Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Biomol Struct Dyn ; : 1-11, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37572327

ABSTRACT

Several secreted proteins from helminths (parasitic worms) have been shown to have immunomodulatory activities. Asparaginyl-tRNA synthetases are abundantly secreted in the filarial nematode Brugia malayi (BmAsnRS) and the parasitic flatworm Schistosoma japonicum (SjAsnRS), indicating a possible immune function. The suggestion is supported by BmAsnRS alleviating disease symptoms in a T-cell transfer mouse model of colitis. This immunomodulatory function is potentially related to an N-terminal extension domain present in eukaryotic AsnRS proteins but few structure/function studies have been done on this domain. Here we have determined the three-dimensional solution structure of the N-terminal extension domain of SjAsnRS. A protein containing the 114 N-terminal amino acids of SjAsnRS was recombinantly expressed with isotopic labelling to allow structure determination using 3D NMR spectroscopy, and analysis of dynamics using NMR relaxation experiments. Structural comparisons of the N-terminal extension domain of SjAsnRS with filarial and human homologues highlight a high degree of variability in the ß-hairpin region of these eukaryotic N-AsnRS proteins, but similarities in the disorder of the C-terminal regions. Limitations in PrDOS-based intrinsically disordered region (IDR) model predictions were also evident in this comparison. Empirical structural data such as that presented in our study for N-SjAsnRS will enhance the prediction of sequence-homology based structure modelling and prediction of IDRs in the future.Communicated by Ramaswamy H. Sarma.

2.
Protein Sci ; 32(9): e4735, 2023 09.
Article in English | MEDLINE | ID: mdl-37486705

ABSTRACT

Molecular chaperones are key components of protein quality control system, which plays an essential role in controlling protein homeostasis. Aha1 has been identified as a co-chaperone of Hsp90 known to strongly accelerate Hsp90's ATPase activity. Meanwhile, it is reported that Aha1 could also act as an autonomous chaperone and protect stressed or disordered proteins from aggregation. Here, in this article, a series of in vitro experiments were conducted to verify whether Aha1 has a non-Hsp90-dependent holdase activity and to elucidate the associated molecular mechanism for substrate recognition. According to the results of the refolding assay, the highly conserved N-terminal extension spanning M1 to R16 in Aha1 from higher eukaryotes is responsible for the holdase activity of the protein. As revealed by the NMR data, Aha1's N-terminal extension mainly adopts a disordered conformation in solution and shows no tight contacts with the core structure of Aha1's N-terminal domain. Based on the intrinsically disordered structure feature and the primary sequence of Aha1's N-terminal extension, the fuzzy-type protein-protein interactions involving this specific region and the unfolded substrate proteins are expected. The following mutation analysis data demonstrated that the Van der Waals contacts potentially involving two tryptophans including W4 and W11 do not play a dominant role in the interaction between Aha1 and unfolded maltose binding protein (MBP). Meanwhile, since the high concentration of NaCl could abolish the holdase activity of Aha1, the electrostatic interactions mediated by those charged residues in Aha1's N-terminal extension are thus indicated to play a crucial role in the substrate recognition.


Subject(s)
HSP90 Heat-Shock Proteins , Molecular Chaperones , Humans , HSP90 Heat-Shock Proteins/chemistry , Molecular Chaperones/chemistry , Protein Binding
3.
J Biol Chem ; 295(34): 12071-12085, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32611767

ABSTRACT

Human lysyl-tRNA synthetase (hLysRS) is essential for aminoacylation of tRNALys Higher eukaryotic LysRSs possess an N-terminal extension (Nterm) previously shown to facilitate high-affinity tRNA binding and aminoacylation. This eukaryote-specific appended domain also plays a critical role in hLysRS nuclear localization, thus facilitating noncanonical functions of hLysRS. The structure is intrinsically disordered and therefore remains poorly characterized. Findings of previous studies are consistent with the Nterm domain undergoing a conformational transition to an ordered structure upon nucleic acid binding. In this study, we used NMR to investigate how the type of RNA, as well as the presence of the adjacent anticodon-binding domain (ACB), influences the Nterm conformation. To explore the latter, we used sortase A ligation to produce a segmentally labeled tandem-domain protein, Nterm-ACB. In the absence of RNA, Nterm remained disordered regardless of ACB attachment. Both alone and when attached to ACB, Nterm structure remained unaffected by titration with single-stranded RNAs. The central region of the Nterm domain adopted α-helical structure upon titration of Nterm and Nterm-ACB with RNA hairpins containing double-stranded regions. Nterm binding to the RNA hairpins resulted in CD spectral shifts consistent with an induced helical structure. NMR and fluorescence anisotropy revealed that Nterm binding to hairpin RNAs is weak but that the binding affinity increases significantly upon covalent attachment to ACB. We conclude that the ACB domain facilitates induced-fit conformational changes and confers high-affinity RNA hairpin binding, which may be advantageous for functional interactions of LysRS with a variety of different binding partners.


