Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.772
Filter
1.
BMC Endocr Disord ; 24(1): 138, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39090709

ABSTRACT

BACKGROUND: Mitochondrial DNA (mtDNA) copy number is associated with tumor activity and carcinogenesis. This study was undertaken to investigate mtDNA copy number in papillary thyroid cancer (PTC) tissues and to evaluate the risk of PTC development. The clinicopathological features of patients and mtDNA copy number were correlated. The value of mtDNA copy number was evaluated as a biomarker for PTC. METHOD: DNA was extracted from 105 PTC tissues and 67 control thyroid tissues, and mtDNA copy number mtDNA oxidative damage were determined using qPCR techniques. RESULTS: Overall, the relative mtDNA copy number was significantly higher in PTC patients (p < 0.001). The risk of developing PTC increased significantly across the tertiles of mtDNA copy number (p trend < 0.001). The higher the mtDNA copy number tertile, the greater the risk of developing PTC. Patients with follicular variants had an odds ratio of 2.09 (95% CI: 1.78-2.44) compared to those with classical variants (p < 0.001). The level of mtDNA oxidative damage in PTC was significantly elevated compared to controls (p < 0.001). The ROC analysis of mtDNA copy number indicated an area under the curve (AUC) of 77.7% (95% CI: 0.71 to 0.85, p < 0.001) for the ability of mtDNA copy number z-scores in differentiate between PTC and controls. CONCLUSION: Our results indicated that the augmentation of mtDNA content plays a significant role during the initiation of thyroid cancer, and it might represent a potential biomarker for predicting the risk of PTC.


Subject(s)
DNA Copy Number Variations , DNA, Mitochondrial , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , DNA, Mitochondrial/genetics , Male , Female , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/epidemiology , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Middle Aged , Adult , Case-Control Studies , Risk Factors , Biomarkers, Tumor/genetics , Prognosis , Follow-Up Studies
2.
Hum Reprod ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066614

ABSTRACT

Mitochondria are essential organelles with specialized functions, which play crucial roles in energy production, calcium homeostasis, and programmed cell death. In oocytes, mitochondrial populations are inherited maternally and are vital for developmental competence. Dysfunction in mitochondrial quality control mechanisms can lead to reproductive failure. Due to their central role in oocyte and embryo development, mitochondria have been investigated as potential diagnostic and therapeutic targets in assisted reproduction. Pharmacological agents that target mitochondrial function and show promise in improving assisted reproduction outcomes include antioxidant coenzyme Q10 and mitoquinone, mammalian target of rapamycin signaling pathway inhibitor rapamycin, and nicotinamide mononucleotide. Mitochondrial replacement therapies (MRTs) offer solutions for infertility and mitochondrial disorders. Autologous germline mitochondrial energy transfer initially showed promise but failed to demonstrate significant benefits in clinical trials. Maternal spindle transfer (MST) and pronuclear transfer hold potential for preventing mitochondrial disease transmission and improving oocyte quality. Clinical trials of MST have shown promising outcomes, but larger studies are needed to confirm safety and efficacy. However, ethical and legislative challenges complicate the widespread implementation of MRTs.

3.
DNA (Basel) ; 4(3): 201-211, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39035221

ABSTRACT

Mammalian cell lines devoid of mitochondrial DNA (mtDNA) are indispensable in studies aimed at elucidating the contribution of mtDNA to various cellular processes or interactions between nuclear and mitochondrial genomes. However, the repertoire of tools for generating such cells (also known as rho-0 or ρ0 cells) remains limited, and approaches remain time- and labor-intensive, ultimately limiting their availability. Ethidium bromide (EtBr), which is most commonly used to induce mtDNA loss in mammalian cells, is cytostatic and mutagenic as it affects both nuclear and mitochondrial genomes. Therefore, there is growing interest in new tools for generating ρ0 cell lines. Here, we examined the utility of 2',3'-dideoxycytidine (ddC, zalcitabine) alone or in combination with EtBr for generating ρ0 cell lines of mouse and human origin as well as inducing the ρ0 state in mouse/human somatic cell hybrids. We report that ddC is superior to EtBr in both immortalized mouse fibroblasts and human 143B cells. Also, unlike EtBr, ddC exhibits no cytostatic effects at the highest concentration tested (200 µM), making it more suitable for general use. We conclude that ddC is a promising new tool for generating mammalian ρ0 cell lines.

4.
New Phytol ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044460

ABSTRACT

The holoparasitic plant Lophophytum mirabile exhibits remarkable levels of mitochondrial horizontal gene transfer (HGT). Gathering comparative data from other individuals and host plants can provide insights into the HGT process. We sequenced the mitochondrial genome (mtDNA) from individuals of two species of Lophophytum and from mimosoid hosts. We applied a stringent phylogenomic approach to elucidate the origin of the whole mtDNAs, estimate the timing of the transfers, and understand the molecular mechanisms involved. Ancestral and recent HGT events replaced and enlarged the multichromosomal mtDNA of Lophophytum spp., with the foreign DNA ascending to 74%. A total of 14 foreign mitochondrial chromosomes originated from continuous regions in the host mtDNA flanked by short direct repeats. These foreign tracts are circularized by microhomology-mediated repair pathways and replicate independently until they are lost or they eventually recombine with other chromosomes. The foreign noncoding chromosomes are variably present in the population and likely evolve by genetic drift. We present the 'circle-mediated HGT' model in which foreign mitochondrial DNA tracts become circular and are maintained as plasmid-like molecules. This model challenges the conventional belief that foreign DNA must be integrated into the recipient genome for successful HGT.

5.
Biology (Basel) ; 13(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39056694

ABSTRACT

Two stranded Lepidochelys-like sea turtles were rescued from the Thai Andaman Sea coastline by veterinarians of the Phuket Marine Biological Center (PMBC), one in May of 2019 and another in July of 2021. They were first identified as olive ridley turtles (Lepidochelys olivacea), as the external appearance of both turtles was closer to that species than the other four species found in the Thai Andaman Sea. In fact, when carefully examined, an unusual pattern of the lateral scutes on each turtle was observed, specifically symmetric 5/5 and asymmetric 5/6, both of which are considered rare for L. olivacea and had never been reported in the Thai Andaman Sea. In contrast, this characteristic was more common for the closely related species, Kemp's ridley (L. kempii), although this species is not distributed in the Indo-Pacific Ocean. Thus, we further investigated their genetic information to confirm species identification using two molecular markers, namely the mtDNA control region and nDNA RAG2. The results from the mtDNA control region sequences using the Basic Local Alignment Search Tool (BLAST) indicated that both individuals exhibited a higher percent identity with L. olivacea (99.81-100.00%) rather than L. kempii (94.29-95.41%) or any other species. A phylogenetic tree confirmed that these two turtles belonged to the L. olivacea clade. Moreover, the results of RAG2 also supported the mtDNA result, as both individuals shared the same RAG2 haplotype with L. olivacea. Thus, we have concluded that the two turtles with unusual lateral scute patterns exhibited genetic consistency with their original species, L. olivacea, which has brought attention to the importance of exploring rare phenotypes in sea turtle populations residing in Thai Seas.

6.
J Fungi (Basel) ; 10(7)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39057326

ABSTRACT

The primary functions of mitochondria are to produce energy and participate in the apoptosis of cells, with them being highly conserved among eukaryotes. However, the composition of mitochondrial genomes, mitochondrial DNA (mtDNA) replication, and mitochondrial inheritance varies significantly among animals, plants, and fungi. Especially in fungi, there exists a rich diversity of mitochondrial genomes, as well as various replication and inheritance mechanisms. Therefore, a comprehensive understanding of fungal mitochondria is crucial for unraveling the evolutionary history of mitochondria in eukaryotes. In this review, we have organized existing reports to systematically describe and summarize the composition of yeast-like fungal mitochondrial genomes from three perspectives: mitochondrial genome structure, encoded genes, and mobile elements. We have also provided a systematic overview of the mechanisms in mtDNA replication and mitochondrial inheritance during bisexual mating. Additionally, we have discussed and proposed open questions that require further investigation for clarification.

7.
Pest Manag Sci ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39054884

ABSTRACT

BACKGROUND: The yellow-legged hornet (Vespa velutina nigrithorax) is a predatory species native to South-East Asia. The hornet is invasive in Europe, spreading to several countries and becoming a pest for Apis mellifera due to its behaviour of preying in front of apiaries. The aim of this study was (i) to investigate the presence of honey bee pathogens within the developmental stages of V. velutina after neutralizing a nest in Bologna province (Emilia-Romagna, Italy) and (ii) to analyze the mitochondrial DNA to determine if the population derived from the population initially introduced in Europe. RESULTS: The results indicated that deformed wing virus (82.76%) and Nosema ceranae (67.28%) were the most prevalent pathogens. Deformed wing virus, N. ceranae and sacbrood virus were found in all investigated stages, while chronic bee paralysis virus and Kashmir bee virus were exclusively found in foraging adults. All detected viruses were found to be replicative, highlighting active infection in the hosts. The mtDNA analysis demonstrated that the origin derived from the invasive population arrived in France. CONCLUSION: This study underscores the importance of further research to understand the effect of interspecific transmission, especially concerning the potential role of these pathogens as a biocontrol for the invasive V. velutina nigrithorax. © 2024 Society of Chemical Industry.

8.
Int J Mol Sci ; 25(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39000412

ABSTRACT

Biological aging results from an accumulation of damage in the face of reduced resilience. One major driver of aging is cell senescence, a state in which cells remain viable but lose their proliferative capacity, undergo metabolic alterations, and become resistant to apoptosis. This is accompanied by complex cellular changes that enable the development of a senescence-associated secretory phenotype (SASP). Mitochondria, organelles involved in energy provision and activities essential for regulating cell survival and death, are negatively impacted by aging. The age-associated decline in mitochondrial function is also accompanied by the development of chronic low-grade sterile inflammation. The latter shares some features and mediators with the SASP. Indeed, the unloading of damage-associated molecular patterns (DAMPs) at the extracellular level can trigger sterile inflammatory responses and mitochondria can contribute to the generation of DAMPs with pro-inflammatory properties. The extrusion of mitochondrial DNA (mtDNA) via mitochondrial outer membrane permeabilization under an apoptotic stress triggers senescence programs. Additional pathways can contribute to sterile inflammation. For instance, pyroptosis is a caspase-dependent inducer of systemic inflammation, which is also elicited by mtDNA release and contributes to aging. Herein, we overview the molecular mechanisms that may link mitochondrial dyshomeostasis, pyroptosis, sterile inflammation, and senescence and discuss how these contribute to aging and could be exploited as molecular targets for alleviating the cell damage burden and achieving healthy longevity.


Subject(s)
Cell Survival , Cellular Senescence , Mitochondria , Signal Transduction , Humans , Mitochondria/metabolism , Animals , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Inflammation/metabolism , Inflammation/pathology , Cell Death , Apoptosis , Pyroptosis , Aging/metabolism
9.
Front Oncol ; 14: 1394699, 2024.
Article in English | MEDLINE | ID: mdl-38993645

ABSTRACT

Endometrial cancer (EC) is a devastating and common disease affecting women's health. The NCI Surveillance, Epidemiology, and End Results Program predicted that there would be >66,000 new cases in the United States and >13,000 deaths from EC in 2023, and EC is the sixth most common cancer among women worldwide. Regulation of mitochondrial metabolism plays a role in tumorigenesis. In proliferating cancer cells, mitochondria provide the necessary building blocks for biosynthesis of amino acids, lipids, nucleotides, and glucose. One mechanism causing altered mitochondrial activity is mitochondrial DNA (mtDNA) mutation. The polyploid human mtDNA genome is a circular double-stranded molecule essential to vertebrate life that harbors genes critical for oxidative phosphorylation plus mitochondrial-derived peptide genes. Cancer cells display aerobic glycolysis, known as the Warburg effect, which arises from the needs of fast-dividing cells and is characterized by increased glucose uptake and conversion of glucose to lactate. Solid tumors often contain at least one mtDNA substitution. Furthermore, it is common for cancer cells to harbor mixtures of wild-type and mutant mtDNA genotypes, known as heteroplasmy. Considering the increase in cancer cell energy demand, the presence of functionally relevant carcinogenesis-inducing or environment-adapting mtDNA mutations in cancer seems plausible. We review 279 EC tumor-specific mtDNA single nucleotide variants from 111 individuals from different studies. Many transition mutations indicative of error-prone DNA polymerase γ replication and C to U deamination events were present. We examine the spectrum of mutations and their heteroplasmy and discuss the potential biological impact of recurrent, non-synonymous, insertion, and deletion mutations. Lastly, we explore current EC treatments, exploiting cancer cell mitochondria for therapy and the prospect of using mtDNA variants as an EC biomarker.

10.
Animals (Basel) ; 14(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998023

ABSTRACT

The evidential value of an mtDNA match between biological remains and their potential donor is determined by the random match probability of the haplotype. This probability is based on the haplotype's population frequency estimate. Consequently, implementing a population study representative of the population relevant to a forensic case is vital to correctly evaluating the evidence. The emerging number of poaching cases and the limited availability of such data emphasizes the need for an improved fallow deer mtDNA population databank for forensic purposes, including targeting the entire mitochondrial control region. By sequencing a 945-base-pair-long segment of the mitochondrial control region in 138 animals from five populations in Hungary, we found four different haplotypes, including one which had not yet been described. Our results, supplemented with data already available from previous research, do not support the possibility of determining the population of origin, although some patterns of geographical separation can be distinguished. Estimates of molecular diversity indicate similarly low mtDNA diversity (Hd = 0.565 and π = 0.002) compared to data from other countries. The calculated random match probability of 0.547 shows a high probability of coincidence and, therefore, a limited capacity for exclusion. Our results indicate that despite the overall low genetic diversity of mtDNA within the Hungarian fallow deer samples, a pattern of differentiation among the regions is present, which can have relevance from a forensic point of view.

11.
Article in English | MEDLINE | ID: mdl-39036815

ABSTRACT

The brown dog tick, Rhipicephalus linnaei (Audouin, 1826), is distributed across the American continent and is formerly known as the "tropical lineage". It belongs to the Rhipicephalus sanguineus (Latreille, 1806) species complex, referred to as R. sanguineus (sensu lato). Mitochondrial genome sequences are frequently used for the identification and represent reference material for field studies. In the present study, the entire mitochondrial genomes of R. linnaei (∼15 kb) collected from dogs in Mexico were sequenced and compared with available mitogenomes of R. sanguineus (s.l.). The mitochondrial genome is ∼90% identical to the reference genome of R. sanguineus (sensu stricto, former "temperate lineage") and > 99% identical to R. linnaei mitogenome derived from the neotype. Two additional mitogenomes were obtained and described as R. linnaei and R. turanicus from dogs in Saudi Arabia. The present study delivers a molecular reference for R. linnaei from America and complements R. linnaei mitogenomes from Africa, Asia and Australia. We propose to consider the complete mitogenome, as the reference for American R. linnaei, even when partial mitochondrial cox1, 12S rRNA or 16S rRNA genes are characterised.

12.
Biochem Genet ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039324

ABSTRACT

Located on India's eastern coast, Odisha is known for its diverse tribes and castes. In the early days of genome sequencing technology, researchers primarily studied the Austroasiatic communities inhabiting this region to reconstruct the ancient origins and dispersal of this broad linguistic group. However, current research has shifted towards identifying population and individual-specific genome variation for forensic applications. This study aims to analyze the forensic efficiency and ancestry of six populations from Odisha. We assessed the SF mtDNA-SNP60™ PCR Amplification Kit by comparing it with PowerPlex® Fusion 6C System, a widely used autosomal STR (aSTR) kit, in an Indian cohort. Although the mtDNA SNP kit showed low discriminating power for individuals of a diverse population, it could identify deep lineage divergence. Also, we utilized mitochondrial and autosomal variation information to analyze the ancestry of six endogamous ethnic groups in Odisha. We observe two extremities-populations with higher West Asian affinity and those with East Asian affinity. This observation is in congruence with the existing information of their tribal and non-tribal affiliation. When compared with neighbouring populations from Central and Eastern India, multivariate analysis showed that the Brahmins clustered separately or with the Gopala, Kaibarta appeared as an intermediate, Pana and Kandha clustered with the Gonds, and Savara with the Munda tribes. Our findings indicate significant deep lineage stratification in the ethnic populations of Odisha and a gene flow from West and East Asia. The artefacts of unique deep lineage in such a diverse population will help in improving forensic identification. In addition, we conclude that the SF mtDNA-SNP60 PCR Amplification Kit may be used only as a supplementary tool for forensic analysis.

13.
Aging Cell ; 23(7): e14257, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39030903

ABSTRACT

The role of the senescence-associated secretory phenotype (SASP) in the development of age-related diseases is significant, and its control promises to have a tremendous positive impact on health. A recent study has identified a new mechanism for SASP regulation, titled miMOMP. Failure to regulate SASP would dramatically increase the risk of various age-related health problems. Nonetheless, we have not completely comprehended how to modulate SASP. In this commentary, we summarise the specific mechanisms by which miMOMP regulates SASP and outline possible future research directions. Moreover, potential risks and obstacles to the clinical translation of miMOMP are also presented.


Subject(s)
Aging , Animals , Humans , Aging/genetics , Cellular Senescence/genetics , Senescence-Associated Secretory Phenotype
15.
Cell Commun Signal ; 22(1): 366, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026271

ABSTRACT

BACKGROUND: Z-DNA binding protein 1 (ZBP1) is a nucleic acid sensor that is involved in multiple inflammatory diseases, but whether and how it contributes to osteoarthritis (OA) are unclear. METHODS: Cartilage tissues were harvested from patients with OA and a murine model of OA to evaluate ZBP1 expression. Subsequently, the functional role and mechanism of ZBP1 were examined in primary chondrocytes, and the role of ZBP1 in OA was explored in mouse models. RESULTS: We showed the upregulation of ZBP1 in articular cartilage originating from OA patients and mice with OA after destabilization of the medial meniscus (DMM) surgery. Specifically, knockdown of ZBP1 alleviated chondrocyte damage and protected mice from DMM-induced OA. Mechanistically, tumor necrosis factor alpha induced ZBP1 overexpression in an interferon regulatory factor 1 (IRF1)-dependent manner and elicited the activation of ZBP1 via mitochondrial DNA (mtDNA) release and ZBP1 binding. The upregulated and activated ZBP1 could interact with receptor-interacting protein kinase 1 and activate the transforming growth factor-beta-activated kinase 1-NF-κB signaling pathway, which led to chondrocyte inflammation and extracellular matrix degradation. Moreover, inhibition of the mtDNA-IRF1-ZBP1 axis with Cyclosporine A, a blocker of mtDNA release, could delay the progression of DMM-induced OA. CONCLUSIONS: Our data revealed the pathological role of the mtDNA-IRF1-ZBP1 axis in OA chondrocytes, suggesting that inhibition of this axis could be a viable therapeutic approach for OA.


Subject(s)
Chondrocytes , DNA, Mitochondrial , Interferon Regulatory Factor-1 , Osteoarthritis , RNA-Binding Proteins , Chondrocytes/metabolism , Chondrocytes/pathology , Animals , Osteoarthritis/pathology , Osteoarthritis/metabolism , Osteoarthritis/genetics , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mice , Male , Mice, Inbred C57BL , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Signal Transduction , Disease Models, Animal
16.
BMC Plant Biol ; 24(1): 628, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961375

ABSTRACT

BACKGROUND: Cyperus stoloniferus is an important species in coastal ecosystems and possesses economic and ecological value. To elucidate the structural characteristics, variation, and evolution of the organelle genome of C. stoloniferus, we sequenced, assembled, and compared its mitochondrial and chloroplast genomes. RESULTS: We assembled the mitochondrial and chloroplast genomes of C. stoloniferus. The total length of the mitochondrial genome (mtDNA) was 927,413 bp, with a GC content of 40.59%. It consists of two circular DNAs, including 37 protein-coding genes (PCGs), 22 tRNAs, and five rRNAs. The length of the chloroplast genome (cpDNA) was 186,204 bp, containing 93 PCGs, 40 tRNAs, and 8 rRNAs. The mtDNA and cpDNA contained 81 and 129 tandem repeats, respectively, and 346 and 1,170 dispersed repeats, respectively, both of which have 270 simple sequence repeats. The third high-frequency codon (RSCU > 1) in the organellar genome tended to end at A or U, whereas the low-frequency codon (RSCU < 1) tended to end at G or C. The RNA editing sites of the PCGs were relatively few, with only 9 and 23 sites in the mtDNA and cpDNA, respectively. A total of 28 mitochondrial plastid DNAs (MTPTs) in the mtDNA were derived from cpDNA, including three complete trnT-GGU, trnH-GUG, and trnS-GCU. Phylogeny and collinearity indicated that the relationship between C. stoloniferus and C. rotundus are closest. The mitochondrial rns gene exhibited the greatest nucleotide variability, whereas the chloroplast gene with the greatest nucleotide variability was infA. Most PCGs in the organellar genome are negatively selected and highly evolutionarily conserved. Only six mitochondrial genes and two chloroplast genes exhibited Ka/Ks > 1; in particular, atp9, atp6, and rps7 may have undergone potential positive selection. CONCLUSION: We assembled and validated the mtDNA of C. stoloniferus, which contains a 15,034 bp reverse complementary sequence. The organelle genome sequence of C. stoloniferus provides valuable genomic resources for species identification, evolution, and comparative genomic research in Cyperaceae.


Subject(s)
Cyperus , Genome, Chloroplast , Genome, Mitochondrial , Cyperus/genetics , Phylogeny , Salt Tolerance/genetics , Salt-Tolerant Plants/genetics , Base Composition , Alkalies
17.
Antioxidants (Basel) ; 13(7)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39061901

ABSTRACT

Sleep deprivation (SD) triggers mitochondrial dysfunction and neural inflammation, leading to cognitive impairment and mental issues. However, the mechanism involving mitochondrial dysfunction and neural inflammation still remains unclear. Here, we report that SD rats exhibited multiple behavioral disorders, brain oxidative stress, and robust brain mitochondrial DNA (mtDNA) oxidation. In particular, SD activated microglia and microglial mtDNA efflux to the cytosol and provoked brain pro-inflammatory cytokines. We observed that the mtDNA efflux and pro-inflammatory cytokines significantly reduced with the suppression of the mtDNA oxidation. With the treatment of a novel mitochondrial nutrient, hydroxytyrosol butyrate (HTHB), the SD-induced behavioral disorders were significantly ameliorated while mtDNA oxidation, mtDNA release, and NF-κB activation were remarkably alleviated in both the rat brain and the N9 microglial cell line. Together, these results indicate that microglial mtDNA oxidation and the resultant release induced by SD mediate neural inflammation and HTHB prevents mtDNA oxidation and efflux, providing a potential treatment for SD-induced mental issues.

18.
Hum Reprod ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066612

ABSTRACT

Mitochondria are commonly recognized as the powerhouses of the cell, primarily responsible for energy production through oxidative phosphorylation. Alongside this vital function, they also play crucial roles in regulating calcium signaling, maintaining membrane potential, and modulating apoptosis. Their involvement in various cellular pathways becomes particularly evident during oogenesis and embryogenesis, where mitochondrial quantity, morphology, and distribution are tightly controlled. The efficiency of the mitochondrial network is maintained through multiple quality control mechanisms that are essential for reproductive success. These include mitochondrial unfolded protein response, mitochondrial dynamics, and mitophagy. Not surprisingly, mitochondrial dysfunction has been implicated in infertility and ovarian aging, prompting investigation into mitochondria as diagnostic and therapeutic targets in assisted reproduction. To date, mitochondrial DNA copy number in oocytes, cumulus cells, and trophectoderm biopsies, and fluorescent lifetime imaging microscopy-based assessment of NADH and flavin adenine dinucleotide content have been explored as potential predictors of embryo competence, yielding limited success. Despite challenges in the clinical application of mitochondrial diagnostic strategies, these enigmatic organelles have a significant impact on reproduction, and their potential role as diagnostic targets in assisted reproduction is likely to remain an active area of investigation in the foreseeable future.

19.
J Clin Med ; 13(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39064081

ABSTRACT

Background: The dysregulation of extraocular muscles (EOMs) in the strabismus may be partly due to modification in the mitochondrial DNA (mtDNA). Currently, little is known about changes occurring in mtDNA of EOMs in patients with strabismus, therefore the aim of our study was to analyze if there are any changes occurring in the mitochondrial DNA of extraocular muscles in children that underwent strabismus surgery in our clinic. Methods: MtDNA was isolated from the tissue material using the Qiagen kit. Assessment of mtDNA mutations was performed by next-generation sequencing (NGS) using the Illumina MiSeq protocol. Results: The examination revealed the presence of atrophic changes in muscle fibers. NGS evaluation revealed a dominant genetic mutation in the ANT1 gene in 12 of the 15 patients examined. Conclusions: The presented results constitute the beginning of research on changes in mtDNA occurring in the muscles of children with strabismus surgery. Further studies are necessary in the context of resolving the transcriptomic differences between strabismic and non-strabismic EOMs. Better understanding of the molecular genetics of strabismus will lead to improved knowledge of the disease mechanisms and ultimately to a more effective treatment.

20.
Ecol Evol ; 14(7): e70011, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38983702

ABSTRACT

Examining patterns of genetic diversity are crucial for conservation planning on endangered species, while inferring the underlying process of recent anthropogenic habitat modifications in the context potential long-term demographic changes remains challenging. The globally endangered scaly-sided merganser (SSME), Mergus squamatus, is endemic to a narrow range in Northeast Asia, and its population has recently been contracted into two main breeding areas. Although low genetic diversity has been suggested in the Russian population, the genetic status and demographic history of these individuals have not been fully elucidated. We therefore examined the genetic diversity and structure of the breeding populations of the SSME and investigated the relative importance of historical and recent demographic changes to the present-day pattern of genetic diversity. Using 10 nuclear microsatellite (SSR) markers and mitochondrial DNA (mtDNA) control region sequences, we found limited female-inherited genetic diversity and a high level of nuclear genetic diversity. In addition, analysis of both markers consistently revealed significant but weak divergence between the breeding populations. Inconsistent demographic history parameters calculated from mtDNA and bottleneck analysis results based on SSR suggested a stable historical effective population size. By applying approximate Bayesian computation, it was estimated that populations started to genetically diverge from each other due to recent fragmentation events caused by anthropogenic effects rather than isolation during Last Glacial Maximum (LGM) and post-LGM recolonization. These results suggest that limited historical population size and shallow evolutionary history may be potential factors contributing to the contemporary genetic diversity pattern of breeding SSME populations. Conservation efforts should focus on protecting the current breeding habitats from further destruction, with priority given to both the Russian and Chinese population, as well as restoring the connected suitable breeding grounds.

SELECTION OF CITATIONS
SEARCH DETAIL