Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters











Publication year range
1.
J Appl Microbiol ; 135(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38323436

ABSTRACT

AIMS: To investigate fatty acid, including polyunsaturated fatty acids (PUFA), and cerebroside production of a large diversity of fungi from the Ascomycota, Basidiomycota, and Mucoromycota phyla. METHODS AND RESULTS: Seventy-nine fungal strains were grown in Kavadia medium using a microcultivation system, i.e. Duetz microtiter plates. Following cultivation, fatty acid and cerebroside contents were analyzed by gas chromatography-flame ionization detection (GC-FID) and high performance thin-layer chromatography (HPTLC), respectively. Mucoromycota fungi appeared as the most promising candidates for omega-6 PUFA production. The best omega-6 producer, including γ-linolenic acid (GLA, 18:3n-6), was Mucor fragilis UBOCC-A109196 with a concentration of 647 mg L-1 total omega-6 PUFA (representing 35% of total fatty acids) and 225 mg L-1 GLA (representing 12% of total fatty acids). Arachidonic acid concentration (20:4n-6) was the highest in Mortierella alpina UBOCC-A-112046, reaching 255 mg L-1 and 18.56% of total fatty acids. Interestingly, several fungal strains were shown to produce omega-7 monounsaturated fatty acids. Indeed, Torulaspora delbrueckii strains accumulated palmitoleic acid (16:1n-7) up to 20% of total fatty acids, reaching 114 mg L-1 in T. delbrueckii UBOCC-A-214128, while C. elegans UBOCC-A-102008 produced mainly paullinic acid (20:1n-7) with concentrations up to 100 mg L-1. Concerning cerebroside production, HPTLC appeared as a relevant approach for their detection and quantification. Promising candidates belonging to the Mucoromycota phylum were found, especially in the Absidia genus with A. spinosa UBOCC-A-101332 as the best producer (12.7 mg L-1). CONCLUSIONS: The present study highlighted PUFA and cerebroside production in a large diversity of fungi and the fact that members of the Mucoromycota phylum are good producers of PUFA as well as cerebrosides.


Subject(s)
Caenorhabditis elegans , Fatty Acids, Unsaturated , Animals , Fatty Acids, Unsaturated/chemistry , gamma-Linolenic Acid , Arachidonic Acid , Fatty Acids
2.
J Fungi (Basel) ; 9(12)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38132783

ABSTRACT

The genus Gongronella is important in agriculture and industry by secreting various natural bioactive metabolites such as chitosanases and organic acids. During the most recent 8 years, a total of 14 new species have been described, remarkably enriching the diversity of this genus. In this study, we added three more new species to this valuable genus, based on a combination of morphological traits and phylogenetic information. Six strains of the genus Gongronella were isolated from soil collected in Hainan Province, China. Phylogenetic analyses of ITS and LSU rDNA sequences grouped these strains into three independent clades. According to their unique morphological characteristics, they were classified as G. multiramosa sp. nov., G. qichaensis sp. nov. and G. oleae sp. nov. The G. multiramosa was characterized by multiple branched sporangiophores and was closely related to G. pedratalhadensis. The G. qichaensis was characterized by obscure collars and closely related to G. butleri, G. hydei and G. banzhaoae. The G. oleae was characterized by the presence of oil droplets in the sporangiospores and was closely related to G. chlamydospora and G. multispora. Their descriptions and illustrations were provided, and their differences from morphological allies and phylogenetic-related species are discussed.

3.
Mycologia ; 115(5): 674-692, 2023.
Article in English | MEDLINE | ID: mdl-37409884

ABSTRACT

Mucor species are a group of common soil-borne fungi, known to cause infections on humans and animals, interfere in food production, and act as useful agents in biotechnological applications. This study reports one new Mucor species, M. yunnanensis, which was found to be fungicolous on an Armillaria sp. from southwest China. Further, M. circinelloides on Phlebopus sp., M. hiemalis on Ramaria sp. and Boletus sp., M. irregularis on Pleurotus sp., M. nederlandicus on Russula sp., and M. yunnanensis on Boletus sp. are reported as new host records. Mucor yunnanensis and M. hiemalis have been collected from Yunnan Province in China, whereas M. circinelloides, M. irregularis, and M. nederlandicus have been collected from Chiang Mai and Chiang Rai Provinces in Thailand. All the Mucor taxa reported herein were identified based on both morphology and phylogenetic analyses of a combined nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS) and partial nuc 28S rDNA (28S) sequence matrix. Comprehensive descriptions, illustrations, and a phylogenetic tree are provided for all the taxa reported in the study to show the placements of taxa, and the new taxon is compared with its sister taxa.


Subject(s)
Agaricales , Ascomycota , Basidiomycota , Animals , Humans , Agaricales/genetics , China , Phylogeny , DNA, Ribosomal Spacer/genetics , Mucor/genetics , Thailand , RNA, Ribosomal, 28S/genetics , DNA, Ribosomal/genetics , Basidiomycota/genetics , Sequence Analysis, DNA
4.
Braz J Microbiol ; 54(3): 1955-1967, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37410249

ABSTRACT

Arbuscular mycorrhizal fungi form symbiotic associations with 80-90% of all known plants, allowing the fungi to acquire plant-synthesized carbon, and confer an increased capacity for nutrient uptake by plants, improving tolerance to abiotic and biotic stresses. We aimed at characterizing the mycorrhizal community in the rhizosphere of Neoglaziovia variegata (so-called `caroa`) and Tripogonella spicata (so-called resurrection plant), using high-throughput sequencing of the partial 18S rRNA gene. Both plants are currently undergoing a bioprospecting program to find microbes with the potential of helping plants tolerate water stress. Sampling was carried out in the Caatinga biome, a neotropical dry forest, located in northeastern Brazil. Illumina MiSeq sequencing of 37 rhizosphere samples (19 for N. variegata and 18 for T. spicata) revealed a distinct mycorrhizal community between the studied plants. According to alpha diversity analyses, T. spicata showed the highest richness and diversity based on the Observed ASVs and the Shannon index, respectively. On the other hand, N. variegata showed higher modularity of the mycorrhizal network compared to T. spicata. The four most abundant genera found (higher than 10%) were Glomus, Gigaspora, Acaulospora, and Scutellospora, with Glomus being the most abundant in both plants. Nonetheless, Gigaspora, Diversispora, and Ambispora were found only in the rhizosphere of N. variegata, whilst Scutellospora, Paraglomus, and Archaeospora were exclusive to the rhizosphere of T. spicata. Therefore, the community of arbuscular mycorrhizal fungi of the rhizosphere of each plant encompasses a unique composition, structure and modularity, which can differentially assist them in the hostile environment.


Subject(s)
Glomeromycota , Mycorrhizae , Mycorrhizae/genetics , Brazil , Rhizosphere , Poaceae , Soil Microbiology , Fungi , Forests , Plants , Plant Roots/microbiology
5.
Curr Biol ; 33(13): 2646-2656.e4, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37301202

ABSTRACT

As an endosymbiont of the ecologically and medically relevant fungus Rhizopus microsporus, the toxin-producing bacterium Mycetohabitans rhizoxinica faces myriad challenges, such as evading the host's defense mechanisms. However, the bacterial effector(s) that facilitate the remarkable ability of M. rhizoxinica to freely migrate within fungal hyphae have thus far remained unknown. Here, we show that a transcription activator-like (TAL) effector released by endobacteria is an essential symbiosis factor. By combining microfluidics with fluorescence microscopy, we observed enrichment of TAL-deficient M. rhizoxinica in side hyphae. High-resolution live imaging showed the formation of septa at the base of infected hyphae, leading to the entrapment of endobacteria. Using a LIVE/DEAD stain, we demonstrate that the intracellular survival of trapped TAL-deficient bacteria is significantly reduced compared with wild-type M. rhizoxinica, indicative of a protective host response in the absence of TAL proteins. Subversion of host defense in TAL-competent endobacteria represents an unprecedented function of TAL effectors. Our data illustrate an unusual survival strategy of endosymbionts in the host and provide deeper insights into the dynamic interactions between bacteria and eukaryotes.


Subject(s)
Hyphae , Transcription Activator-Like Effectors , Bacteria , Symbiosis
6.
J Fungi (Basel) ; 9(3)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36983485

ABSTRACT

Species of Lichtheimia are important opportunistic fungal pathogens in the order Mucorales that are isolated from various sources such as soil, indoor air, food products, feces, and decaying vegetables. In recent years, species of Lichtheimia have become an emerging causative agent of invasive mucormycosis. In Europe and USA, Lichtheimia are the second and third most common causal fungus of mucormycosis, respectively. Thus, the aim of this study was to survey the diversity of species of Lichtheimia hidden in poorly studied hosts, such as invertebrates, in Korea. Eight Lichtheimia strains were isolated from invertebrate samples. Based on morphology, physiology, and phylogenetic analyses of ITS and LSU rDNA sequence data, the strains were identified as L. hyalospora, L. ornata, L. ramosa, and a novel species, L. koreana sp. nov. Lichtheimia koreana is characterized by a variable columellae, sporangiophores arising solitarily or up to three at one place from stolons, and slow growth on MEA and PDA at all temperatures tested. The new species grows best at 30 and 35 °C and has a maximum growth temperature of 40 °C. Detailed descriptions, illustrations, and a phylogenetic tree are provided.

7.
Methods Mol Biol ; 2605: 293-323, 2023.
Article in English | MEDLINE | ID: mdl-36520400

ABSTRACT

Metagenomics approaches have revealed the importance of Mucoromycota in the evolution and functioning of plant microbiomes. Comprised of three subphyla (Glomeromycotina, Mortierellomycotina, and Mucoromycotina), this early diverging lineage of fungi encompasses species of mycorrhizal fungi, root endophytes, plant pathogens, and many decomposers of plant debris. Interestingly, several taxa of Mucoromycota share a common feature, that is, the presence of endobacteria within their mycelia and spores. The study of these endosymbiotic bacteria is still a challenging task. However, given recent improvements in the sensitivity of culture-free approaches, a deeper understanding of such microbial interactions is now possible and fuels an emerging research field. In this chapter, we report how Mucoromycota, in particular Mortierellomycotina, and their endobacteria can be investigated using a combination of diverse cellular biology, microscopy, and molecular techniques.


Subject(s)
Glomeromycota , Mycorrhizae , Symbiosis , Phylogeny , Fungi , Plants/microbiology
8.
Viruses ; 14(11)2022 10 25.
Article in English | MEDLINE | ID: mdl-36366438

ABSTRACT

The presence of viruses is less explored in Mucoromycota as compared to other fungal groups such as Ascomycota and Basidiomycota. Recently, more and more mycoviruses are identified from the early-diverging lineages of fungi. We have determined the genome of 11 novel dsRNA viruses in seven different Umbelopsis strains with next-generation sequencing (NGS). The identified viruses were named Umbelopsis ramanniana virus 5 (UrV5), 6a (UrV6a); 6b (UrV6b); 7 (UrV7); 8a (UrV8a); 8b (UrV8b); Umbelopsis gibberispora virus 1 (UgV1); 2 (UgV2) and Umbelopsis dimorpha virus 1a (UdV1a), 1b (UdV1b) and 2 (UdV2). All the newly identified viruses contain two open reading frames (ORFs), which putatively encode the coat protein (CP) and the RNA-dependent RNA polymerase (RdRp), respectively. Based on the phylogeny inferred from the RdRp sequences, eight viruses (UrV7, UrV8a, UrV8b, UgV1, UgV2, UdV1a, UdV1b and UdV2) belong to the genus Totivirus, while UrV5, UrV6a and UrV6b are placed into a yet unclassified but well-defined Totiviridae-related group. In UrV5, UgV1, UgV2, UrV8b, UdV1a, UdV2 and UdV1b, ORF2 is predicted to be translated as a fusion protein via a rare +1 (or -2) ribosomal frameshift, which is not characteristic to most members of the Totivirus genus. Virus particles 31 to 32 nm in diameter could be detected in the examined fungal strains by transmission electron microscopy. Through the identification and characterization of new viruses of Mucoromycota fungi, we can gain insight into the diversity of mycoviruses, as well as into their phylogeny and genome organization.


Subject(s)
Ascomycota , Fungal Viruses , RNA Viruses , Totiviridae , Fungal Viruses/genetics , Totiviridae/genetics , Open Reading Frames , RNA-Dependent RNA Polymerase , Phylogeny , Ascomycota/genetics , Genome, Viral , RNA Viruses/genetics , RNA, Viral/genetics , RNA, Double-Stranded
9.
J Fungi (Basel) ; 8(9)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36135620

ABSTRACT

Umbelopsis ramanniana is one of the most commonly reported species within the genus and an important oleaginous fungus. The morphology of the species varies remarkably in sporangiospores, columellae and chlamydospores. However, phylogenetic analyses based on ITS and nLSU rDNA had previously shown insufficiency in achieving species level identification in the genus Umbelopsis. In this study, by applying a polyphasic approach involving multi-gene (nSSU, ITS, nLSU, act1, MCM7 and cox1) phylogeny, morphology and maximum growth temperature, U. ramanniana sensu lato was revealed as a polyphyletic group and resolved with five novel taxa, namely U. curvata, U. dura, U. macrospora, U. microsporangia and U. oblongielliptica. Additionally, a key for all currently accepted species in Umbelopsis was also updated.