Subject(s)
Lysine-tRNA Ligase/chemistry , Models, Molecular , RNA Folding , RNA, Transfer/chemistry , Humans , Magnetic Resonance Spectroscopy , Protein Domains
4.
Best Pract Res Clin Endocrinol Metab ; 32(5): 725-738, 2018 10.
Article in English | MEDLINE | ID: mdl-30449551

ABSTRACT

Bone turnover includes two processes: resorption (removal of old bone) and formation (laying down of new bone). N-terminal propeptide of type I procollagen (PINP) and C-telopeptide of type I collagen (CTX-I) are markers of bone formation and resorption, respectively, that the International Osteoporosis Foundation and the International Federation of Clinical Chemistry recommend for clinical use. Bone turnover markers (BTM) are subject to sources of variability, including feeding (lower resorption) and recent fracture (increased levels of all markers). Controllable patient-related factors should be adapted as much as possible (eg blood collection after an overnight fast) to minimize pre-analytical variability. Uncontrollable factors should be considered in the interpretation of the BTM measurements. BTM do not improve prediction of bone loss or fracture within an individual. In osteoporotic patients, BTM may help to assess the response to anabolic and antiresorptive therapies, to assess compliance to the treatment, or to indicate possible secondary causes of osteoporosis. BTM reflect changes in bone metabolism induced by anti-osteoporotic treatment. Anti-resorptive drugs induce a rapid dose-dependent decrease in bone resorption, whereas bone formation stimulating medications increase the levels of bone formations markers. BTM may be used for monitoring anti-osteoporosis therapy. The expected effect during the anti-resorptive therapy is to decrease the PINP by at least 10 ng/mL and to attain the target level of less than 35 ng/mL. The expected effect during the bone formation-stimulating therapy is to increase the PINP by at least 10 ng/mL and to attain the target level of more than 69 ng/mL.


Subject(s)
Bone Diseases, Metabolic/diagnosis , Bone Remodeling/physiology , Animals , Biomarkers/blood , Bone Density/physiology , Bone Diseases, Metabolic/metabolism , Bone Diseases, Metabolic/pathology , Bone Resorption/blood , Bone Resorption/diagnosis , Bone Resorption/therapy , Bone and Bones/metabolism , Collagen Type I/blood , Fractures, Bone/diagnosis , Fractures, Bone/etiology , Fractures, Bone/therapy , Humans , Osteoporosis/diagnosis , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoporosis/therapy , Peptides/blood
5.
J Mol Cell Cardiol ; 125: 140-148, 2018 12.
Article in English | MEDLINE | ID: mdl-30359561

ABSTRACT

RATIONALE: Mutations in the gene encoding the sarcomeric protein cardiac myosin-binding protein C (cMyBP-C) are a leading cause of hypertrophic cardiomyopathy (HCM). Mouse models targeting cMyBP-C and use of recombinant proteins have been effective in studying its roles in contractile function and disease. Surprisingly, while the N-terminus of cMyBP-C is important to regulate myofilament binding and contains many HCM mutations, an incorrect sequence, lacking the N-terminal 8 amino acids has been used in many studies. OBJECTIVES: To determine the N-terminal cMyBP-C sequences in ventricles and investigate the roles of species-specific differences in cMyBP-C on myofilament binding. METHODS AND RESULTS: We determined cMyBP-C sequences in mouse and human by inspecting available sequence databases. N-terminal differences were confirmed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Cosedimentation assays with actin or myosin were used to examine binding in mouse, human and chimeric fusion proteins of cMyBP-C. Time-resolved FRET (TR-FRET) with site-directed probes on cMyBP-C was employed to measure structural dynamics. LC-MS/MS supported the sequencing data that mouse cMyBP-C contains an eight-residue N-terminal extension (NTE) not found in human. Cosedimentation assays revealed that cardiac myosin binding was strongly influenced by the presence of the NTE, which reduced binding by 60%. 75% more human C0-C2 than mouse bound to myosin. Actin binding of mouse C0-C2 was not affected by the NTE. 50% more human C0-C2 than mouse bound to actin. TR-FRET indicates that the NTE did not significantly affect structural dynamics across domains C0 and C1. CONCLUSIONS: Our functional results are consistent with the idea that cardiac myosin binding of N-terminal cMyBP-C is reduced in the mouse protein due to the presence of the NTE, which is proposed to interfere with myosin regulatory light chain (RLC) binding. The NTE is a critical component of mouse cMyBP-C, and should be considered in extrapolation of studies to cMyBP-C and HCM mechanisms in human.


