Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
Br J Pharmacol ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39299793

ABSTRACT

BACKGROUND AND PURPOSE: Vortioxetine, a multimodal-acting antidepressant, has recently shown analgesic properties. We aimed to investigate its prophylactic effect in the osteoarthritis (OA) model and gain insights into the underlying molecular mechanisms. Duloxetine was studied as a reference. EXPERIMENTAL APPROACH: In the monoiodoacetate (MIA)-induced rat model of knee OA, pain-related behaviour was assessed in weight-bearing and Von Frey tests. Antidepressants were administered orally once daily for 28 days. Gene expression of pain-related mediators (Ngf, Il-1ß, Tnf-α, Bdnf, and Tac1 encoding substance P) and oxidative stress parameters were determined after completion of the treatment/behavioural testing protocol. KEY RESULTS: Vortioxetine and duloxetine dose dependently reduced weight-bearing asymmetry and mechanical hyperalgesia of the paw ipsilateral to the MIA-injected knee. Vortioxetine reduced the increased Ngf mRNA expression in the MIA-injected knees to the level in sham-injected counterparts. It reduced oxidative stress parameters in the affected knees, more effectively in females than males. Duloxetine showed no effect on Ngf mRNA expression and oxidative stress. Both antidepressants decreased mRNA expression of pain-related mediators in the lumbar L3-L5 ipsilateral DRGs and spinal cords, which were up-regulated in MIA-injected rats. This effect was male-specific. CONCLUSION AND IMPLICATIONS: Vortioxetine may be effective against the development of chronic pain in OA. Its antihyperalgesic effect may be mediated, at least in part, by normalization of NGF expression in the affected joint. Decrease of localized oxidative stress and of expression of pain-related mediators that contribute to central sensitization are also involved in vortioxetine's antihyperalgesic effect, in a sex-specific pattern.

2.
Br J Hosp Med (Lond) ; 85(8): 1-17, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212572

ABSTRACT

Aims/Background Nerve growth factor has been approved for treating neurotrophic keratitis in Europe and the United States. However, its clinical efficacy and safety profile in neurotrophic keratitis patients have not been systematically evaluated. Therefore, this study systematically assessed the efficacy and safety of nerve growth factor (NGF) in treating patients with neurotrophic keratitis. Methods Various databases, including Wanfang, China National Knowledge Internet (CNKI), Embase, PubMed, and Web of Science were systematically searched. This search included all articles published up to January 2024. Moreover, these articles were thoroughly reviewed and carefully screened following predetermined inclusion and exclusion criteria. Furthermore, the quality of the included studies was assessed using the Cochrane Risk of Bias Manual 5.3 (The Cochrane Collaboration, London, UK). Stata26.0 (StataCorp LLC, College Station, TX, USA) was used for meta-analysis. The outcome indicators evaluated in this study included corneal healing efficiency, corneal complete healing rate, best vision correction rate, ailment progression, and the number of adverse events. Results A total of 4 articles were included in this study, including 293 sufferers. The findings from the meta-analysis revealed that the corneal healing efficiency (odds ratio (OR) = 1.72, 95% confidence interval (CI): 1.20-2.45), the corneal complete healing rate (OR = 2.23, 95% CI: 1.41-3.54), and the best visual acuity correction rate (OR = 1.97, 95% CI: 1.11-3.47) were significantly higher in the experimental group compared to the control group. However, the incidence of ailment progression (OR = 0.44, 95% CI: 0.17-1.13) and adverse events (OR = 0.88, 95% CI: 0.50-1.56) did not show significant differences between these two groups. Conclusion In summary, for patients with neuropathic keratitis, NGF treatment can promote corneal healing efficiency, effectively improve visual correction, and reduce disease progression and incidence of adverse events to a large extent. The clinical effect and safety are high, and it is worthy of clinical promotion and application.


