Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
2.
Front Neurol ; 15: 1387399, 2024.
Article in English | MEDLINE | ID: mdl-38707999

ABSTRACT

Background: Infant, junior, and adult patients with neuronal intranuclear inclusion disease (NIID) present with various types of seizures. We aimed to conduct a systematic literature review on the clinical characteristics of NIID with seizures to provide novel insight for early diagnosis and treatment and to improve prognosis of these patients. Methods: We used keywords to screen articles related to NIID and seizures, and data concerning the clinical characteristics of patients, including demographic features, disease characteristics of the seizures, treatment responses, imaging examinations, and other auxiliary examination results were extracted. Results: The included studies comprised 21 patients with NIID with seizures. The most common clinical phenotypes were cognitive impairment (76.20%) and impaired consciousness (57.14%), and generalized onset motor seizures (46.15%) represented the most common type. Compared with infantile and juvenile cases, the use of antiepileptic drugs in adults led to significant seizure control and symptom improvement, in addition to providing a better prognosis. The number of GGC sequence repeats in the NOTCH2NLC gene in six NIID patients with seizures who underwent genetic testing ranged 72-134. Conclusion: The most common clinical phenotypes in patients with NIID with seizures were cognitive impairment and consciousness disorders. Patients with NIID presented with various types of seizures, with the most common being generalized onset motor seizures. Adult patients had a better prognosis and were relatively stable. The early diagnosis of NIID with seizures is of great significance for treatment and to improve prognosis.

3.
Mol Neurobiol ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709391

ABSTRACT

The unclear pathogenic mechanisms of neurodegenerative disorders stemming from NOTCH2NLC GGC repeat expansions drive focused research. Thus, a bibliometric and meta-analysis was conducted to uncover research trends and positivity rates in NOTCH2NLC. We conducted systematic searches in the Web of Science, PubMed, Embase, and Scopus databases for studies related to NOTCH2NLC up until August 2, 2023. Information regarding countries, institutions, authors, journals, and keywords of studies included in the Web of Science was analyzed and visualized. The positivity rates of NOTCH2NLC GGC repeat expansions across all screened patients and patients' families were pooled under the random-effects model. Publication bias and its impact were examined using funnel plots, Egger's linear regression, and trim-and-fill method. The bibliometric analysis, revealing pronounced publication growth, comprised 119 studies, which came from China and Japan particularly. "Neuronal intranuclear inclusion disease" emerged as a frequently used keyword. The meta-analysis comprised 36 studies, indicating global positivity rates of 1.79% (95% CI, 0.75-3.17) for all patients and 2.00% (95% CI, 0.26-4.78) for patients' families. Subgroup analyses based on region and phenotype suggested the highest NOTCH2NLC positivity rates in Taiwan population (5.42%, 95% CI 0.08-16.89) and in leukoencephalopathy-dominant patients (8.25%, 95% CI, 3.01-15.60). Sensitivity analysis affirmed the robustness of results. In conclusion, NOTCH2NLC GGC repeat expansions exhibit rare globally, primarily in East Asia, and leukoencephalopathy-dominant patients, emphasizing regional and phenotypic distinctions. Emerging focal points in NOTCH2NLC researches underscore the need for collaborative exploration.

4.
Cells ; 13(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38667292

ABSTRACT

The discovery of hexanucleotide repeats expansion (RE) in Chromosome 9 Open Reading frame 72 (C9orf72) as the major genetic cause of amyotrophic lateral sclerosis (ALS) and the association between intermediate repeats in Ataxin-2 (ATXN2) with the disorder suggest that repetitive sequences in the human genome play a significant role in ALS pathophysiology. Investigating the frequency of repeat expansions in ALS in different populations and ethnic groups is therefore of great importance. Based on these premises, this study aimed to define the frequency of REs in the NIPA1, NOP56, and NOTCH2NLC genes and the possible associations between phenotypes and the size of REs in the Italian population. Using repeat-primed-PCR and PCR-fragment analyses, we screened 302 El-Escorial-diagnosed ALS patients and compared the RE distribution to 167 age-, gender-, and ethnicity-matched healthy controls. While the REs distribution was similar between the ALS and control groups, a moderate association was observed between longer RE lengths and clinical features such as age at onset, gender, site of onset, and family history. In conclusion, this is the first study to screen ALS patients from southern Italy for REs in NIPA1, NOP56, and NOTCH2NLC genes, contributing to our understanding of ALS genetics. Our results highlighted that the extremely rare pathogenic REs in these genes do not allow an association with the disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Adult , Aged , Female , Humans , Male , Middle Aged , Amyotrophic Lateral Sclerosis/genetics , Case-Control Studies , DNA Repeat Expansion/genetics , Genetic Predisposition to Disease , Italy , Nuclear Proteins/genetics
5.
J Int Med Res ; 52(3): 3000605241233159, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38436278

ABSTRACT

Neuronal intranuclear inclusion disease (NIID) is a rare progressive neurodegenerative disease that mainly manifests as dementia, muscle weakness, sensory disturbances, and autonomic nervous dysfunction. Herein, we report a 68-year-old Chinese woman who was hospitalized because of resting tremor and bradykinesia that had been present for 7 years. Five years prior, bradykinesia and hypermyotonia had become apparent. She had urinary incontinence and rapid eye movement sleep behavior disorder. She was diagnosed with Parkinson's disease (PD) and received levodopa and pramipexole, which relieved her motor symptoms. During hospitalization, diffusion-weighted imaging revealed a high-intensity signal along the cortical medullary junction. Moreover, a skin biopsy revealed the presence of intranuclear inclusions in adipocytes, fibroblasts, and sweat gland cells. NIID was diagnosed by testing the Notch 2 N-terminal-like C (NOTCH2NLC) gene. We report this case to remind doctors to consider NIID when diagnosing patients with symptoms indicative of Parkinson's disease. Moreover, we note that further research is needed on the mechanism by which levodopa is effective for NIID.


Subject(s)
Autonomic Nervous System Diseases , Neurodegenerative Diseases , Parkinson Disease , Humans , Female , Aged , Neurodegenerative Diseases/diagnosis , Parkinson Disease/diagnosis , Parkinson Disease/drug therapy , Intranuclear Inclusion Bodies , Levodopa/therapeutic use , Hypokinesia , Diagnostic Errors
6.
Neurol Sci ; 45(9): 4501-4511, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38532189

ABSTRACT

OBJECTIVES: Neuronal intranuclear inclusion disease (NIID) exhibited significant clinical heterogeneities. However, the clinical features, radiographic changes, and prognosis of patients with encephalitis-like NIID have yet to be systematically elucidated. METHODS: Clinical data including medical history, physical examination, and laboratory examinations were collected and analyzed. Skin and sural nerve biopsies were conducted on the patient. Repeat-primed PCR (RP-PCR) and fluorescence amplicon length PCR (AL-PCR) were used to detect the expansion of CGG repeat. We also reviewed the clinical and genetic data of NIID patients with cortical enhancement. RESULTS: A 54-year-old woman presented with encephalitis-like NIID, characterized by severe headache and agitative psychiatric symptoms. The brain MRI showed cortical swelling in the temporo-occipital lobes and significant enhancement of the cortical surface and dura, but without hyperintensities along the corticomedullary junction on diffusion-weighted image (DWI). A biopsy of the sural nerve revealed a demyelinating pathological change. The intranuclear inclusions were detected in nerve and skin tissues using the p62 antibody and electron microscopy. RP-PCR and AL-PCR unveiled the pathogenic expansion of CGG repeats in the NOTCH2NLC gene. A review of the literature indicated that nine out of the 16 patients with cortical lesions and linear enhancement exhibited encephalitis-like NIID. CONCLUSION: This study indicated that patients with encephalitis-like NIID typically exhibited headache and excitatory psychiatric symptoms, often accompanied by cortical edema and enhancement of posterior lobes, and responded well to glucocorticoid treatment. Furthermore, some patients may not exhibit hyperintensities along the corticomedullary junction on DWI, potentially leading to misdiagnosis.


Subject(s)
Encephalitis , Intranuclear Inclusion Bodies , Neurodegenerative Diseases , Humans , Female , Middle Aged , Intranuclear Inclusion Bodies/pathology , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/complications , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/genetics , Encephalitis/pathology , Encephalitis/diagnostic imaging , Encephalitis/complications , Brain Edema/diagnostic imaging , Brain Edema/pathology
7.
Neuropathology ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38477063

ABSTRACT

Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder represented by eosinophilic intranuclear inclusions (EIIs) and GGC/CGG repeat expansion in the NOTCH2NLC gene. We report here two adult cases of NIID, genetically confirmed, with manifestation of encephalopathy-like symptoms and address the histopathologic findings obtained by brain biopsies, with a focus on "astrocytic" intranuclear inclusions (AIIs). Case 1 presented with paroxysmal restlessness, vertigo, or fever and was later involved in severe dementia and tetraparesis. Case 2 presented with forgetfulness and then with paroxysmal fever and headache. In both cases, delimited areas with gadolinium enhancement on magnetic resonance imaging and corresponding hyperperfusion were detected, leading to brain biopsies of the cortex. On histology, Case 1 showed an abnormal lamination, where the thickness of layers was different from usual. Both neurons and astrocytes showed some dysmorphologic features. Notably, astrocytes rather than neurons harbored EIIs. Case 2 showed a cortex, where neurons tended to be arrayed in a columnar fashion. Astrocytes showed some dysmorphologic features. Notably, much more astrocytes than neurons harbored EIIs. By a double-labeling immunofluorescence study for p62/NeuN and p62/glial fibrillary acidic protein, the predominance of AIIs was confirmed in both cases. Considering the physiological functions of astrocytes for the development and maintenance of the cortex, the encephalopathy-like symptoms, dynamic change of cerebral blood flow, and cortical dysmorphology can reasonably be explained by the dysfunction of EII-bearing astrocytes rather than EII-bearing neurons. This study suggests the presence of a subtype of NIID where AIIs rather than "neuronal" intranuclear inclusions are likely a key player in the pathogenesis of NIID, particularly in cases with encephalopathy-like symptoms. The importance of AIIs ("gliopathy") should be more appreciated in future studies of NIID.

9.
Front Med (Lausanne) ; 11: 1188193, 2024.
Article in English | MEDLINE | ID: mdl-38288273

ABSTRACT

Purpose: To evaluate adult-onset neuronal intranuclear inclusion disease (NIID)-related retinopathy with guanine-guanine-cytosine repeat expansions in NOTCH2NLC. Materials and methods: Neuro-ophthalmic evaluations, including best-corrected visual acuity, slit-lamp biomicroscopy, intraocular pressure (IOP), ultrasound biomicroscopy, pupillometry, fundus photography, fundus autofluorescence (FAF), optical coherence tomography (OCT), Humphrey visual field, full-field electroretinography (ERG), and multifocal ERG (mf-ERG) were performed in patients with gene-proven NIID. Results: Nine patients (18 eyes) were evaluated, with a median age of 62 years (55-68) and only one man was included in our study. Six patients presented with decreased visual acuity or night blindness, whereas the other three were asymptomatic. The visual acuity was measured from 20/200 to 20/20. Miosis was present in eight patients, four of whom had ciliary process hypertrophy and pronation, and three of whom had shallow anterior chambers. Fundus photography, FAF, and OCT showed consistent structural abnormalities mainly started from peripapillary areas and localized in the outer layer of photoreceptors and inner ganglion cell layer. ERG and mf-ERG also revealed retinal dysfunction in the corresponding regions. Conclusion: Patients with NIID showed both structural and functional retinopathies which were unique and different from common cone-rod dystrophy or retinitis pigmentosa. Patients with miosis may have a potential risk of an angle-closure glaucoma attack. Neuro-ophthalmic evaluations is essential for evaluating patients with NIID, even without visual symptom.

10.
Wien Klin Wochenschr ; 136(1-2): 67-72, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37389688

ABSTRACT

BACKGROUND: Neuronal intranuclear inclusion disease (NIID) is a rare highly heterogeneous disease. In this paper, we present a case of NIID featured in cortical involvement in left hemisphere of brain and the imaging changes in the process of the disease. CASE PRESENTATION: A 57-year-old female was hospitalized due to recurrent attacks of headache with cognitive impairment and tremor for 2 years. The symptoms of headache episodes were reversible. The characteristic radiologic change was high intensity signal involving the grey matter-white matter junction on the brain diffusion-weighted imaging (DWI), which existed in the frontal lobe and then extended backwards. Atypical features on fluid-attenuated inversion recovery (FLAIR) sequences showing small patchy high signals in the cerebellar vermis. High signals and edema were detected on FLAIR images along the cortex of the left occipito-parieto-temporal lobes, expanding and gradually shrinking in the follow-up visit. Besides, cerebral atrophy and bilateral symmetrical leukoencephalopathy were also detected. Skin biopsy and genetic testing confirmed the diagnosis of NIID. CONCLUSION: Except for typical radiological change strongly suggesting NIID, it is also necessary to notice the insidious symptoms of NIID combining with some atypical imaging features to make an early diagnosis. Skin biopsies or genetic testing should be carried out early in patients with highly suspected NIID.


Subject(s)
Neurodegenerative Diseases , Female , Humans , Middle Aged , Neurodegenerative Diseases/complications , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/pathology , Magnetic Resonance Imaging , Diffusion Magnetic Resonance Imaging , Headache
11.
Eur J Neurol ; 31(2): e16145, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37975799

ABSTRACT

BACKGROUND AND PURPOSE: The role of GGC repeat expansions within NOTCH2NLC in Parkinson's disease (PD) and the substantia nigra (SN) dopaminergic neuron remains unclear. Here, we profile the NOTCH2NLC GGC repeat expansions in a large cohort of patients with PD. We also investigate the role of GGC repeat expansions within NOTCH2NLC in the dopaminergic neurodegeneration of SN. METHODS: A total of 2,522 patients diagnosed with PD and 1,085 health controls were analyzed for the repeat expansions of NOTCH2NLC by repeat-primed PCR and GC-rich PCR assay. Furthermore, the effects of GGC repeat expansions in NOTCH2NLC on dopaminergic neurons were investigated by using recombinant adeno-associated virus (AAV)-mediated overexpression of NOTCH2NLC with 98 GGC repeats in the SN of mice by stereotactic injection. RESULTS: Four PD pedigrees (4/333, 1.2%) and three sporadic PD patients (3/2189, 0.14%) were identified with pathogenic GGC repeat expansions (larger than 60 GGC repeats) in the NOTCH2NLC gene, while eight PD patients and one healthy control were identified with intermediate GGC repeat expansions ranging from 41 to 60 repeats. No significant difference was observed in the distribution of intermediate NOTCH2NLC GGC repeat expansions between PD cases and controls (Fisher's exact test p-value = 0.29). Skin biopsy showed P62-positive intranuclear NOTCH2NLC-polyGlycine (polyG) inclusions in the skin nerve fibers of patient. Expanded GGC repeats in NOTCH2NLC produced widespread intranuclear and perinuclear polyG inclusions, which led to a severe loss of dopaminergic neurons in the SN. Consistently, polyG inclusions were presented in the SN of EIIa-NOTCH2NLC-(GGC)98 transgenic mice and also led to dopaminergic neuron loss in the SN. CONCLUSIONS: Overall, our findings provide strong evidence that GGC repeat expansions within NOTCH2NLC contribute to the pathogenesis of PD and cause degeneration of nigral dopaminergic neurons.


Subject(s)
Parkinson Disease , Animals , Humans , Mice , Dopaminergic Neurons/pathology , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/pathology , Mice, Transgenic , Nerve Degeneration/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Substantia Nigra/pathology , Trinucleotide Repeat Expansion
12.
Neurobiol Dis ; 190: 106391, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38145851

ABSTRACT

CGG repeat expansion in NOTCH2NLC is the genetic cause of neuronal intranuclear inclusion disease (NIID). Previous studies indicated that the CGG repeats can be translated into polyglycine protein (N2CpolyG) which was toxic to neurons by forming intranuclear inclusions (IIs). However, little is known about the factors governing polyG IIs formation as well as its molecular pathogenesis. Considering that neurogenetic disorders usually involve interactions between genetic and environmental stresses, we investigated the effect of stress on the formation of IIs. Our results revealed that under hyperosmotic stress, N2CpolyG translocated from the cytoplasm to the nucleus and formed IIs in SH-SY5Y cells, recapitulating the pathological hallmark of NIID patients. Furthermore, N2CpolyG interacted/ co-localized with an RNA-binding protein FUS in the IIs of cellular model and NIID patient tissues, thereby disrupting stress granule formation in cytoplasm under hyperosmotic stress. Consequently, dysregulated expression of microRNAs was found both in NIID patients and cellular model, which could be restored by FUS overexpression in cultured cells. Overall, our findings indicate a mechanism of stress-induced pathological changes as well as neuronal damage, and a potential strategy for the treatment of NIID.


Subject(s)
Neuroblastoma , Neurodegenerative Diseases , Humans , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/metabolism , Intranuclear Inclusion Bodies/pathology , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Neuroblastoma/pathology , Neurodegenerative Diseases/metabolism
13.
J Dermatol ; 50(11): 1367-1372, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37718652

ABSTRACT

Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disease with variable clinical phenotypes. There is a considerable delay in the definite diagnosis, which primarily depends on postmortem brain pathological examination. Although CGG repeat expansion in the 5'-untranslated region of NOTCH2NLC has been identified as a disease-associated variant, the pathological diagnosis is still required in certain NIID cases. Intranuclear inclusions found in the skin tissue of patients with NIID dramatically increased its early detection rate. Skin biopsy, as a minimally invasive method, has become widely accepted as a routine examination to confirm the pathogenicity of the repeat expansion in patients with suspected NIID. In addition, the shared developmental origin of the skin and nerve system provided a new insight into the pathological changes observed in patients with NIID. In this review, we systematically discuss the role of skin biopsy for NIID diagnosis, the procedure of skin biopsy, and the pathophysiological mechanism of intranuclear inclusion in the skin.


Subject(s)
Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/pathology , Brain , Biopsy
14.
Cell Biosci ; 13(1): 157, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37644522

ABSTRACT

BACKGROUND: Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder characterized by widespread intranuclear inclusions in the nervous system as well as multiple visceral organs. In 2019, expanded GGC repeats within the 5' untranslated region of the NOTCH2NLC gene was identified as the causative factor. NIID is a heterogeneous disorder with variable clinical manifestations including cognitive impairment, cerebellar ataxia, parkinsonism, paroxysmal symptoms, autonomic dysfunction, and muscle weakness. Although NIID primarily affects the central and peripheral nervous systems, growing evidence suggests potential cardiac abnormalities in NIID. However, the link between expanded GGC repeats within NOTCH2NLC and cardiac dysfunction remains uncertain. RESULTS: In this study, we utilized two transgenic mouse models, expressing NOTCH2NLC-(GGC)98 ubiquitously or specifically in cardiomyocytes, and identified p62 (also known as sequestosome 1, SQSTM1)-positive intranuclear NOTCH2NLC-polyG inclusions in cardiomyocytes in two mouse models. We observed that both models exhibited cardiac-related pathological and echocardiographic changes, albeit exhibiting varying degrees of severity. Transcriptomic analysis revealed shared downregulation of genes related to ion channels and mitochondria in both models, with the cardiomyocyte-specific mice showing a more pronounced downregulation of mitochondria and energy metabolism-related pathways. Further investigations revealed decreased expression of mitochondria-related genes and electron transport chain activity. At last, we conducted a retrospective review of cardiac-related examination results from NIID patients at our hospital and also identified some cardiac abnormalities in NIID patients. CONCLUSIONS: Our study provided the first in vivo evidence linking GGC repeat expansions within NOTCH2NLC to cardiac abnormalities and highlighted the contribution of mitochondrial dysfunction in the development of cardiac abnormalities.

15.
Front Neurol ; 14: 1178307, 2023.
Article in English | MEDLINE | ID: mdl-37404945

ABSTRACT

Background: High signals on diffusion weighted imaging along the corticomedullary junction (CMJ) have demonstrated excellent diagnostic values for adult-onset neuronal intranuclear inclusion disease (NIID). However, the longitudinal course of diffusion weighted imaging high intensities in adult-onset NIID patients has rarely been investigated. Methods: We described four NIID cases that had been discovered using skin biopsy and NOTCH2NLC gene testing, after diffusion weighted imaging exhibiting the distinctive corticomedullary junction high signals. Then using complete MRI data from NIID patients, we analyzed the chronological diffusion weighted imaging alterations of those individuals that had been published in Pub Med. Results: We discussed 135 NIID cases with comprehensive MRI data, including our four cases, of whom 39 had follow-up outcomes. The following are the four primary diffusion weighted imaging dynamic change patterns: (1) high signal intensities in the corticomedullary junction were negative on diffusion weighted imaging even after an 11-year follow-up (7/39); (2) diffusion weighted imagings were initially negative but subsequently revealed typical findings (9/39); (3) high signal intensities vanished during follow-up (3/39); (4) diffusion weighted imagings were positive at first and developed in a step-by-step manner (20/39). We discovered that NIID lesions eventually damaged the deep white matter, which comprises the cerebral peduncles, brain stem, middle cerebellar peduncles, paravermal regions, and cerebellar white matter. Conclusion: The longitudinal dynamic changes in NIID of diffusion weighted imaging are highly complex. We find that there are four main patterns of dynamic changes on diffusion weighted imaging. Furthermore, as the disease progressed, NIID lesions eventually involved the deep white matter.

16.
Brain Sci ; 13(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37371433

ABSTRACT

Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder that is caused by the abnormal expansion of non-coding trinucleotide GGC repeats in NOTCH2NLC. NIID is clinically characterized by a broad spectrum of clinical presentations. To date, the relationship between expanded repeat lengths and clinical phenotype in patients with NIID remains unclear. Thus, we aimed to clarify the genetic and clinical spectrum and their association in patients with NIID. For this purpose, we genetically analyzed Japanese patients with adult-onset NIID with characteristic clinical and neuroimaging findings. Trinucleotide repeat expansions of NOTCH2NLC were examined by repeat-primed and amplicon-length PCR. In addition, long-read sequencing was performed to determine repeat size and sequence. The expanded GGC repeats ranging from 94 to 361 in NOTCH2NLC were found in all 15 patients. Two patients carried biallelic repeat expansions. There were marked heterogenous clinical and imaging features in NIID patients. Patients presenting with cerebellar ataxia or urinary dysfunction had a significantly larger GGC repeat size than those without. This significant association disappeared when these parameters were compared with the total trinucleotide repeat number. ARWMC score was significantly higher in patients who had a non-glycine-type trinucleotide interruption within expanded poly-glycine motifs than in those with a pure poly-glycine expansion. These results suggested that the repeat length and sequence in NOTCH2NLC may partly modify some clinical and imaging features of NIID.

17.
Neurol Sci ; 44(10): 3545-3556, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37184590

ABSTRACT

BACKGROUND: The discovery of skin intranuclear inclusions and GGC repeat expansion of NOTCH2NLC has greatly promoted the diagnosis of neuronal intranuclear inclusion disease (NIID). With highly heterogeneous clinical manifestations, NIID patients tend to be underdiagnosed at early stages. METHODS: This study comprehensively studied clinical manifestations, magnetic resonance imaging (MRI), and peripheral nerve conduction in 24 NIID and 166 other neurodegenerative disease (ND) subjects. The nomogram was plotted using the "rms" package, and the t-distributed stochastic neighbor embedding algorithm was performed. Associations between skin intranuclear inclusions and NOTCH2NLC GGC repeats were further analyzed. RESULTS: The clinical, MRI, and peripheral nerve conduction features seriously overlapped in NIID and ND patients; they were assigned variables according to their frequency and specificity in NIID patients. A nomogram that could distinguish NIID from ND was constructed according to the assigned variables and cutoff values of the above features. The occurrence of skin intranuclear inclusions and NOTCH2NLC GGC repeats ≥ 60 showed 100% consistency, and intranuclear inclusion frequency positively correlated with NOTCH2NLC GGC repeats. A hierarchical diagnostic flowchart for definite NIID was further established. CONCLUSION: We provide a novel nomogram with the potential to realize early identification and update the diagnostic flowchart for definitive diagnosis. Moreover, this is the first study to define the association between skin pathology and NOTCH2NLC genetics in NIID.


Subject(s)
Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/genetics , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/pathology , Magnetic Resonance Imaging , Skin
18.
Acta Neuropathol Commun ; 11(1): 71, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37131242

ABSTRACT

The retinal pathology of genetically confirmed neuronal intranuclear inclusion disease (NIID) is yet unknown. We report the ocular findings in four NIID patients with NOTCH2NLC GGC repeat expansion to investigate the pathology of retinopathy. All four NIID patients were diagnosed by skin biopsy and NOTCH2NLC GGC repeat analysis. Ocular findings in patients with NIID were studied using fundus photographs, optical coherence tomographic images (OCT), and full-field electroretinograms (ERGs). The histopathology of the retina was studied on autopsy samples from two cases with immunohistochemistry. All patients had an expansion of the GGC repeat (87-134 repeats) in the NOTCH2NLC. Two patients were legally blind and had been diagnosed with retinitis pigmentosa prior to the diagnosis of NIID and assessed with whole exome sequencing to rule out comorbidity with other retinal diseases. Fundus photographs around the posterior pole showed chorioretinal atrophy in the peripapillary regions. OCT showed thinning of the retina. ERGs showed various abnormalities in cases. The histopathology of autopsy samples showed diffusely scattered intranuclear inclusions throughout the retina from the retinal pigment epithelium to the ganglion cell layer, and optic nerve glial cells. And severe gliosis was observed in retina and optic nerve. The NOTCH2NLC GGC repeat expansion causes numerous intranuclear inclusions in the retina and optic nerve cells and gliosis. Visual dysfunction could be the first sign of NIID. We should consider NIID as one of the causes of retinal dystrophy and investigate the GGC repeat expansion in NOTCH2NLC.


Subject(s)
Intranuclear Inclusion Bodies , Neurodegenerative Diseases , Receptor, Notch2 , Humans , Gliosis/pathology , Intranuclear Inclusion Bodies/pathology , Neurodegenerative Diseases/pathology , Retina/pathology , Receptor, Notch2/genetics
19.
Neurol Sci ; 44(9): 3189-3197, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37099235

ABSTRACT

BACKGROUND: Neuronal intranuclear inclusion disease (NIID) is a great imitator with a broad spectrum of clinical manifestations that include dementia, parkinsonism, paroxysmal symptoms, peripheral neuropathy, and autonomic dysfunction. Hence, it may also masquerade as other diseases such as Alzheimer's disease, Parkinson's disease, and Charcot-Marie-Tooth disease. Recent breakthroughs on neuroimaging, skin biopsy, and genetic testing have facilitated the diagnosis. However, early identification and effective treatment are still difficult in cases of NIID. OBJECTIVE: To further study the clinical characteristics of NIID and investigate the relationship between NIID and inflammation. METHODS: We systematically evaluated the clinical symptoms, signs, MRI and electromyographical findings, and pathological characteristics of 20 NIID patients with abnormal GGC repeats in the NOTCH2NLC gene. Some inflammatory factors in the patients were also studied. RESULTS: Paroxysmal symptoms such as paroxysmal encephalopathy, stroke-like episodes, and mitochondrial encephalomyopathy lactic acidosis and stroke (MELAS)-like episode were the most common phenotypes. Other symptoms such as cognitive dysfunction, neurogenic bladder, tremor, and vision disorders were also suggestive of NIID. Interestingly, not all patients showed apparent diffusion-weighted imaging (DWI) abnormality or intranuclear inclusions, while abnormal GGC repeats of NOTCH2NLC were seen in all patients. And fevers were noticed in some patients during encephalitic episodes, usually with increasing leukocyte counts and neutrophil ratios. Both IL-6 (p = 0.019) and TNF-α (p = 0.027) levels were significantly higher in the NIID group than in normal controls. CONCLUSION: Genetic testing of NOTCH2NLC may be the best choice in the diagnosis of NIID. Inflammation might be involved in the pathogenesis of NIID.


Subject(s)
Alzheimer Disease , Stroke , Humans , Intranuclear Inclusion Bodies/pathology , Inflammation/pathology , Alzheimer Disease/pathology , Stroke/pathology
SELECTION OF CITATIONS
SEARCH DETAIL