10.
J Fungi (Basel) ; 8(5)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35628728

ABSTRACT

Although species of Absidia are known to be ubiquitous in soil, animal dung, and insect and plant debris, the species diversity of the genus and their ecological habitats have not been sufficiently investigated. In this study, we describe five new species of Absidia from forest and grassland soils in southwestern China, with support provided by phylogenetic, morphological, and physiological evidence. The species diversity and ecological habitat of Absidia are summarized. Currently, 22 species are recorded in China, which mainly occur in soil, especially in tropical and subtropical forests and mountains. An updated key to the species of Absidia in China is also provided herein. This is the first overview of the Absidia ecological habitat.

11.
Appl Microbiol Biotechnol ; 106(7): 2587-2601, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35318523

ABSTRACT

Gongronella is a genus of fungi in Mucorales (Mucoromycota). Some of its members have important biotechnological applications, but until now, not a single mitogenome has been characterized in Gongronella. Here, we present the complete mitogenome assembly of Gongronella sp. w5, a soil isolate known to interact with plants and several fungi. Its 36,593-bp circular mitogenome encodes the large and small subunit rRNAs, 14 standard mitochondrial proteins, 24 tRNAs, three free-standing ORF proteins, and the RNA subunit of RNase P (rnpB). These genes arrange in an order novel to known fungal mitogenomes. Three group I introns are present in the cob, cox1, and nad5 genes, respectively, and they are probably acquired by horizontal gene transfer. Phylogenetic analysis based on mitochondrion-encoded proteins supports the grouping of Gongronella sp. w5 with Absidia glauca, forming the Cunninghamellaceae clade within Mucoromycota. Gongronella and most other Mucoromycota species are predicted to use the standard genetic code in mitochondrial translation, rather than code 4 assigned by GenBank. A comparison among seven publicly available mitogenomes in Mucoromycota reveals the presence of the same 14 typical protein-coding genes plus rnpB, yet substantial variation in mitogenome size, intron number, gene order, and orientation. In this comparison, the uniqueness of Gongronella is evident from similarly large differences to its closest phylogenetic neighbor, A. glauca. This study promotes our understanding of fungal evolution in Mucoromycota. KEY POINTS: • This study reports the first mitogenome in Gongronella, which presents a novel gene order. • Different Mucoromycota mitogenomes show substantial variation of gene organizations. • Most Mucoromycota species use the standard genetic code to translate mitochondrial genes.


Subject(s)
Genome, Mitochondrial , Mucorales , Gene Order , Genes, Mitochondrial , Phylogeny
12.
Appl Microbiol Biotechnol ; 106(1): 101-115, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34889982

ABSTRACT

Biorefinery employing fungi can be a strategy for valorizing low-cost rest materials, by-products and wastes into several valuable bioproducts through the fungal fermentation. Mucoromycota fungi are soil fungi with a highly versatile metabolic system that positions them as powerful microbial cell factories for biorefinery applications. Lipids, pigments, chitin/chitosan, polyphosphates, ethanol, organic acids and enzymes are main Mucoromycota products that can be refined from the fermentation process and applied in nutrition, chemical or biofuel industries. In addition, Mucoromycota biomass can be used as it is for specific purposes, such as feed. Mucoromycota fungi can be employed in developing co-production processes, whereby several intra- and extracellular products are simultaneously formed in a single fermentation process, and, thus, economic viability of the process can be improved. This mini review provides a comprehensive overview over the recent advances in the production of valuable metabolites by Mucoromycota fungi and fermentation strategies which could be potentially applied in the industrial biorefinery settings. KEY POINTS: • Biorefineries utilizing Mucoromycota fungi as production cell factories can provide a wide range of bioproducts. • Mucoromycota fungi are able to perform co-production of various metabolites in a single fermentation process. • Versatile metabolism of Mucoromycota allows valorization of a various low-cost substrates such as wastes and rest materials.


Subject(s)
Biofuels , Fungi , Biomass , Fermentation , Lipids
13.
Stud Mycol ; 103: 25-58, 2022 Sep.
Article in English | MEDLINE | ID: mdl-37342154

ABSTRACT

Fungi are incredibly diverse, but they are unexplored, especially in the subalpine and alpine zone. Mortierellaceae are certainly one of the most abundant, species-rich, and widely distributed cultivable soil fungal families in terrestrial habitats, including subalpine and alpine zones. The phylogeny of Mortierellaceae was recently resolved based on current state of the art molecular techniques, and the paraphyletic genus Mortierella sensu lato (s.l.) was divided into 13 monophyletic genera. Our extensive sampling campaigns in the Austrian Alps resulted in 139 different Mortierellaceae pure culture isolates representing 13 new species. For the definition of taxa, we applied both classical morphological criteria, as well as modern DNA-based methods. Phylogenetic relationships were resolved based on the ribosomal DNA internal transcribed spacer (rDNA ITS), the large subunit (LSU), and the DNA-directed RNA polymerase II largest subunit 1 (RPB1). In this study, we proposed a new genus and described 13 new species belonging to the genera Entomortierella, Linnemannia, Mortierella and Podila. In addition, we proposed eight new combinations, re-defined E. jenkinii at species level, defined a neotype for M. alpina and lecto- as well as epitypes for M. fatshederae, M. jenkinii, and M. longigemmata. The rDNA ITS region is generally applied as classical barcoding gene for fungi. However, the obtained phylogenetic resolution is often too low for an accurate identification of closely related species of Mortierellaceae, especially for small sampling sizes. In such cases, unambiguous identification can be obtained based on morphological characters of pure culture isolates. Therefore, we also provide dichotomous keys for species identification within phylogenetic lineages. Taxonomic novelties: new genus: Tyroliella Telagathoti, Probst & Peintner; New species: Entomortierella galaxiae Telagathoti, M. Probst & Peintner, Linnemannia bainierella Telagathoti, M. Probst & Peintner, Linnemannia stellaris Telagathoti, M. Probst & Peintner, Linnemannia nimbosa Telagathoti, M. Probst & Peintner, Linnemannia mannui Telagathoti, M. Probst & Peintner, Linnemannia friederikiana Telagathoti, M. Probst & Peintner, Linnemannia scordiella Telagathoti, M. Probst & Peintner, Linnemannia solitaria Telagathoti, M. Probst & Peintner, Mortierella triangularis Telagathoti, M. Probst & Peintner, Mortierella lapis Telagathoti, M. Probst & Peintner, Podila himami Telagathoti, M. Probst & Peintner, Podila occulta Telagathoti, M. Probst & Peintner, Tyroliella animus-liberi Telagathoti, Probst & Peintner; New combinations: Entomortierella basiparvispora (W. Gams & Grinb.) Telagathoti, M. Probst & Peintner, Entomortierella jenkinii (A.L. Sm.) Telagathoti, M. Probst & Peintner; Entomortierella sugadairana (Y. Takash. et al.) Telagathoti, M. Probst & Peintner, Linnemannia zonata (Linnem. ex W. Gams) Telagathoti, M. Probst & Peintner, Linnemannia fluviae (Hyang B. Lee et al.) Telagathoti, M. Probst & Peintner, Linnemannia biramosa (Tiegh.) Telagathoti, M. Probst & Peintner, Linnemannia cogitans (Degawa) Telagathoti, M. Probst & Peintner, Tyroliella pseudozygospora (W. Gams & Carreiro) Telagathoti, M. Probst & Peintner; Epitypifications (basionyms): Mortierella bainieri var. jenkinii A.L. Sm., Mortierella fatshederae Linnem., Mortierella longigemmata Linnem. Neotypification (basionym): Mortierella alpina Peyronel. Citation: Telagathoti A, Probst M, Mandolini E, Peintner U (2022). Mortierellaceae from subalpine and alpine habitats: new species of Entomortierella, Linnemannia, Mortierella, Podila and Tyroliella gen. nov. Studies in Mycology 103: 25-58. doi: 10.3114/sim.2022.103.02.