Subject(s)
Keratitis , Nerve Growth Factor , Humans , Keratitis/drug therapy , Nerve Growth Factor/therapeutic use , Treatment Outcome , Wound Healing/drug effects
3.
Pharmaceuticals (Basel) ; 17(8)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39204102

ABSTRACT

Neurotrophins are important regulators of neuronal and non-neuronal functions. As such, the neurotrophins and their receptors, the tropomyosin receptor kinase (Trk) family of receptor tyrosine kinases, has attracted intense research interest and their role in multiple diseases including Alzheimer's disease has been described. Attempts to administer neurotrophins to patients have been reported, but the clinical trials have so far have been hampered by side effects or a lack of clear efficacy. Thus, much of the focus during recent years has been on identifying small molecules acting as agonists or positive allosteric modulators (PAMs) of Trk receptors. Two examples of successful discovery and development of PAMs are the TrkA-PAM E2511 and the pan-Trk PAM ACD856. E2511 has been reported to have disease-modifying effects in preclinical models, whereas ACD856 demonstrates both a symptomatic and a disease-modifying effect in preclinical models. Both molecules have reached the stage of clinical development and were reported to be safe and well tolerated in clinical phase 1 studies, albeit with different pharmacokinetic profiles. These two emerging small molecules are interesting examples of possible novel symptomatic and disease-modifying treatments that could complement the existing anti-amyloid monoclonal antibodies for the treatment of Alzheimer's disease. This review aims to present the concept of positive allosteric modulators of the Trk receptors as a novel future treatment option for Alzheimer's disease and other neurodegenerative and cognitive disorders, and the current preclinical and clinical data supporting this new concept. Preclinical data indicate dual mechanisms, not only as cognitive enhancers, but also a tentative neurorestorative function.

4.
Mol Neurobiol ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995444

ABSTRACT

Cognitive impairment frequently presents as a prevalent consequence following stroke, imposing significant burdens on patients, families, and society. The objective of this study was to assess the effectiveness and underlying mechanism of nerve growth factor (NGF) in treating post-stroke cognitive dysfunction in rats with cerebral ischemia-reperfusion injury (MCAO/R) through delivery into the brain using specific mode electroacupuncture stimulation (SMES). From the 28th day after modeling, the rats were treated with NGF mediated by SMES, and the cognitive function of the rats was observed after treatment. Learning and memory ability were evaluated using behavioral tests. The impact of SMES on blood-brain barrier (BBB) permeability, the underlying mechanism of cognitive enhancement in rats with MCAO/R, including transmission electron microscopy, enzyme-linked immunosorbent assay, immunohistochemistry, immunofluorescence, and TUNEL staining. We reported that SMES demonstrates a safe and efficient ability to open the BBB during the cerebral ischemia repair phase, facilitating the delivery of NGF to the brain by the p65-VEGFA-TJs pathway.

5.
Brain ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001871

ABSTRACT

Provoked vulvodynia (PV) is characterized by localized chronic vulvar pain. It is associated with a history of recurrent inflammation, mast cell (MC) accumulation, and neuronal sprouting in the vulva. However, the mechanism of how vulvar-inflammation promotes neuronal sprouting and gene-expression adaptation in the spinal cord, leading to hypersensitivity and painful sensations, is unknown. Here, we found that vulvar tissue from women with PV (n=8) is characterized by MC accumulation and neuronal sprouting compared to women without PV (n=4). In addition, we observed these changes in an animal study of PV. Thus, we found that repeated vulvar zymosan-inflammation challenges lead to long-lasting mechanical and thermal vulvar hypersensitivity, which was mediated by MC accumulation, neuronal sprouting, overexpression of the pain channels (TRPV1 and TRPA1) in vulvar neurons, as well as a long-term increase of gene expression related to neuroplasticity, neuroinflammation, and nerve growth factor (NGF) in the spinal cord/DRG(L6-S3). However, regulation of the NGF pathway by stabilization of MC activity with ketotifen fumarate (KF) during vulvar inflammation attenuated the local increase of NGF and histamine, as well as the elevated transcription of pro-inflammatory cytokines, and NGF pathway in the spinal cord. Additionally, KF treatment during inflammation modulates MC accumulation, neuronal hyperinnervation, and overexpression of the TRPV1 and TRPA1 channels in the vulvar neurons, consequently preventing the development of vulvar pain. A thorough examination of the NGF pathway during inflammation revealed that blocking NGF activity by using an NGF-non-peptide-inhibitor (Ro08-2750) regulates the upregulation of genes related to neuroplasticity, and NGF pathway in the spinal cord, as well as modulates neuronal sprouting and overexpression of the pain channels, resulting in a reduced level of vulvar hypersensitivity. On the other hand, stimulation of the NGF pathway in the vulvar promotes neuronal sprouting, overexpression of pain channels, and increase of gene expression related to neuroplasticity, neuroinflammation, and NGF in the spinal cord, resulting in long-lasting vulvar hypersensitivity. In conclusion, our findings suggest that vulvar allodynia induced by inflammation is mediated by MC accumulation, neuronal sprouting, and neuromodulation in the vulvar. Additionally, chronic vulvar pain may involve a long-term adaptation in gene expression in the spinal cord, which probably plays a critical role in central sensitization and pain maintenance. Strikingly, regulating the NGF pathway during the critical period of inflammation prevents vulvar pain development via modulating the neuronal changes in the vestibule and spinal cord, suggesting a fundamental role for the NGF pathway in PV development.

6.
J Gastrointest Oncol ; 15(3): 1198-1213, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38989424

ABSTRACT

Background: Cholangiocarcinoma (CCA), a highly lethal tumor of the hepatobiliary system originating from bile duct epithelium, can be divided into the intrahepatic, hilar, and extrahepatic types. Due to its insidious onset and atypical early clinical symptoms, the overall prognosis is poor. One of the important factors contributing to the poor prognosis of CCA is the occurrence of perineural invasion (PNI), but the specific mechanisms regarding how it contributes to the occurrence of PNI are still unclear. The main purpose of this study is to explore the molecular mechanism leading to the occurrence of PNI and provide new ideas for clinical treatment. Methods: CCA cell lines and Schwann cells (SCs) were stimulated to observe the changes in cell behavior. SCs cocultured with tumor supernatant and SCs cultured in normal medium were subjected to transcriptome sequencing to screen the significantly upregulated genes. Following this, the two types of tumor cells were cultured with SC supernatant, and the changes in behavior of the tumor cells were observed. Nonobese diabetic-severe combined immunodeficiency disease (NOD-SCID) mice were injected with cell suspension supplemented with nerve growth factor (NGF) via the sciatic nerve. Four weeks later, the mice were euthanized and the tumor sections were removed and stained. Results: Nerve invasion by tumor cells was common in CCA tissues. SCs were observed in tumor tissues, and the number of SCs in tumor tissues and the degree of PNI were much higher than were those in normal tissues or tissues without PNI. The overall survival time was shorter in patients with CCA with PNI than in patients without PNI. SCs were enriched in CCA tissues, indicating the presence of PNI and associated with poor prognosis in CCA patients. CCA was found to promote NGF secretion from SCs in vitro. After the addition of exogenous NGF in CCA cell culture medium, the proliferation activity and migration ability of CCA cells were significantly increased, suggesting that SCs can promote the proliferation and migration of CCA through the secretion of NGF. NGF, in turn, was observed to promote epithelial-mesenchymal transition in CCA through tropomyosin receptor kinase A (TrkA), thus promoting its progression. Tumor growth in mice shows that NGF can promote PNI in CCA. Conclusions: In CCA, tumor cells can promote the secretion of NGF by SCs, which promotes the progression of CCA and PNI by binding to its high-affinity receptor TrkA, leading to poor prognosis.

7.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892241

ABSTRACT

Glutamate functions as the major excitatory neurotransmitter for primary sensory neurons and has a crucial role in sensitizing peripheral nociceptor terminals producing sensitization. Glutaminase (GLS) is the synthetic enzyme that converts glutamine to glutamate. GLS-immunoreactivity (-ir) and enzyme activity are elevated in dorsal root ganglion (DRG) neuronal cell bodies during chronic peripheral inflammation, but the mechanism for this GLS elevation is yet to be fully characterized. It has been well established that, after nerve growth factor (NGF) binds to its high-affinity receptor tropomyosin receptor kinase A (TrkA), a retrograde signaling endosome is formed. This endosome contains the late endosomal marker Rab7GTPase and is retrogradely transported via axons to the cell soma located in the DRG. This complex is responsible for regulating the transcription of several critical nociceptive genes. Here, we show that this retrograde NGF signaling mediates the expression of GLS in DRG neurons during the process of peripheral inflammation. We disrupted the normal NGF/TrkA signaling in adjuvant-induced arthritic (AIA) Sprague Dawley rats by the pharmacological inhibition of TrkA or blockade of Rab7GTPase, which significantly attenuated the expression of GLS in DRG cell bodies. The results indicate that NGF/TrkA signaling is crucial for the production of glutamate and has a vital role in the development of neurogenic inflammation. In addition, our pain behavioral data suggest that Rab7GTPase can be a potential target for attenuating peripheral inflammatory pain.


Subject(s)
Ganglia, Spinal , Glutaminase , Inflammation , Nerve Growth Factor , Rats, Sprague-Dawley , Receptor, trkA , Signal Transduction , Animals , Ganglia, Spinal/metabolism , Nerve Growth Factor/metabolism , Glutaminase/metabolism , Rats , Receptor, trkA/metabolism , Inflammation/metabolism , Inflammation/pathology , Male , Neurons/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins
8.
J Clin Med ; 13(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792459

ABSTRACT

Several studies have demonstrated interesting results considering the implication of three growth factors (GFs), namely nerve growth factor (NGF), erythropoietin (EPO), and the insulin-like growth factor-I (IGF-1) in the physiology of male reproductive functions. This review provides insights into the effects of NGF, EPO, and IGF-1 on the male reproductive system, emphasizing mainly their effects on sperm motility and vitality. In the male reproductive system, the expression pattern of the NGF system varies according to the species and testicular development, playing a crucial role in morphogenesis and spermatogenesis. In humans, it seems that NGF positively affects sperm motility parameters and NGF supplementation in cryopreservation media improves post-thaw sperm motility. In animals, EPO is found in various male reproductive tissues, and in humans, the protein is present in seminal plasma and testicular germ cells. EPO receptors have been discovered in the plasma membrane of human spermatozoa, suggesting potential roles in sperm motility and vitality. In humans, IGF-1 is expressed mainly in Sertoli cells and is present in seminal plasma, contributing to cell development and the maturation of spermatozoa. IGF-1 seems to modulate sperm motility, and treatment with IGF-1 has a positive effect on sperm motility and vitality. Furthermore, lower levels of NGF or IGF-1 in seminal plasma are associated with infertility. Understanding the mechanisms of actions of these GFs in the male reproductive system may improve the outcome of sperm processing techniques.

10.
J Biochem Mol Toxicol ; 38(4): e23638, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613466

ABSTRACT

The pancreas is a heterocrine gland that has both exocrine and endocrine parts. Most pancreatic cancer begins in the cells that line the ducts of the pancreas and is called pancreatic ductal adenocarcinoma (PDAC). PDAC is the most encountered pancreatic cancer type. One of the most important characteristic features of PDAC is neuropathy which is primarily due to perineural invasion (PNI). PNI develops tumor microenvironment which includes overexpression of fibroblasts cells, macrophages, as well as angiogenesis which can be responsible for neuropathy pain. In tumor microenvironment inactive fibroblasts are converted into an active form that is cancer-associated fibroblasts (CAFs). Neurotrophins they also increase the level of Substance P, calcitonin gene-related peptide which is also involved in pain. Matrix metalloproteases are the zinc-associated proteases enzymes which activates proinflammatory interleukin-1ß into its activated form and are responsible for release and activation of Substance P which is responsible for neuropathic pain by transmitting pain signal via dorsal root ganglion. All the molecules and their role in being responsible for neuropathic pain are described below.


Subject(s)
Neuralgia , Pancreatic Neoplasms , Humans , Substance P , Neuralgia/etiology , Pancreas , Pancreatic Neoplasms/complications , Fibroblasts , Tumor Microenvironment
11.
Int J Mol Sci ; 25(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38612839

ABSTRACT

Chronic inflammatory diseases are considered the most significant cause of death worldwide. Current treatments for inflammatory diseases are limited due to the lack of understanding of the biological factors involved in early-stage disease progression. Nerve growth factor (NGF) is a neurotrophic factor directly associated with inflammatory and autoimmune diseases like osteoarthritis, multiple sclerosis, and rheumatoid arthritis. It has been shown that NGF levels are significantly upregulated at the site of inflammation and play a crucial role in developing a robust inflammatory response. However, little is known about NGF's temporal expression profile during the initial progressive phase of inflammation. This study aimed to determine the temporal expression patterns of NGF in rat skin (epidermis) during adjuvant-induced arthritis (AIA). Sprague Dawley rats were randomly divided into control and complete Freund's adjuvant (CFA)-treated groups. Levels of NGF were evaluated following unilateral AIA at different time points, and it was found that peripheral inflammation due to AIA significantly upregulated the expression of NGF mRNA and protein in a biphasic pattern. These results suggest that NGF signaling is crucial for initiating and maintaining peripheral neurogenic inflammation in rats during AIA.


Subject(s)
Nerve Growth Factor , Neurogenic Inflammation , Animals , Rats , Rats, Sprague-Dawley , Nerve Growth Factor/genetics , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Inflammation
12.
Am J Physiol Cell Physiol ; 326(6): C1648-C1658, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38682237

ABSTRACT

The authors' previous research has shown the pivotal roles of cyclin-dependent kinase 5 (CDK5) and its regulatory protein p35 in nerve growth factor (NGF)-induced differentiation of sympathetic neurons in PC12 cells. During the process of differentiation, neurons are susceptible to environmental influences, including the effects of drugs. Metformin is commonly used in the treatment of diabetes and its associated symptoms, particularly in diabetic neuropathy, which is characterized by dysregulation of the sympathetic neurons. However, the impacts of metformin on sympathetic neuronal differentiation remain unknown. In this study, we investigated the impact of metformin on NGF-induced sympathetic neuronal differentiation using rat pheochromocytoma PC12 cells as a model. We examined the regulation of TrkA-p35/CDK5 signaling in NGF-induced PC12 differentiation. Our results demonstrate that metformin reduces NGF-induced PC12 differentiation by inactivating the TrkA receptor, subsequently inhibiting ERK and EGR1. Inhibition of this cascade ultimately leads to the downregulation of p35/CDK5 in PC12 cells. Furthermore, metformin inhibits the activation of the presynaptic protein Synapsin-I, a substrate of CDK5, in PC12 differentiation. In addition, metformin alters axonal and synaptic bouton formation by inhibiting p35 at both the axons and axon terminals in fully differentiated PC12 cells. In summary, our study elucidates that metformin inhibits sympathetic neuronal differentiation in PC12 cells by disrupting TrkA/ERK/EGR1 and p35/CDK5 signaling. This research contributes to uncovering a novel signaling mechanism in drug response during sympathetic neuronal differentiation, enhancing our understanding of the intricate molecular processes governing this critical aspect of neurodevelopment.NEW & NOTEWORTHY This study unveils a novel mechanism influenced by metformin during sympathetic neuronal differentiation. By elucidating its inhibitory effects from the nerve growth factor (NGF) receptor, TrkA, to the p35/CDK5 signaling pathways, we advance our understanding of metformin's mechanisms of action and emphasize its potential significance in the context of drug responses during sympathetic neuronal differentiation.


Subject(s)
Cell Differentiation , Cyclin-Dependent Kinase 5 , Metformin , Nerve Growth Factor , Neurons , Receptor, trkA , Animals , Metformin/pharmacology , Rats , PC12 Cells , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Receptor, trkA/metabolism , Receptor, trkA/antagonists & inhibitors , Neurons/drug effects , Neurons/metabolism , Cell Differentiation/drug effects , Signal Transduction/drug effects , Neurogenesis/drug effects , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Phosphotransferases
13.
Biomed Pharmacother ; 174: 116552, 2024 May.
Article in English | MEDLINE | ID: mdl-38599061

ABSTRACT

AIMS: Pulmonary hypertension (PH) is characterised by an increase in pulmonary arterial pressure, ultimately leading to right ventricular failure and death. We have previously shown that nerve growth factor (NGF) plays a critical role in PH. Our objectives here were to determine whether NGF controls Connexin-43 (Cx43) expression and function in the pulmonary arterial smooth muscle, and whether this mechanism contributes to NGF-induced pulmonary artery hyperreactivity. METHODS AND RESULTS: NGF activates its TrkA receptor to increase Cx43 expression, phosphorylation, and localization at the plasma membrane in human pulmonary arterial smooth muscle cells, thus leading to enhanced activity of Cx43-dependent GAP junctions as shown by Lucifer Yellow dye assay transfer and fluorescence recovery after photobleaching -FRAP- experiments. Using both in vitro pharmacological and in vivo SiRNA approaches, we demonstrate that NGF-dependent increase in Cx43 expression and activity in the rat pulmonary circulation causes pulmonary artery hyperreactivity. We also show that, in a rat model of PH induced by chronic hypoxia, in vivo blockade of NGF or of its TrkA receptor significantly reduces Cx43 increased pulmonary arterial expression induced by chronic hypoxia and displays preventive effects on pulmonary arterial pressure increase and right heart hypertrophy. CONCLUSIONS: Modulation of Cx43 by NGF in pulmonary arterial smooth muscle cells contributes to NGF-induced alterations of pulmonary artery reactivity. Since NGF and its TrkA receptor play a role in vivo in Cx43 increased expression in PH induced by chronic hypoxia, these NGF/Cx43-dependent mechanisms may therefore play a significant role in human PH pathophysiology.


Subject(s)
Connexin 43 , Myocytes, Smooth Muscle , Nerve Growth Factor , Pulmonary Artery , Animals , Humans , Male , Rats , Cells, Cultured , Connexin 43/metabolism , Gap Junctions/metabolism , Gap Junctions/drug effects , Hypertension, Pulmonary/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Nerve Growth Factor/metabolism , Phosphorylation , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Rats, Sprague-Dawley , Rats, Wistar , Receptor, trkA/metabolism
14.
Rev Mal Respir ; 41(4): 265-268, 2024 Apr.
Article in French | MEDLINE | ID: mdl-38461086

ABSTRACT

Pulmonary hypertension (PH) is the main pathology in lung circulation, characterized by increased pressure in pulmonary arteries and ultimately resulting in right heart failure with potentially fatal outcomes. Given the current lack of available curative treatments, it is of paramount importance to identify novel therapeutic targets. Due to its involvement in pulmonary arterial remodeling, hyperreactivity, and inflammation, our explorations have focused on the nerve growth factor (NGF), offering promising avenues for innovative therapeutic approaches.


Subject(s)
Hypertension, Pulmonary , Humans , Hypertension, Pulmonary/therapy , Hypertension, Pulmonary/drug therapy , Nerve Growth Factor , Pulmonary Circulation , Pulmonary Artery/pathology
15.
J Control Release ; 368: 140-156, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373473

ABSTRACT

Traumatic brain injuries(TBI) pose significant challenges to human health, specifically neurological disorders and related motor activities. After TBI, the injured neuronal tissue is known for hardly regenerated and recovered to their normal neuron physiology and tissue compositions. For this reason, tissue engineering strategies that promote neuronal regeneration have gained increasing attention. This study explored the development of a novel neural tissue regeneration cryogel by combining brain-derived decellularized extracellular matrix (ECM) with heparin sulfate crosslinking that can perform nerve growth factor (NGF) release ability. Morphological and mechanical characterizations of the cryogels were performed to assess their suitability as a neural regeneration platform. After that, the heparin concnentration dependent effects of varying NGF concentrations on cryogel were investigated for their controlled release and impact on neuronal cell differentiation. The results revealed a direct correlation between the concentration of released NGF and the heparin sulfate ratio in cryogel, indicating that the cryogel can be tailored to carry higher loads of NGF with heparin concentration in cryogel that induced higher neuronal cell differentiation ratio. Furthermore, the study evaluated the NGF loaded cryogels on neuronal cell proliferation and brain tissue regeneration in vivo. The in vivo results suggested that the NGF loaded brain ECM derived cryogel significantly affects the regeneration of brain tissue. Overall, this research contributes to the development of advanced neural tissue engineering strategies and provides valuable insights into the design of regenerative cryogels that can be customized for specific therapeutic applications.


Subject(s)
Brain Injuries, Traumatic , Tissue Engineering , Humans , Brain , Brain Injuries, Traumatic/therapy , Cryogels , Extracellular Matrix , Heparin , Nerve Growth Factor/pharmacology , Nerve Regeneration , Sulfates , Tissue Engineering/methods
16.
J Shoulder Elbow Surg ; 33(7): 1473-1482, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38311102

ABSTRACT

BACKGROUND: Rotator cuff tear (RCT) is a frequent etiology of shoulder pain and disability; however, the triggers for the onset and aggravation of pain remain obscure. In this study, we established novel rat RCT models to examine the impact of tear size and tendon degeneration on pain. METHODS: Fifty-five adult male Sprague-Dawley rats were allocated into 4 study groups: large tear (L group, n = 10), small tear (S group, n = 15), small tear with scratching (S+ group n = 15), and sham surgery (Sham group, n = 15). Pain-related behaviors were evaluated by weight distribution of forelimbs during a 5-minute free gait using a dynamic weight-bearing apparatus at 2, 4, 6, and 8 weeks. Calcitonin gene-related peptide (CGRP) expressions in ipsilateral dorsal root ganglion (DRG) neurons of C4, C5, and C6 were evaluated at 4 and 8 weeks. The area of scar tissues around the torn tendon, infiltration of inflammatory cells, and severity of tendon degeneration (modified Bonar score) were histologically assessed at 4 and 8 weeks. Additionally, enzyme-linked immunosorbent assay (ELISA) was conducted to evaluate the levels of cyclooxygenase-2 (COX-2) and nerve growth factor (NGF) expression in torn tendons and surrounding tissues at 4 weeks. RESULTS: The weight distribution ratio (ipsilateral and contralateral side) was significantly decreased in the L and S+ group compared with its baseline and Sham group (P < .05), but the S group showed no significant difference compared with the Sham. The ratio of CGRP-immunoreactive neurons in the DRGs was significantly higher in the L and S+ groups than in the S and Sham groups. The histologic assessment indicated that scar tissue formation was more extensive in the L group than in the S and S+ groups. Still, there was no significant difference between the S and S+ groups. The modified Bonar score was considerably higher in the S+ group than in the S group. Furthermore, ELISA analysis demonstrated no significant disparity in COX-2 levels between the groups; however, NGF levels were substantially higher in the S+ group than in the S and Sham groups. CONCLUSION: The present study provides compelling evidence that large RCT is strongly associated with heightened pain severity in a rat model. Nevertheless, even a small tear can significantly aggravate pain when the torn tendon is degenerated. CGRP upregulation driven by peripheral NGF possibly played a pivotal role in the genesis and exacerbation of pain in small RCT.


Subject(s)
Disease Models, Animal , Rats, Sprague-Dawley , Rotator Cuff Injuries , Animals , Rotator Cuff Injuries/metabolism , Rotator Cuff Injuries/pathology , Rotator Cuff Injuries/complications , Male , Rats , Nerve Growth Factor/metabolism , Rotator Cuff/pathology , Calcitonin Gene-Related Peptide/metabolism
17.
J Nat Med ; 78(1): 246-254, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38010476

ABSTRACT

The Japanese herbal medicine kamikihito (KKT) is widely used for insomnia, anorexia, anemia, and depression. Recently, the efficacy of KKT against Alzheimer's disease (AD) has been demonstrated in clinical and non-clinical studies. To address the mechanism underlying the effect of KKT on AD, we examined the effects of KKT in ß-amyloid (Aß)25-35-exposed primary cultured neurons. The effects of KKT on Aß25-35-induced neurotoxicity were assessed by immunocytochemical assays and Sholl analysis of neurites, and the influence of KKT on neurotrophic factor (NF) gene expression was examined using RT-PCR analysis. As a result, Aß25-35 exposure attenuated the arborization of neurites of single cultured hippocampal neurons, and KKT treatment for 3 days ameliorated the Aß25-35-induced impairment of tau-positive axon outgrowth. This ameliorative effect of KKT was largely abolished by the Trk inhibitor K252a, and expression of NFs, nerve growth factor (Ngf), brain-derived neurotrophic factor (Bdnf), neurotrophin-3 (NT-3) was significantly increased by KKT. These results indicate that KKT ameliorates axonal atrophy via NFs signaling, providing a mechanistic basis for treatment of AD with KKT.


Subject(s)
Alzheimer Disease , Drugs, Chinese Herbal , Humans , Axons/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Neurons , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Alzheimer Disease/drug therapy
18.
J Biomol Struct Dyn ; : 1-11, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37975413

ABSTRACT

Ameloblastoma is a benign odontogenic jawbone tumor. The binding of Nerve growth factor (NGF) to receptor tyrosine kinase A (TrkA) promotes cell survival, proliferation, and differentiation via PI3K/AKT and Ras/MAPK signaling. Although the exact cause of ameloblastoma remains unknown, elevated levels of NGF and TrkA expression in ameloblastoma are associated with aggressive tumor behavior and poor patient outcomes. It is previously demonstrated that His 4, Arg 9, and Glu 11 residues of NGF made crucial interactions with the TrkA subunit. The main aim of our present study to develop potential therapeutic strategies by identifying promising peptide candidates. The objectives include starting with a detailed in silico analysis to identify a crucial peptide sequence of NGF that is bound by TrkA, creating a library of novel peptides from the identified peptide sequence through a single-point mutation on interacting residues (His 4, Arg 9, and Glu 11), and selecting the top peptides based on docking score, interactions analysis, and desirable pose analysis. The study ultimately designed a hybrid peptide candidate through the simultaneous and continuous mutation of the top residues, resulting in a peptide that exhibited a more specific interaction with TrkA, blocking the binding site and preventing the interaction between NGF and TrkA.Communicated by Ramaswamy H. Sarma.

19.
J Clin Med ; 12(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37373824

ABSTRACT

BACKGROUND: Abnormal fetal growth is associated with adverse perinatal and long-term outcomes. The pathophysiological mechanisms underlying these conditions are still to be clarified. Nerve growth factor (NGF) and neurotrophin-3 (NT-3) are two neurotrophins that are mainly involved in the neuroprotection process, namely promotion of growth and differentiation, maintenance, and survival of neurons. During pregnancy, they have been correlated with placental development and fetal growth. In this study, we aimed to determine the early 2nd trimester amniotic fluid levels of NGF and NT-3 and to investigate their association with fetal growth. METHODS: This is a prospective observational study. A total of 51 amniotic fluid samples were collected from women undergoing amniocentesis early in the second trimester and were stored at -80 °C. Pregnancies were followed up until delivery and birth weight was recorded. Based on birth weight, the amniotic fluid samples were divided into three groups: appropriate for gestational age (AGA), small for gestational age (SGA), and large for gestational age (LGA). NGF and NT-3 levels were determined by using Elisa kits. RESULTS: NGF concentrations were similar between the studied groups; median values were 10.15 pg/mL, 10.15 pg/mL, and 9.14 pg/mL in SGA, LGA, and AGA fetuses, respectively. Regarding NT-3, a trend was observed towards increased NT-3 levels as fetal growth velocity decreased; median concentrations were 11.87 pg/mL, 15.9 pg/mL, and 23.5 pg/mL in SGA, AGA, and LGA fetuses, respectively, although the differences among the three groups were not statistically significant. CONCLUSIONS: Our findings suggest that fetal growth disturbances do not induce increased or decreased production of NGF and NT-3 in early second trimester amniotic fluid. The trend observed towards increased NT-3 levels as fetal growth velocity decreased shows that there may be a compensatory mechanism in place that operates in conjunction with the brain-sparing effect. Further associations between these two neurotrophins and fetal growth disturbances are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL