Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 419
Filter
1.
mBio ; : e0014424, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953355

ABSTRACT

Dimorphism is known among the etiologic agents of endemic mycoses as well as in filamentous Mucorales. Under appropriate thermal conditions, mononuclear yeast forms alternate with multi-nucleate hyphae. Here, we describe a dimorphic mucoralean fungus obtained from the sputum of a patient with Burkitt lymphoma and ongoing graft-versus-host reactions. The fungus is described as Mucor germinans sp. nov. Laboratory studies were performed to simulate temperature-dependent dimorphism, with two environmental strains Mucor circinelloides and Mucor kunryangriensis as controls. Both strains could be induced to form multinucleate arthrospores and subsequent yeast-like cells in vitro. Multilateral yeast cells emerge in all three Mucor species at elevated temperatures. This morphological transformation appears to occur at body temperature since the yeast-like cells were observed in the lungs of our immunocompromised patient. The microscopic appearance of the yeast-like cells in the clinical samples is easily confused with that of Paracoccidioides. The ecological role of yeast forms in Mucorales is discussed.IMPORTANCEMucormycosis is a devastating disease with high morbidity and mortality in susceptible patients. Accurate diagnosis is required for timely clinical management since antifungal susceptibility differs between species. Irregular hyphal elements are usually taken as the hallmark of mucormycosis, but here, we show that some species may also produce yeast-like cells, potentially being mistaken for Candida or Paracoccidioides. We demonstrate that the dimorphic transition is common in Mucor species and can be driven by many factors. The multi-nucleate yeast-like cells provide an effective parameter to distinguish mucoralean infections from similar yeast-like species in clinical samples.

2.
Indian J Microbiol ; 64(2): 705-718, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39010995

ABSTRACT

Agarwood oil is one of the costliest essential oils used in perfumery, medicine and aroma. Production of the oil traditionally involves a soaking/fermentation step. Studies have indicated a definite role of the diverse microorganisms growing during the open soaking step, and in the emergent aroma of the essential oil. However, the temporal nature of fermentation and a key functional aspect i.e., the enzymatic properties of the microbes from the fermentation basin have not been studied yet. A total of 20 bacteria and 14 fungi isolated from fermentation basins located in Assam, India, at different soaking periods classified as early (0-20 days), medium (20-40 days) and late (40-60 days) clearly pointed towards an early fungal domination followed by succession of bacteria. The physico-chemical transformations of the wood are controlled by enzymatic properties (cellulase, xylanase, amylase and lipase) of the isolates. The results indicated a strong lignocellulosic substrate modulation potential in the four isolates, viz- Purpureocillium lilacinum (0.354 mg/mL), Mucor circinelloides (0.331 mg/mL), Penicillium citrinum (0.324 mg/mL) and Bacillus megaterium (0.152 mg/mL). The highest culturable abundance (CFU/mL) was found in M. circinelloides (2 × 109) among fungi and B. megaterium (4.5 × 109) among bacteria. The highest cellulase activity was shown by P. lilacinum (0.354 mg/mL) while xylanase and lipase by M. circinelloides (0.873 and 0.128 mg/mL). An interesting revelation was that a substantial proportion of the isolates (70% bacteria and 78% fungi) were positive for lipase activity. This is the first report on the "culturable microbiome" of the agarwood fermentation basin from a temporal and functional bioactivity perspective. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01257-y.

4.
Future Microbiol ; : 1-10, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904282

ABSTRACT

Aim: Currently, we have limited armamentarium of antifungal agents against Mucorales. There is an urgent need to discover novel antifungal agents that are effective, safe and affordable. Materials & methods: In this study, the anti-Mucorale action of native lactoferrin (LF) and its functional fragments CLF, RR6 and LFcin against three common Mucorale species are reported. The synergistic action of LF with antifungal agents like amphotericin B, isavuconazole and posaconazole was analyzed using checkerboard technique. Results: All the three mucor species showed inhibition when treated with fragments. The checkerboard assay confirmed that native LF showed the best synergistic action against Mucorales in combination with Amphotericin B. Conclusion: These results highlight the potential therapeutic value of native LF against Mucorales.