Subject(s)
Carrier Proteins/metabolism , Myofibrils/metabolism , Actins/metabolism , Animals , Carrier Proteins/chemistry , Carrier Proteins/genetics , Chromatography, Liquid , Humans , Mice , Myosins/metabolism , Protein Binding , Recombinant Proteins/metabolism , Tandem Mass Spectrometry
6.
Biochem Biophys Res Commun ; 495(1): 163-167, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29102634

ABSTRACT

The molecular mechanism of muscle contraction is based on the ATP-dependent cyclic interaction of myosin heads with actin filaments. Myosin head (myosin subfragment-1, S1) consists of two major domains, the motor domain responsible for ATP hydrolysis and actin binding, and the regulatory domain stabilized by light chains. Essential light chain-1 (LC1) is of particular interest since it comprises a unique N-terminal extension (NTE) which can bind to actin thus forming an additional actin-binding site on the myosin head and modulating its motor activity. However, it remains unknown what happens to the NTE of LC1 when the head binds ATP during ATPase cycle and dissociates from actin. We assume that in this state of the head, when it undergoes global ATP-induced conformational changes, the NTE of LC1 can interact with the motor domain. To test this hypothesis, we applied fluorescence resonance energy transfer (FRET) to measure the distances from various sites on the NTE of LC1 to S1 active site in the motor domain and changes in these distances upon formation of S1-ADP-BeFx complex (stable analog of S1∗-AТP state). For this, we produced recombinant LC1 cysteine mutants, which were first fluorescently labeled with 1,5-IAEDANS (donor) at different positions in their NTE and then introduced into S1; the ADP analog (TNP-ADP) bound to the S1 active site was used as an acceptor. The results show that formation of S1-ADP-BeFx complex significantly decreases the distances from Cys residues in the NTE of LC1 to TNP-ADP in the S1 active site; this effect was the most pronounced for Cys residues located near the LC1 N-terminus. These results support the concept of the ATP-induced transient interaction of the LC1 N-terminus with the S1 motor domain.


Subject(s)
Adenosine Triphosphatases/metabolism , Myosin Light Chains/metabolism , Myosin Subfragments/metabolism , Adenosine Triphosphate/metabolism , Catalytic Domain , Fluorescence Resonance Energy Transfer , Humans , Models, Molecular , Myosin Light Chains/chemistry , Myosin Subfragments/chemistry , Myosins/metabolism , Protein Conformation , Protein Domains
7.
Protein Eng Des Sel ; 30(8): 559-570, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28967962

ABSTRACT

The carbohydrate esterase family 7 (CE7) enzymes catalyze the deacetylation of acetyl esters of a broad range of alcohols and is unique in its activity towards cephalosporin C. The CE7 fold contains a conserved N-terminal extension that distinguishes it from the canonical α/ß hydrolase fold. The hexameric quaternary structure indicates that the N-terminus may affect activity and specificity by controlling access of substrates to the buried active sites via an entrance tunnel. In this context, we characterized the catalytic parameters, conformation and thermal stability of two truncation variants lacking four and ten residues of the N-terminal region of the hyperthermostable Thermotoga maritima CE7 acetyl esterase (TmAcE). The truncations did not affect the secondary structure or the fold but modulated the oligomerization dynamics. A modest increase was observed in substrate specificity for acetylated xylose compared with acetylated glucose. A drastic reduction of ~30-40°C in the optimum temperature for activity of the variants indicated lower thermal stability. The loss of hyperthermostability appears to be an indirect effect associated with an increase in the conformational flexibility of an otherwise rigid neighboring loop containing a catalytic triad residue. The results suggest that the N-terminal extension was evolutionarily selected to preserve the stability of the enzyme.