14.
Fungal Divers ; 111(1): 1-335, 2021.
Article in English | MEDLINE | ID: mdl-34899100

ABSTRACT

This article is the 13th contribution in the Fungal Diversity Notes series, wherein 125 taxa from four phyla, ten classes, 31 orders, 69 families, 92 genera and three genera incertae sedis are treated, demonstrating worldwide and geographic distribution. Fungal taxa described and illustrated in the present study include three new genera, 69 new species, one new combination, one reference specimen and 51 new records on new hosts and new geographical distributions. Three new genera, Cylindrotorula (Torulaceae), Scolecoleotia (Leotiales genus incertae sedis) and Xenovaginatispora (Lindomycetaceae) are introduced based on distinct phylogenetic lineages and unique morphologies. Newly described species are Aspergillus lannaensis, Cercophora dulciaquae, Cladophialophora aquatica, Coprinellus punjabensis, Cortinarius alutarius, C. mammillatus, C. quercoflocculosus, Coryneum fagi, Cruentomycena uttarakhandina, Cryptocoryneum rosae, Cyathus uniperidiolus, Cylindrotorula indica, Diaporthe chamaeropicola, Didymella azollae, Diplodia alanphillipsii, Dothiora coronicola, Efibula rodriguezarmasiae, Erysiphe salicicola, Fusarium queenslandicum, Geastrum gorgonicum, G. hansagiense, Helicosporium sexualis, Helminthosporium chiangraiensis, Hongkongmyces kokensis, Hydrophilomyces hydraenae, Hygrocybe boertmannii, Hyphoderma australosetigerum, Hyphodontia yunnanensis, Khaleijomyces umikazeana, Laboulbenia divisa, Laboulbenia triarthronis, Laccaria populina, Lactarius pallidozonarius, Lepidosphaeria strobelii, Longipedicellata megafusiformis, Lophiotrema lincangensis, Marasmius benghalensis, M. jinfoshanensis, M. subtropicus, Mariannaea camelliae, Melanographium smilaxii, Microbotryum polycnemoides, Mimeomyces digitatus, Minutisphaera thailandensis, Mortierella solitaria, Mucor harpali, Nigrograna jinghongensis, Odontia huanrenensis, O. parvispina, Paraconiothyrium ajrekarii, Parafuscosporella niloticus, Phaeocytostroma yomensis, Phaeoisaria synnematicus, Phanerochaete hainanensis, Pleopunctum thailandicum, Pleurotheciella dimorphospora, Pseudochaetosphaeronema chiangraiense, Pseudodactylaria albicolonia, Rhexoacrodictys nigrospora, Russula paravioleipes, Scolecoleotia eriocamporesi, Seriascoma honghense, Synandromyces makranczyi, Thyridaria aureobrunnea, Torula lancangjiangensis, Tubeufia longihelicospora, Wicklowia fusiformispora, Xenovaginatispora phichaiensis and Xylaria apiospora. One new combination, Pseudobactrodesmium stilboideus is proposed. A reference specimen of Comoclathris permunda is designated. New host or distribution records are provided for Acrocalymma fici, Aliquandostipite khaoyaiensis, Camarosporidiella laburni, Canalisporium caribense, Chaetoscutula juniperi, Chlorophyllum demangei, C. globosum, C. hortense, Cladophialophora abundans, Dendryphion hydei, Diaporthe foeniculina, D. pseudophoenicicola, D. pyracanthae, Dictyosporium pandanicola, Dyfrolomyces distoseptatus, Ernakulamia tanakae, Eutypa flavovirens, E. lata, Favolus septatus, Fusarium atrovinosum, F. clavum, Helicosporium luteosporum, Hermatomyces nabanheensis, Hermatomyces sphaericoides, Longipedicellata aquatica, Lophiostoma caudata, L. clematidis-vitalbae, Lophiotrema hydei, L. neoarundinaria, Marasmiellus palmivorus, Megacapitula villosa, Micropsalliota globocystis, M. gracilis, Montagnula thailandica, Neohelicosporium irregulare, N. parisporum, Paradictyoarthrinium diffractum, Phaeoisaria aquatica, Poaceascoma taiwanense, Saproamanita manicata, Spegazzinia camelliae, Submersispora variabilis, Thyronectria caudata, T. mackenziei, Tubeufia chiangmaiensis, T. roseohelicospora, Vaginatispora nypae, Wicklowia submersa, Xanthagaricus necopinatus and Xylaria haemorrhoidalis. The data presented herein are based on morphological examination of fresh specimens, coupled with analysis of phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.

15.
Front Microbiol ; 12: 677836, 2021.
Article in English | MEDLINE | ID: mdl-34421840

ABSTRACT

Four new species within the genus Absidia, A. globospora, A. medulla, A. turgida, and A. zonata, are proposed based on a combination of morphological traits, physiological features, and molecular evidences. A. globospora is characterized by globose sporangiospores, a 1.0- to 3.5-µm-long papillary projection on columellae, and sympodial sporangiophores. A. medulla is characterized by cylindrical to oval sporangiospores, a 1.0- to 4.5-µm-long bacilliform projection on columellae, and spine-like rhizoids. A. turgida is characterized by variable sporangiospores, up to 9.5-µm-long clavate projections on columellae, and swollen top of the projection and inflated hyphae. A. zonata is characterized by cylindrical to oval sporangiospores, a 2.0- to 3.5-µm-long spinous projection on columellae, and as many as eight whorled sporangiophores. Phylogenetic analyses based on sequences of internal transcribed spacer rDNA and D1-D2 domains of LSU rDNA support the novelty of these four species within the Absidia. All new species are illustrated, and an identification key to all the known species of Absidia in China is included.

16.
J Fungi (Basel) ; 7(7)2021 Jun 27.
Article in English | MEDLINE | ID: mdl-34199055

ABSTRACT

Three novel fungal species, Backusella chlamydospora sp. nov., B. koreana sp. nov., and B. thermophila sp. nov., as well as two new records, B. oblongielliptica and B. oblongispora, were found in Cheongyang, Korea, during an investigation of fungal species from invertebrates and toads. All species are described here using morphological characters and sequence data from internal transcribed spacer sequences of ribosomal DNA and large subunit of the ribosomal DNA. Backusella chlamydospora is different from other Backusella species by producing chlamydospores. Backusella koreana can be distinguished from other Backusella species by producing abundant yeast-like cells. Backusella thermophila is characterized by a variable (subglobose to oblong, applanate to oval, conical and ellipsoidal to pyriform) columellae and grows well at 37 °C. Multigene phylogenetic analyses of the combined ITS and LSU rDNA sequences data generated from maximum likelihood and MrBayes analyses indicate that B. chlamydospora, B. koreana, and B. thermophila form distinct lineages in the family Backusellaceae. Detailed descriptions, illustrations, phylogenetic tree, and taxonomic key to the Backusella species present in Korea are provided.

17.
J Fungi (Basel) ; 7(4)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33920847

ABSTRACT

Calcium controls important processes in fungal metabolism, such as hyphae growth, cell wall synthesis, and stress tolerance. Recently, it was reported that calcium affects polyphosphate and lipid accumulation in fungi. The purpose of this study was to assess the effect of calcium on the accumulation of lipids and polyphosphate for six oleaginous Mucoromycota fungi grown under different phosphorus/pH conditions. A Duetz microtiter plate system (Duetz MTPS) was used for the cultivation. The compositional profile of the microbial biomass was recorded using Fourier-transform infrared spectroscopy, the high throughput screening extension (FTIR-HTS). Lipid content and fatty acid profiles were determined using gas chromatography (GC). Cellular phosphorus was determined using assay-based UV-Vis spectroscopy, and accumulated phosphates were characterized using solid-state 31P nuclear magnetic resonance spectroscopy. Glucose consumption was estimated by FTIR-attenuated total reflection (FTIR-ATR). Overall, the data indicated that calcium availability enhances polyphosphate accumulation in Mucoromycota fungi, while calcium deficiency increases lipid production, especially under acidic conditions (pH 2-3) caused by the phosphorus limitation. In addition, it was observed that under acidic conditions, calcium deficiency leads to increase in carotenoid production. It can be concluded that calcium availability can be used as an optimization parameter in fungal fermentation processes to enhance the production of lipids or polyphosphates.