Black fungus, or 'mucormycosis', is a dangerous fungal infection. Normally, it affects people with a weakened immune system. It is only treatable when diagnosed early. It spreads by breathing the fungus in, eating contaminated food or direct contact with an infected wound. There are not many medicines that can treat this type of fungus, so it is important to find new ones. In this study, we tested a natural protein called lactoferrin and some of its building blocks, called peptides, to see if they could stop the fungus from growing. Lactoferrin and its peptides could stop the fungus from growing, especially when used with a medicine called amphotericin B. This means that lactoferrin could potentially be a helpful treatment for this fungal infection.

5.
Microbiol Resour Announc ; 13(7): e0006224, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38899875

ABSTRACT

The draft genome of Mucor velutinosus NIH1002, a 2011 isolate from a case of disseminated disease, was sequenced using PacBio long-read and HiSeq short-read technologies. The genome has 43 contigs, an N50 of 2.65 Mb, and 13,295 protein-coding genes. It is the most complete M. velutinosus genome to date.

6.
Sci Rep ; 14(1): 11352, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762506

ABSTRACT

The biological control of gastrointestinal (GI) parasites using predatory fungi has been recently proposed as an accurate and sustainable approach in birds. The current study aimed to assess for the first time the efficacy of using the native ovicidal fungus Mucor circinelloides (FMV-FR1) in reducing coccidia parasitism in peacocks. For this purpose, an in vivo trial was designed in the resident peacock collection (n = 58 birds) of the São Jorge Castle, at Lisbon, Portugal. These animals presented an initial severe infection by coccidia of the genus Eimeria (20106 ± 8034 oocysts per gram of feces, OPG), and thus received commercial feed enriched with a M. circinelloides suspension (1.01 × 108 spores/kg feed), thrice-weekly. Fresh feces were collected every 15 days to calculate the coccidia shedding, using the Mini-FLOTAC technique. The same bird flock served simultaneously as control (t0 days) and test groups (t15-t90 days). The average Eimeria sp. shedding in peacocks decreased up to 92% following fungal administrations, with significant reduction efficacies of 78% (p = 0.004) and 92% (p = 0.012) after 45 and 60 days, respectively. Results from this study suggest that the administration of M. circinelloides spores to birds is an accurate solution to reduce their coccidia parasitism.


Subject(s)
Coccidiosis , Feces , Mucor , Animals , Coccidiosis/veterinary , Coccidiosis/parasitology , Feces/parasitology , Feces/microbiology , Eimeria , Coccidia , Poultry Diseases/parasitology , Poultry Diseases/microbiology , Poultry Diseases/prevention & control
7.
Food Chem ; 452: 139525, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38718453

ABSTRACT

The primary inhibitory targets of phenyllactic acid (PLA, including D-PLA and L-PLA) on Mucor were investigated using Mucor racemosus LD3.0026 isolated from naturally spoiled cherry, as an indicator fungi. The results demonstrated that the minimum inhibitory concentration (MIC) of PLA against Mucor was 12.5 mmol·L-1. Results showed that the growing cells at the tip of the Mucor were not visibly deformed, and there was no damage to the cell wall following PLA treatment; however, PLA damaged the cell membrane and internal structure. The results of isobaric tags for relative and absolute quantification (iTRAQ) indicated that the Mucor mitochondrial respiratory chain may be the target of PLA, potentially inhibiting the energy supply of Mucor. These results indicate that the antifungal mechanism of PLA against mold is independent of its molecular configuration. The growth of Mucor is suppressed by PLA, which destroys the organelle structure in the mycelium and inhibits energy metabolism.


Subject(s)
Antifungal Agents , Mucor , Proteomics , Mucor/metabolism , Mucor/growth & development , Mucor/chemistry , Mucor/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Microbial Sensitivity Tests , Lactates/pharmacology , Lactates/metabolism , Fungal Proteins/metabolism , Fungal Proteins/chemistry
8.
Plants (Basel) ; 13(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38592850

ABSTRACT

Premyrsinane-type diterpenoids have been considered to originate from the cyclization of a suitable 5,6- or 6,17-epoxylathyrane precursor. Their biological activities have not been sufficiently explored to date, so the development of synthetic or microbial approaches for the preparation of new derivatives would be desirable. Epoxyboetirane A (4) is an 6,17-epoxylathyrane isolated from Euphorbia boetica in a large enough amount to be used in semi-synthesis. Transannular cyclization of 4 mediated by Cp2TiIIICl afforded premyrsinane 5 in good yield as an only diasteroisomer. To enhance the structural diversity of premyrsinanes so their potential use in neurodegenerative disorders could be explored, compound 5 was biotransformed by Mucor circinelloides NRRL3631 to give rise to hydroxylated derivatives at non-activated carbons (6-7), all of which were reported here for the first time. The structures and absolute configurations of all compounds were determined through extensive NMR and HRESIMS spectroscopic studies.