Subject(s)
Bacterial Proteins/chemistry , Carboxylic Ester Hydrolases/chemistry , Recombinant Fusion Proteins/chemistry , Acetylation , Bacteria/enzymology , Bacteria/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Enzyme Stability , Escherichia coli/genetics , Hot Temperature , Hydrogen-Ion Concentration , Models, Molecular , Pliability , Protein Unfolding , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
8.
FEBS Lett ; 591(9): 1258-1265, 2017 05.
Article in English | MEDLINE | ID: mdl-28376244

ABSTRACT

The N-terminal extension (NTE) of plant phytochromes has been suggested to play a functional role in signaling photoinduced structural changes. Here, we use resonance Raman spectroscopy to study the effect of the NTE on the chromophore structure of B-type phytochromes from two evolutionarily distant plants. NTE deletion seems to have no effect on the chromophore in the inactive Pr state, but alters the torsion of the C-D ring methine bridge and the surrounding hydrogen bonding network in the physiologically active Pfr state. These changes are accompanied by a shift of the conformational equilibrium between two Pfr substates, which might affect the thermal isomerization rate of the C-D double bond and, thus, account for the effect of the NTE on the dark reversion kinetics.


Subject(s)
Phytochrome B/chemistry , Phytochrome B/metabolism , Plants/metabolism , Protein Domains , Arabidopsis/genetics , Arabidopsis/metabolism , Binding Sites/genetics , Hydrogen Bonding , Kinetics , Light , Models, Molecular , Mutation , Phytochrome B/genetics , Plants/genetics , Protein Binding/radiation effects , Sorghum/genetics , Sorghum/metabolism , Spectrum Analysis, Raman , Thermodynamics
9.
Proteins ; 85(4): 647-656, 2017 04.
Article in English | MEDLINE | ID: mdl-28066922

ABSTRACT

The retroviral integrase (IN) carries out the integration of a dsDNA copy of the viral genome into the host DNA, an essential step for viral replication. All IN proteins have three general domains, the N-terminal domain (NTD), the catalytic core domain, and the C-terminal domain. The NTD includes an HHCC zinc finger-like motif, which is conserved in all retroviral IN proteins. Two crystal structures of Moloney murine leukemia virus (M-MuLV) IN N-terminal region (NTR) constructs that both include an N-terminal extension domain (NED, residues 1-44) and an HHCC zinc-finger NTD (residues 45-105), in two crystal forms are reported. The structures of IN NTR constructs encoding residues 1-105 (NTR1-105 ) and 8-105 (NTR8-105 ) were determined at 2.7 and 2.15 Å resolution, respectively and belong to different space groups. While both crystal forms have similar protomer structures, NTR1-105 packs as a dimer and NTR8-105 packs as a tetramer in the asymmetric unit. The structure of the NED consists of three anti-parallel ß-strands and an α-helix, similar to the NED of prototype foamy virus (PFV) IN. These three ß-strands form an extended ß-sheet with another ß-strand in the HHCC Zn2+ binding domain, which is a unique structural feature for the M-MuLV IN. The HHCC Zn2+ binding domain structure is similar to that in HIV and PFV INs, with variations within the loop regions. Differences between the PFV and MLV IN NEDs localize at regions identified to interact with the PFV LTR and are compared with established biochemical and virological data for M-MuLV. Proteins 2017; 85:647-656. © 2016 Wiley Periodicals, Inc.


Subject(s)
DNA, Viral/chemistry , Integrases/chemistry , Moloney murine leukemia virus/chemistry , Viral Proteins/chemistry , Zinc Fingers , Amino Acid Sequence , Binding Sites , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , DNA, Viral/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Integrases/genetics , Integrases/metabolism , Models, Molecular , Moloney murine leukemia virus/enzymology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Viral Proteins/genetics , Viral Proteins/metabolism
10.
Front Mol Biosci ; 2: 32, 2015.
Article in English | MEDLINE | ID: mdl-26157801

