also alter the propensity of organisms to prospectively select actions based on long-term consequences. We hypothesized that cocaine causes inflexible action by increasing circulating stress hormone levels, activating the glucocorticoid receptor (GR). We trained mice to generate two nose pokes for food and then required them to update action-consequence associations when one response was no longer reinforced. Cocaine delivered in adolescence or adulthood impaired the capacity of mice to update action strategies, and inhibiting CORT synthesis rescued action flexibility. Next, we reduced Nr3c1, encoding GR, in the orbitofrontal cortex (OFC), a region of the brain responsible for interlacing new information into established routines. Nr3c1 silencing preserved action flexibility and dendritic spine abundance on excitatory neurons, despite cocaine. Spines are often considered substrates for learning and memory, leading to the discovery that cocaine degrades the representation of new action memories, obstructing action flexibility.

16.
iScience ; 27(7): 110176, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38989459

ABSTRACT

Homeostatic plasticity mechanisms act in a negative feedback manner to stabilize neuronal firing around a set point. Classically, homeostatic synaptic plasticity is elicited via rather drastic manipulation of activity in a neuronal population. Here, we employed a chemogenetic approach to regulate activity via eliciting G protein-coupled receptor (GPCR) signaling in hippocampal neurons to trigger homeostatic synaptic plasticity. We demonstrate that chronic activation of hM4D(Gi) signaling induces mild and transient activity suppression, yet still triggers synaptic upscaling akin to tetrodotoxin (TTX)-induced complete activity suppression. Therefore, this homeostatic regulation was irrespective of Gi-signaling regulation of activity, but it was mimicked or occluded by direct manipulation of cyclic AMP (cAMP) signaling in a manner that intersected with the retinoic acid receptor alpha (RARα) signaling pathway. Our data suggest chemogenetic tools can uniquely be used to probe cell-autonomous mechanisms of synaptic scaling and operate via direct modulation of second messenger signaling bypassing activity regulation.

17.
iScience ; 27(7): 110160, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38989456

ABSTRACT

Early life stress (ELS) is a major risk factor for developing psychiatric disorders, with glucocorticoids (GCs) implicated in mediating its effects in shaping adult phenotypes. In this process, exposure to high levels of developmental GC (hdGC) is thought to induce molecular changes that prime differential adult responses. However, identities of molecules targeted by hdGC exposure are not completely known. Here, we describe lifelong molecular consequences of hdGC exposure using a newly developed zebrafish double-hit stress model, which shows altered behaviors and stress hypersensitivity in adulthood. We identify a set of primed genes displaying altered expression only upon acute stress in hdGC-exposed adult fish brains. Interestingly, this gene set is enriched in risk factors for psychiatric disorders in humans. Lastly, we identify altered epigenetic regulatory elements following hdGC exposure. Thus, our study provides comprehensive datasets delineating potential molecular targets mediating the impact of hdGC exposure on adult responses.

18.
iScience ; 27(7): 110170, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38974964

ABSTRACT

Despite some evidence indicating diverse roles of whirlin in neurons, the functional corollary of whirlin gene function and behavior has not been investigated or broadly characterized. A single nucleotide variant was identified from our recessive ENU-mutagenesis screen at a donor-splice site in whirlin, a protein critical for proper sensorineural hearing function. The mutation (head-bob, hb) led to partial intron-retention causing a frameshift and introducing a premature termination codon. Mutant mice had a head-bobbing phenotype and significant hyperactivity across several phenotyping tests. Lack of complementation of head-bob with whirler mutant mice confirmed the head-bob mutation as functionally distinct with compound mutants having a mild-moderate hearing defect. Utilizing transgenics, we demonstrate rescue of the hyperactive phenotype and combined with the expression profiling data conclude whirlin plays an essential role in activity-related behaviors. These results highlight a pleiotropic role of whirlin within the brain and implicate alternative, central mediated pathways in its function.

19.
iScience ; 27(7): 110165, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38979011

ABSTRACT

Self-grooming is an innate stereotyped behavior influenced by sense and emotion. It is considered an important characteristic in various disease models. However, the neural circuit mechanism underlying sensory-induced and emotion-driven self-grooming remains unclear. We found that the ventral zona incerta (Ziv) was activated during spontaneous self-grooming (SG), corn oil-induced sensory self-grooming (OG), and tail suspension-induced stress self-grooming (TG). Optogenetic excitation of Ziv parvalbumin (PV) neurons increased the duration of SG. Conversely, optogenetic inhibition of ZivPV neurons significantly reduced self-grooming in all three models. Furthermore, glutamatergic inputs from the primary sensory cortex activated the Ziv and contributed to OG. Activation of GABAergic inputs from the central amygdala to the Ziv increased SG, OG, and TG, potentially through local negative regulation of the Ziv. These findings suggest that the Ziv may play a crucial role in processing sensory and emotional information related to self-grooming, making it a potential target for regulating stereotyped behavior.

20.
iScience ; 27(6): 110149, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38947496

ABSTRACT

Mechanistic target of rapamycin complex 1 (mTORC1) is an integration hub for extracellular and intracellular signals necessary for brain development. Hyperactive mTORC1 is found in autism spectrum disorder (ASD) characterized by atypical reactivity to sensory stimuli, among other symptoms. In Tuberous sclerosis complex (TSC) inactivating mutations in the TSC1 or TSC2 genes result in hyperactivation of the mTORC1 pathway and ASD. Here, we show that lack of light preference of the TSC zebrafish model, tsc2 vu242/vu242 is caused by aberrant processing of light stimuli in the left dorsal habenula and tsc2 vu242/vu242 fish have impaired function of the left dorsal habenula, in which neurons exhibited higher activity and lacked habituation to the light stimuli. These characteristics were rescued by rapamycin. We thus discovered that hyperactive mTorC1 caused aberrant habenula function resulting in lack of light preference. Our results suggest that mTORC1 hyperactivity contributes to atypical reactivity to sensory stimuli in ASD.

SELECTION OF CITATIONS
SEARCH DETAIL