18.
J Fungi (Basel) ; 7(4)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918216

ABSTRACT

Mucoromycoses (infections caused by members of the order Mucorales, phylum Mucoromycota [ex-Zygomycota]) are highly destructive, rapidly progressive infections, with dire prognoses especially when they occur in immunocompromised hosts. Current treatment guidelines recommend liposomal formulations of amphotericin B with adjunctive surgery as first line therapy, with the newer triazoles posaconazole or isavuconazole as alternative treatments, or as salvage therapy. Among the many organisms belonging to this order, a limited number of species in the genera Rhizopus, Mucor, Lichtheimia and Rhizomucor are responsible for most cases of human infection. Here, we present the minimum inhibitory concentration data (MICs) for amphotericin B, posaconazole, isavuconazole, itraconazole and voriconazole with a panel of over 300 isolates of the five most common agents of human infection (Lichtheimia corymbifera, Rhizopus arrhizus, R. microsporus, Rhizomucor pusillus and Mucor spp.) determined using the CLSI broth microdilution method. In agreement with previous studies, the most active antifungal drug for all Mucorales was amphotericin B, with MICs within the range that would predict susceptibility with Aspergillus fumigatus. Conversely, MICs for voriconazole against all species tested were high, and above the range associated with clinical efficacy with A. fumigatus. Interestingly, whilst isavuconazole and posaconazole MIC distributions indicated in vitro activity against some members of the Mucorales, activity was species-dependent for both agents. These data underscore the importance of accurate identification of the causative agents of mucoromycosis, coupled with antifungal susceptibility testing of individual isolates, in determining the optimal treatment of infections caused by these aggressive opportunistic human fungal pathogens.

19.
Mycologia ; 113(1): 134-145, 2021.
Article in English | MEDLINE | ID: mdl-33085937

ABSTRACT

A new genus, Pygmaeomyces, and two new species are described based on phylogenetic analyses and phenotypic and ecological characters. The species delimitation was based on concordance of gene genealogies. The Pygmaeomyces cultures were isolated from the roots of mountain laurel (Kalmia latifolia) and pitch pine (Pinus rigida) from the acidic and oligotrophic New Jersey pygmy pine plains; however, they likely have a broader distribution because their internal transcribed spacer (ITS) sequences have high similarity to a number of environmental sequences from multiple independent studies. Based on the phylogeny and phenotypic characters, a new family, Pygmaeomycetaceae, is proposed to accommodate this new lineage in Mucoromycotina. Pygmaeomycetaceae corresponds to Clade GS23, which was identified based on a sequence-only soil fungal survey and was believed to be a distinct new class. Compared with the culture-based methods, we observed that sequence-only analyses tend to overestimate the taxonomic level. Results from this work will facilitate ecological and evolutionary studies on root-associated fungi.


Subject(s)
Fungi/classification , Pinus/microbiology , Classification , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Forests , Fungi/genetics , Fungi/isolation & purification , Phylogeny , Plant Roots/microbiology , Soil Microbiology
20.
Curr Biol ; 31(2): 271-282.e5, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33186551

ABSTRACT

Multicellular organisms employ fluid transport networks to overcome the limit of diffusion and promote essential long-distance transport. Connectivity and pressurization render these networks especially vulnerable to wounding. To mitigate this risk, animals, plants, and multicellular fungi independently evolved elaborate clotting and plugging mechanisms. In the septate filamentous fungi, membrane-bound organelles plug septal pores in wounded hyphae. By contrast, vegetative hyphae in the early-diverging Mucoromycota are largely aseptate, and how their hyphae respond to wounding is unknown. Here, we show that wounding in the Mucorales leads to explosive protoplasmic discharge that is rapidly terminated by protoplasmic gelation. We identify Mucoromycota-specific Gellin proteins, whose loss of function leads to uncontrolled wound-induced protoplasmic bleeding. Gellins contain ten related ß-trefoil Gll domains, each of which possesses unique features that impart distinct gelation-related properties: some readily unfold and form high-order sheet-like structures when subjected to mechanical force from flow, while others possess hydrophobic motifs that enable membrane binding. In cell-free reconstitution, sheet-like structures formed by a partial Gellin incorporate membranous organelles. Together, these data define a mechanistic basis for regulated protoplasmic gelation, and provide new design principles for the development of artificial flow-responsive biomaterials.


Subject(s)
Cytoplasm/metabolism , Fungal Proteins/metabolism , Hyphae/metabolism , Mucor/physiology , Fungal Proteins/genetics , Hydrodynamics , Hyphae/cytology , Intravital Microscopy , Loss of Function Mutation , Mucor/cytology , Protein Domains , Protein Multimerization/physiology
SELECTION OF CITATIONS
SEARCH DETAIL