ABSTRACT

The transcription factor nuclear factor-κB (NF-κB) exerts essential roles in many biological processes including cell growth, apoptosis and innate and adaptive immunity. The NF-κB inhibitor (IκBα) retains NF-κB in the cytoplasm and thus inhibits nuclear localization of NF-κB and its association with DNA. Recent protein crystal structures of the C-terminal part of IκBα in complex with NF-κB provided insights into the protein-protein interactions but could not reveal structural details about the N-terminal signal receiving domain (SRD). The SRD of IκBα contains a degron, formed following phosphorylation by IκB kinases (IKK). In current protein X-ray structures, however, the SRD is not resolved and assumed to be disordered. Here, we combined secondary structure annotation and domain threading followed by long molecular dynamics (MD) simulations and showed that the SRD possesses well-defined secondary structure elements. We show that the SRD contains 3 additional stable α-helices supplementing the six ARDs present in crystallized IκBα. The IκBα/NF-κB protein-protein complex remained intact and stable during the entire simulations. Also in solution, free IκBα retains its structural integrity. Differences in structural topology and dynamics were observed by comparing the structures of NF-κB free and NF-κB bound IκBα-complex. This study paves the way for investigating the signaling properties of the SRD in the IκBα degron. A detailed atomic scale understanding of molecular mechanism of NF-κB activation, regulation and the protein-protein interactions may assist to design and develop novel chronic inflammation modulators.

11.
FEBS J ; 282(12): 2247-59, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25864722

ABSTRACT

The voltage-gated potassium channel Kv1.3 is an important target for the treatment of autoimmune diseases and asthma. Blockade of Kv1.3 by the sea anemone peptide K⁺-channel toxin from Stichodactyla helianthus (ShK) inhibits the proliferation of effector memory T lymphocytes and ameliorates autoimmune diseases in animal models. However, the lack of selectivity of ShK for Kv1.3 over the Kv1.1 subtype has driven a search for Kv1.3-selective analogues. In the present study, we describe N-terminally extended analogues of ShK that contain a negatively-charged Glu, designed to mimic the phosphonate adduct in earlier Kv1.3-selective analogues, and consist entirely of common protein amino acids. Molecular dynamics simulations indicated that a Trp residue at position [-3] of the tetrapeptide extension could form stable interactions with Pro377 of Kv1.3 and best discriminates between Kv1.3 and Kv1.1. This led to the development of ShK with an N-terminal Glu-Trp-Ser-Ser extension ([EWSS]ShK), which inhibits Kv1.3 with an IC50 of 34 pm and is 158-fold selective for Kv1.3 over Kv1.1. In addition, [EWSS]ShK is more than 2900-fold more selective for Kv1.3 over Kv1.2 and KCa3.1 channels. As a highly Kv1.3-selective analogue of ShK based entirely on protein amino acids, which can be produced by recombinant expression, this peptide is a valuable addition to the complement of therapeutic candidates for the treatment of autoimmune diseases.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cnidarian Venoms , Drug Design , Kv1.3 Potassium Channel/antagonists & inhibitors , Models, Molecular , Mutant Proteins/pharmacology , Potassium Channel Blockers/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Binding Sites , Cell Line , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Isoenzymes/metabolism , Kinetics , Kv1.3 Potassium Channel/chemistry , Kv1.3 Potassium Channel/genetics , Kv1.3 Potassium Channel/metabolism , Mice , Molecular Dynamics Simulation , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Neurotoxins/chemistry , Neurotoxins/genetics , Neurotoxins/metabolism , Neurotoxins/pharmacology , Oligopeptides/chemistry , Oligopeptides/genetics , Oligopeptides/metabolism , Oligopeptides/pharmacology , Patch-Clamp Techniques , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/metabolism , Protein Conformation , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sea Anemones , Structure-Activity Relationship
12.
Cancer Biol Ther ; 16(2): 189-200, 2015.
Article in English | MEDLINE | ID: mdl-25588111

ABSTRACT

Heterochromatin protein 1α (HP1α) encoded from the CBX5-gene is an evolutionary conserved protein that binds histone H3 di- or tri-methylated at position lysine 9 (H3K9me2/3), a hallmark for heterochromatin, and has an essential role in forming higher order chromatin structures. HP1α has diverse functions in heterochromatin formation, gene regulation, and mitotic progression, and forms complex networks of gene, RNA, and protein interactions. Emerging evidence has shown that HP1α serves a unique biological role in breast cancer related processes and in particular for epigenetic control mechanisms involved in aberrant cell proliferation and metastasis. However, how HP1α deregulation plays dual mechanistic functions for cancer cell proliferation and metastasis suppression and the underlying cellular mechanisms are not yet comprehensively described. In this paper we provide an overview of the role of HP1α as a new sight of epigenetics in proliferation and metastasis of human breast cancer. This highlights the importance of addressing HP1α in breast cancer diagnostics and therapeutics.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Histones/metabolism , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/chemistry , Female , Humans , Multigene Family , Transcription, Genetic
13.
Protein Sci ; 24(1): 93-104, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25348365