9.
Biology (Basel) ; 13(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38666888

ABSTRACT

Mucor circinelloides WJ11 is a lipid-producing strain with industrial potential. A holistic approach using gene manipulation and bioprocessing development has improved lipid production and the strain's economic viability. However, the systematic regulation of lipid accumulation and carotenoid biosynthesis in M. circinelloides remains unknown. To dissect the metabolic mechanism underlying lipid and carotenoid biosynthesis, transcriptome analysis and reporter metabolites identification were implemented between the wild-type (WJ11) and ΔcarRP WJ11 strains of M. circinelloides. As a result, transcriptome analysis revealed 10,287 expressed genes, with 657 differentially expressed genes (DEGs) primarily involved in amino acid, carbohydrate, and energy metabolism. Integration with a genome-scale metabolic model (GSMM) identified reporter metabolites in the ΔcarRP WJ11 strain, highlighting metabolic pathways crucial for amino acid, energy, and nitrogen metabolism. Notably, the downregulation of genes associated with carotenoid biosynthesis and acetyl-CoA generation suggests a coordinated relationship between the carotenoid and fatty acid biosynthesis pathways. Despite disruptions in the carotenoid pathway, lipid production remains stagnant due to reduced acetyl-CoA availability, emphasizing the intricate metabolic interplay. These findings provide insights into the coordinated relationship between carotenoid and fatty acid biosynthesis in M. circinelloides that are valuable in applied research to design optimized strains for producing desired bioproducts through emerging technology.

10.
Antimicrob Agents Chemother ; : e0154023, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687015

ABSTRACT

Invasive mucormycosis (IM) is associated with high mortality and morbidity. MAT2203 is an orally administered lipid nanocrystal formulation of amphotericin B, which has been shown to be safe and effective against other fungal infections. We sought to compare the efficacy of MAT2203 to liposomal amphotericin B (LAMB) treatment in a neutropenic mouse model of IM due to Rhizopus arrhizus var. delemar or Mucor circinelloides f. jenssenii DI15-131. In R. arrhizus var. delemar-infected mice, 15 mg/kg of MAT2203 qd was as effective as 10 mg/kg of LAMB in prolonging median survival time vs placebo (13.5 and 16.5 days for MAT2203 and LAMB, respectively, vs 9 days for placebo) and enhancing overall survival vs placebo-treated mice (40% and 45% for MAT2203 and LAMB, respectively, vs 0% for placebo). A higher dose of 45 mg/kg of MAT2203 was not well tolerated by mice and showed no benefit over placebo. Similar results were obtained with mice infected with M. circinelloides. Furthermore, while both MAT2203 and LAMB treatment resulted in a significant reduction of ~1.0-2.0log and ~2.0-2.5log in Rhizopus delemar or M. circinelloides lung and brain burden vs placebo mice, respectively, LAMB significantly reduced tissue fungal burden in mice infected with R. delemar vs tissues of mice treated with MAT2203. These results support continued investigation and development of MAT2203 as a novel and oral formulation of amphotericin for the treatment of mucormycosis.

11.
Antimicrob Agents Chemother ; 68(5): e0154523, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38557112

ABSTRACT

Ibrexafungerp (formerly SCY-078) is the first member of the triterpenoid class that prevents the synthesis of the fungal cell wall polymer ß-(1,3)-D-glucan by inhibiting the enzyme glucan synthase. We evaluated the in vivo efficacy of ibrexafungerp against pulmonary mucormycosis using an established murine model. Neutropenic mice were intratracheally infected with either Rhizopus delemar or Mucor circinelloides. Treatment with placebo (diluent control), ibrexafungerp (30 mg/kg, PO BID), liposomal amphotericin B (LAMB 10 mg/kg IV QD), posaconazole (PSC 30 mg/kg PO QD), or a combination of ibrexafungerp plus LAMB or ibrexafungerp plus PSC began 16 h post-infection and continued for 7 days for ibrexafungerp or PSC and through day 4 for LAMB. Ibrexafungerp was as effective as LAMB or PSC in prolonging median survival (range: 15 days to >21 days) and enhancing overall survival (30%-65%) vs placebo (9 days and 0%; P < 0.001) in mice infected with R. delemar. Furthermore, median survival and overall percent survival resulting from the combination of ibrexafungerp plus LAMB were significantly greater compared to all monotherapies (P ≤ 0.03). Similar survival results were observed in mice infected with M. circinelloides. Monotherapies also reduce the lung and brain fungal burden by ~0.5-1.0log10 conidial equivalents (CE)/g of tissue vs placebo in mice infected with R. delemar (P < 0.05), while a combination of ibrexafungerp plus LAMB lowered the fungal burden by ~0.5-1.5log10 CE/g compared to placebo or any of the monotherapy groups (P < 0.03). These results are promising and warrant continued investigation of ibrexafungerp as a novel treatment option against mucormycosis.


Subject(s)
Amphotericin B , Antifungal Agents , Glycosides , Mucormycosis , Neutropenia , Triterpenes , Animals , Amphotericin B/therapeutic use , Amphotericin B/pharmacology , Mucormycosis/drug therapy , Mice , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Triterpenes/pharmacology , Triterpenes/therapeutic use , Neutropenia/drug therapy , Neutropenia/complications , Disease Models, Animal , Drug Therapy, Combination , Female , Rhizopus/drug effects , Lung Diseases, Fungal/drug therapy , Lung Diseases, Fungal/microbiology , Mucor/drug effects , Triazoles/therapeutic use , Triazoles/pharmacology
12.
EFSA J ; 22(4): e8699, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38601868

ABSTRACT

The food enzyme triacylglycerol lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) is produced with the non-genetically modified Mucor circinelloides strain AE-LMH by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in three food manufacturing processes. Subsequently, the applicant requested to extend its use to include two additional processes. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of five food manufacturing processes. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.845 mg TOS/kg body weight (bw) per day in European populations. When combined with the no observed adverse effect level previously reported (784 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 928. Based on the data provided for the previous evaluation and the revised margin of exposure, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

13.
IMA Fungus ; 15(1): 6, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38481304

ABSTRACT

Mucorales are basal fungi that opportunistically cause a potentially fatal infection known as mucormycosis (black fungus disease), which poses a significant threat to human health due to its high mortality rate and its recent association with SARS-CoV-2 infections. On the other hand, histone methylation is a regulatory mechanism with pleiotropic effects, including the virulence of several pathogenic fungi. However, the role of epigenetic changes at the histone level never has been studied in Mucorales. Here, we dissected the functional role of Set1, a histone methyltransferase that catalyzes the methylation of H3K4, which is associated with the activation of gene transcription and virulence. A comparative analysis of the Mucor lusitanicus genome (previously known as Mucor circinelloides f. lusitanicus) identified only one homolog of Set1 from Candida albicans and Saccharomyces cerevisiae that contains the typical SET domain. Knockout strains in the gene set1 lacked H3K4 monomethylation, dimethylation, and trimethylation enzymatic activities. These strains also showed a significant reduction in vegetative growth and sporulation. Additionally, set1 null strains were more sensitive to SDS, EMS, and UV light, indicating severe impairment in the repair process of the cell wall and DNA lesions and a correlation between Set1 and these processes. During pathogen-host interactions, strains lacking the set1 gene exhibited shortened polar growth within the phagosome and attenuated virulence both in vitro and in vivo. Our findings suggest that the histone methyltransferase Set1 coordinates several cell processes related to the pathogenesis of M. lusitanicus and may be an important target for future therapeutic strategies against mucormycosis.

14.
Indian J Otolaryngol Head Neck Surg ; 76(1): 55-63, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38440575

ABSTRACT

The second wave of COVID pandemic was associated with an outbreak of Mucormycosis. The mortality rate of Mucormycosis reaches 50-80% in cases with orbital and intracranial extension (Fadda in Acta Otorhinolaryngol Ital 41:43-50, 2021). In this outbreak we found that few of these patients had bacterial invasive sinusitis mimicking fungal sinusitis. Amphotericin the only effective drug against Mucormycosis is highly toxic and expensive and not indicated in bacterial sinusitis. Our aim was to  determine the exact etiologic agent, predisposing factors and outcome of treatment of COVID associated invasive sinusitis presenting with orbital complications. It is a retrospective observational study done in 33 patients with orbital complications in COVID associated invasive sinusitis. Demographic details of the patients and clinical presentation were documented. Rhinological examination was done and a nasal swab was taken for KOH mount along with Gram`s stain and Culture and Sensitivity. All Patients underwent radiological evaluation by contrast enhanced computed tomography (CECT) or MRI. Liposomal Amphotericin B was started. Surgical debridement done. Amphotericin-B was stopped in cases reported negative for fungal elements and antibiotics administered for two weeks. Outcome of treatment was documented. A total of 33 patients were included in the study. 48.5% patients were found to have bacterial infection and 27.3% patient's fungal infections and 24.2% mixed infections.Eschar formation, necrotic tissue, erosion of the lamina papyracea was seen in both Klebsiella (33.3%) and Staphylococcal infections (16.6%) similar to Mucor and mixed infections. Persistent opthalmoplegia and deterioration of vision was associated with Mucor and mixed infections. However improvement in proptosis, ptosis, ophthalmoplegia, and vision was observed in cases associated with bacterial invasive sinusitis. Invasive bacterial sinusitis was under diagnosed during second wave of COVID. Identification of invasive bacterial sinusitis can help in de-escalation of treatment.

15.
Microbiol Mol Biol Rev ; 88(1): e0018822, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38445820

ABSTRACT

SUMMARYThe World Health Organization has established a fungal priority pathogens list that includes species critical or highly important to human health. Among them is the order Mucorales, a fungal group comprising at least 39 species responsible for the life-threatening infection known as mucormycosis. Despite the continuous rise in cases and the poor prognosis due to innate resistance to most antifungal drugs used in the clinic, Mucorales has received limited attention, partly because of the difficulties in performing genetic manipulations. The COVID-19 pandemic has further escalated cases, with some patients experiencing the COVID-19-associated mucormycosis, highlighting the urgent need to increase knowledge about these fungi. This review addresses significant challenges in treating the disease, including delayed and poor diagnosis, the lack of accurate global incidence estimation, and the limited treatment options. Furthermore, it focuses on the most recent discoveries regarding the mechanisms and genes involved in the development of the disease, antifungal resistance, and the host defense response. Substantial advancements have been made in identifying key fungal genes responsible for invasion and tissue damage, host receptors exploited by the fungus to invade tissues, and mechanisms of antifungal resistance. This knowledge is expected to pave the way for the development of new antifungals to combat mucormycosis. In addition, we anticipate significant progress in characterizing Mucorales biology, particularly the mechanisms involved in pathogenesis and antifungal resistance, with the possibilities offered by CRISPR-Cas9 technology for genetic manipulation of the previously intractable Mucorales species.


Subject(s)
Mucorales , Mucormycosis , Humans , Mucorales/genetics , Mucormycosis/diagnosis , Mucormycosis/drug therapy , Mucormycosis/microbiology , Antifungal Agents/therapeutic use , Pandemics
16.
Artif Cells Nanomed Biotechnol ; 52(1): 131-144, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38423087

ABSTRACT

Most fungal bone and joint infections (arthritis) are caused by Mucormycosis (Mucor indicus). These infections may be difficult to treat and may lead to chronic bone disorders and disabilities, thus the use of new antifungal materials in bone disorders is vital, particularly in immunocompromised individuals, such as those who have contracted coronavirus disease 2019 (COVID-19). Herein, we reported for the first time the preparation of nitrogen-doped carbon quantum dots (N/CQDs) and a nitrogen-doped mesoporous carbon (N/MC) using a quick micro-wave preparation and hydrothermal approach. The structure and morphology were analysed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and surface area analyser. Minimum inhibitory concentration (MIC), disc diffusion tests, minimum fungicidal concentration (MFC) and antifungal inhibitory percentages were measured to investigate the antifungal activity of N/CQDs and N/MC nanostructures. In addition to the in vivo antifungal activity in rats as determined by wound induction and infection, pathogen count and histological studies were also performed. According to in vitro and in vivo testing, both N/CQDs with small size and N/MC with porous structure had a significant antifungal impact on a variety of bone-infecting bacteria, including Mucor infection. In conclusion, the present investigation demonstrates that functional N/CQDs and N/MC are effective antifungal agents against a range of microbial pathogenic bone disorders in immunocompromised individuals, with stronger and superior fungicidal activity for N/CQDs than N/MC in vitro and in vivo studies.


Subject(s)
Mucormycosis , Quantum Dots , Rats , Animals , Quantum Dots/chemistry , Antifungal Agents/pharmacology , Carbon/pharmacology , Carbon/chemistry , Nitrogen/chemistry
17.
Environ Res ; 249: 118385, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38331140

ABSTRACT

Silkworm pupae, by-product of sericulture industry, is massively discarded. The degradation rate of silkworm pupae protein is critical to further employment, which reduces the impact of waste on the environment. Herein, magnetic Janus mesoporous silica nanoparticles immobilized proteinase K mutant T206M and Mucor circinelloides aspartic protease were employed in the co-degradation. The thermostability of T206M improved by enhancing structural rigidity (t1/2 by 30 min and T50 by 5 °C), prompting the degradation efficiency. At 65 °C and pH 7, degradation rate reached the highest of 61.7%, which improved by 26% compared with single free protease degradation. Besides, the immobilized protease is easy to separate and reuse, which maintains 50% activity after 10 recycles. Therefore, immobilized protease co-degradation was first applied to the development and utilization of silkworm pupae resulting in the release of promising antioxidant properties and reduces the environmental impact by utilizing a natural and renewable resource.


Subject(s)
Bombyx , Endopeptidase K , Magnetite Nanoparticles , Mucor , Pupa , Bombyx/metabolism , Animals , Mucor/enzymology , Magnetite Nanoparticles/chemistry , Endopeptidase K/metabolism , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/chemistry , Aspartic Acid Proteases/metabolism , Aspartic Acid Proteases/chemistry , Insect Proteins/metabolism , Insect Proteins/chemistry
19.
Proc (Bayl Univ Med Cent) ; 37(2): 348-354, 2024.
Article in English | MEDLINE | ID: mdl-38343486

ABSTRACT

Mucormycosis is an invasive fungal infection that can cause acute clinical decompensation and death. The literature demonstrates case fatality rates around 50% with differential clinical courses contingent upon anatomical incursion. Rhino-orbital cerebral mucormycosis represents a rapidly hostile variant with poorer outcomes, warranting prompt recognition, workup, and intervention. It is seldom included in differential diagnoses in those with head and neck pathology within the inpatient setting as diagnostic parsimony and low prevalence lead this entity to be often overlooked. Given the acuity and risk factors involved, considering mucormycosis may be prudent during the assessment of hyperglycemic or immunodeficient patients exhibiting maxillofacial disease. When acquiring histories of presenting illness and performing physical examinations, assessment includes mindfulness of diabetes mellitus, craniofacial lesions, and alertness to clinical deterioration. Given the rising incidence of complicated diabetes mellitus in conjunction with a paucity of mucormycosis reports noting the orbit as the diagnostic harbinger, we report the case of a 59-year-old woman admitted to the critical care setting for diabetic ketoacidosis and altered mental status. Physical examination revealed a swollen orbit, later diagnosed as mucormycosis with associated sino-orbit involvement and cranial nerve deficits warranting urgent and extensive facial debridement.

20.
Heliyon ; 10(4): e25840, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38370187

ABSTRACT

Mucormycosis is an invasive opportunistic fungal infection, which may be lethal and mostly affects patients with immunodeficiency or diabetes mellitus. Among Mucorales fungi, Rhizopus spp. is the most common cause of mucormycosis, followed by genera such as Mucor and Lichtheimia. Here we report a patient with severe COVID-19 infection who developed nasal pain, facial swelling, prominent black eschar on the nasal root. CT scan revealed pansinusitis along the maxillary, ethmoidal, and sphenoid sinuses. Mixed mold infection with Rhizopus microsporus and Mucor racemosus was detected by blood metagenomics next-generation sequencing (mNGS) and later nasal mucosa histological investigation confirmed mucormycosis. Severe COVID-19 infection led to the patient's thrombocytopenia and leukopenia. Later disseminated mucormycosis aggravated the infection and sepsis eventually resulted in death. It is the first case report of mucormycosis in which R. microsporus and M. racemosus as the etiologic agents were found simultaneously in one patient. COVID-19 infection combined with disseminated mucormycosisis can be fatal and mNGS is a fast, sensitive and accurate diagnostic method for fungi detection.

SELECTION OF CITATIONS
SEARCH DETAIL