ABSTRACT

The genes encoding six novel esterolytic/lipolytic enzymes, termed LC-Est1∼6, were isolated from a fosmid library of a leaf-branch compost metagenome by functional screening using tributyrin agar plates. These enzymes greatly vary in size and amino acid sequence. The highest identity between the amino acid sequence of each enzyme and that available from the database varies from 44 to 73%. Of these metagenome-derived enzymes, LC-Est1 is characterized by the presence of a long N-terminal extension (LNTE, residues 26-283) between a putative signal peptide (residues 1-25) and a C-terminal esterase domain (residues 284-510). A putative esterase from Candidatus Solibacter usitatus (CSu-Est) is the only protein, which shows the significant amino acid sequence identity (46%) to the entire region of LC-Est1. To examine whether LC-Est1 exhibits activity and its LNTE is important for activity and stability of the esterase domain, LC-Est1 (residues 26-510), LC-Est1C (residues 284-510), and LC-Est1C* (residues 304-510) were overproduced in E. coli, purified, and characterized. LC-Est1C* was only used for structural analysis. The crystal structure of LC-Est1C* highly resembles that of the catalytic domain of Thermotoga maritima esterase, suggesting that LNTE is not required for folding of the esterase domain. The enzymatic activity of LC-Est1C was lower than that of LC-Est1 by 60%, although its substrate specificity was similar to that of LC-Est1. LC-Est1C was less stable than LC-Est1 by 3.3°C. These results suggest that LNTE of LC-Est1 rather exists as an independent domain but is required for maximal activity and stability of the esterase domain.


Subject(s)
Bacteria/enzymology , Esterases/chemistry , Soil Microbiology , Acidobacteria/chemistry , Acidobacteria/enzymology , Acidobacteria/metabolism , Amino Acid Sequence , Bacteria/chemistry , Bacteria/metabolism , Enzyme Stability , Esterases/isolation & purification , Esterases/metabolism , Gene Library , Metagenome , Models, Molecular , Molecular Sequence Data , Plant Leaves/microbiology , Protein Conformation , Sequence Alignment , Soil/chemistry , Substrate Specificity , Thermotoga maritima/chemistry , Thermotoga maritima/enzymology , Thermotoga maritima/metabolism
14.
J Biol Chem ; 289(43): 29558-69, 2014 Oct 24.
Article in English | MEDLINE | ID: mdl-25210041

ABSTRACT

Bacterial alginate lyases, which are members of several polysaccharide lyase (PL) families, have important biological roles and biotechnological applications. The mechanisms for maturation, substrate recognition, and catalysis of PL18 alginate lyases are still largely unknown. A PL18 alginate lyase, aly-SJ02, from Pseudoalteromonas sp. 0524 displays a ß-jelly roll scaffold. Structural and biochemical analyses indicated that the N-terminal extension in the aly-SJ02 precursor may act as an intramolecular chaperone to mediate the correct folding of the catalytic domain. Molecular dynamics simulations and mutational assays suggested that the lid loops over the aly-SJ02 active center serve as a gate for substrate entry. Molecular docking and site-directed mutations revealed that certain conserved residues at the active center, especially those at subsites +1 and +2, are crucial for substrate recognition. Tyr(353) may function as both a catalytic base and acid. Based on our results, a model for the catalysis of aly-SJ02 in alginate depolymerization is proposed. Moreover, although bacterial alginate lyases from families PL5, 7, 15, and 18 adopt distinct scaffolds, they share the same conformation of catalytic residues, reflecting their convergent evolution. Our results provide the foremost insight into the mechanisms of maturation, substrate recognition, and catalysis of a PL18 alginate lyase.


Subject(s)
Biocatalysis , Models, Molecular , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/metabolism , Pseudoalteromonas/enzymology , Amino Acid Sequence , Amino Acids/metabolism , Catalytic Domain , Circular Dichroism , Computer Simulation , Crystallography, X-Ray , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Structure, Secondary , Sequence Analysis, Protein , Structural Homology, Protein , Structure-Activity Relationship , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL