Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 564
Filter
1.
Toxicol In Vitro ; 101: 105950, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357688

ABSTRACT

Tanshinone IIA (Tan IIA), a neuroprotective natural compound extracted from Salvia miltiorrhiza, is used in stroke treatment. However, elucidating Tan IIA's neuroprotective mechanisms remains challenging due to limitations in assessing drug efficacy and biochemical parameters in clinical studies. This study investigated Tan IIA's impact on neuroinflammatory responses and its neuroprotective mechanisms using HMGB1- or TNF-α-stimulated BV2 microglia in a co-culture system with primary neuron cells. The results indicated that Tan IIA significantly reduced microglial activation induced by TNF-α or HMGB1. Concurrently, Tan IIA disrupted the interactions between HMGB1 and toll-like receptor 4 (TLR4), and between TNF-α and TNF receptor 1 (TNFR1), modulating the HMGB1/TLR4/nuclear factor-kappa B (NF-κB) and TNF-α/TNFR1/NF-κB signaling pathways and related protein expressions. Moreover, co-culture experiments showed that neuronal apoptosis induced by microglial activation was reversed by Tan IIA. In conclusion, Tan IIA provides neuroprotection by modulating signaling pathways in microglia, thus preventing neuronal apoptosis. This study offers new insights into therapeutic targets for ischemic stroke.

2.
J Neuroinflammation ; 21(1): 252, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375720

ABSTRACT

BACKGROUND: Neuroinflammation reportedly plays a critical role in the pathogenesis of sepsis-associated encephalopathy (SAE). We previously reported that circulating plasma extracellular vesicles (EVs) from septic mice are proinflammatory. In the current study, we tested the role of sepsis plasma EVs in neuroinflammation. METHODS: To track EVs in cells and tissues, HEK293T cell-derived EVs were labeled with the fluorescent dye PKH26. Cecal ligation and puncture (CLP) was conducted to model polymicrobial sepsis in mice. Plasma EVs were isolated by ultracentrifugation and their role in promoting neuronal inflammation was tested following intracerebroventricular (ICV) injection. miRNA inhibitors (anti-miR-146a, -122, -34a, and -145a) were applied to determine the effects of EV cargo miRNAs in the brain. A cytokine array was performed to profile microglia-released protein mediators. TLR7- or MyD88-knockout (KO) mice were utilized to determine the underlying mechanism of EVs-mediated neuroinflammation. RESULTS: We observed the uptake of fluorescent PKH26-EVs inside the cell bodies of both microglia and neurons. Sepsis plasma EVs led to a dose-dependent cytokine release in cultured microglia, which was partially attenuated by miRNA inhibitors against the target miRNAs and in TLR7-KO cells. When administered via the ICV, sepsis plasma EVs resulted in a marked increase in the accumulation of innate immune cells, including monocyte and neutrophil and cytokine gene expression, in the brain. Although sepsis plasma EVs had no direct effect on cytokine production or neuronal injury in vitro, the conditioned media (CM) of microglia treated with sepsis plasma EVs induced neuronal cell death as evidenced by increased caspase-3 cleavage and Annexin-V staining. Cytokine arrays and bioinformatics analysis of the microglial CM revealed multiple cytokines/chemokines and other factors functionally linked to leukocyte chemotaxis and migration, TLR signaling, and neuronal death. Moreover, sepsis plasma EV-induced brain inflammation in vivo was significantly dependent on MyD88. CONCLUSIONS: Circulating plasma EVs in septic mice cause a microglial proinflammatory response in vitro and a brain innate immune response in vivo, some of which are in part mediated by TLR7 in vitro and MyD88 signaling in vivo. These findings highlight the importance of circulating EVs in brain inflammation during sepsis.


Subject(s)
Brain , Extracellular Vesicles , Immunity, Innate , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs , Neurons , Sepsis , Signal Transduction , Animals , Extracellular Vesicles/metabolism , Mice , MicroRNAs/metabolism , Sepsis/immunology , Sepsis/metabolism , Sepsis/pathology , Humans , Signal Transduction/physiology , Neurons/metabolism , Neurons/immunology , Brain/metabolism , Brain/immunology , Brain/pathology , HEK293 Cells , Male , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Microglia/metabolism , Microglia/immunology , Inflammation/metabolism , Inflammation/immunology , Inflammation/pathology , Membrane Glycoproteins , Toll-Like Receptor 7
3.
CNS Neurosci Ther ; 30(9): e70019, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39238115

ABSTRACT

AIMS: We aimed to resolve the uncertainty as to whether betulin exerted neuroprotection on early brain injury (EBI) caused by subarachnoid hemorrhage (SAH), and to investigate the related molecular mechanisms. METHODS: Bioinformatic analysis was performed to pre-study the differently expressed genes (DEGs) and the possible signaling pathways. Rat and cellular model of SAH were introduced in this study, and betulin, an activator of DJ-1 protein, was administered to reveal the effect. Gross assessment regarding mortality, neurofunctions, SAH grade, brain water content (BWC) along with multiple cellular and molecular studies in vivo or/and in vitro such as immunofluorescence (IF) staining, western blot (WB), reactive oxygen species (ROS) assay, and flow cytometry (FCM) were all conducted after SAH induction to verify the protective effect and the relevant mechanisms of DJ-1 in diverse levels. In addition, MK2206 (selective inhibitor of Akt) and iRNADj-1 (interfering RNA to Dj-1) were utilized to confirm the mechanisms of the effect. RESULTS: The data from our study showed that DJ-1 protein was moderately expressed in neurons, microglia, and astrocytes; its level in brain tissue elevated and peaked at 24-72 h after SAH induction. Betulin could efficaciously induce the expression of DJ-1 which in turn activated Akt and Bcl-2, and anti-oxidative enzymes SOD2 and HO-1, functioning to reduce the activation of cleaved caspase-3 (c-Casp-3) and reactive oxygen species (ROS). The induced DJ-1 could upregulate the expression of Nrf2. However, Akt seemed no direct effect on elevating the expression of Nrf2. DJ-1 alone could as well activate Akt-independent antiapoptotic pathway via suppressing the activation of caspase-8 (Casp-8). CONCLUSIONS: Betulin which was a potent agonist of DJ-1 had the ability to induce its expression in brain tissue. DJ-1 had neuroprotective effect on EBI through comprehensive mechanisms, including facilitating intrinsic and extrinsic antiapoptotic pathway, and reducing oxidative injury by upregulating the expression of redox proteins. Betulin as an inexpensive drug showed the potential for SAH treatment.


Subject(s)
Apoptosis , NF-E2-Related Factor 2 , Neurons , Oxidative Stress , Protein Deglycase DJ-1 , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Subarachnoid Hemorrhage , Triterpenes , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/pathology , Animals , Protein Deglycase DJ-1/metabolism , NF-E2-Related Factor 2/metabolism , Rats , Signal Transduction/drug effects , Signal Transduction/physiology , Apoptosis/drug effects , Triterpenes/pharmacology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Male , Oxidative Stress/drug effects , Oxidative Stress/physiology , Proto-Oncogene Proteins c-akt/metabolism , Neuroprotective Agents/pharmacology , Reactive Oxygen Species/metabolism , Betulinic Acid
4.
Int J Biol Sci ; 20(11): 4382-4406, 2024.
Article in English | MEDLINE | ID: mdl-39247814

ABSTRACT

Mitophagy selectively eliminates damaged or dysfunctional mitochondria, playing a crucial role in maintaining mitochondrial quality control. However, it remains unclear whether mitophagy can be fully activated and how it evolves after SCI. Our RNA-seq analysis of animal samples from sham and 1, 3, 5, and 7 days post-SCI indicated that mitophagy was indeed inhibited during the acute and subacute early stages. In vitro experiments showed that this inhibition was closely related to excessive production of reactive oxygen species (ROS) and the downregulation of BNIP3. Excessive ROS led to the blockage of mitophagy flux, accompanied by further mitochondrial dysfunction and increased neuronal apoptosis. Fortunately, ligustilide (LIG) was found to have the ability to reverse the oxidative stress-induced downregulation of BNIP3 and enhance mitophagy through BNIP3-LC3 interaction, alleviating mitochondrial dysfunction and ultimately reducing neuronal apoptosis. Further animal experiments demonstrated that LIG alleviated oxidative stress and mitophagy inhibition, rescued neuronal apoptosis, and promoted tissue repair, ultimately leading to improved motor function. In summary, this study elucidated the state of mitophagy inhibition following SCI and its potential mechanisms, and confirmed the effects of LIG-enhanced mitophagy through BNIP3-LC3, providing new therapeutic targets and strategies for repairing SCI.


Subject(s)
4-Butyrolactone , Apoptosis , Membrane Proteins , Mitophagy , Neurons , Oxidative Stress , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Neurons/metabolism , Spinal Cord Injuries/metabolism , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Rats , Reactive Oxygen Species/metabolism , Male , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Microtubule-Associated Proteins
5.
J Orthop Translat ; 48: 133-145, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39220679

ABSTRACT

Background: Spinal cord injuries (SCIs) trigger a cascade of detrimental processes, encompassing neuroinflammation and oxidative stress (OS), ultimately leading to neuronal damage. Phillygenin (PHI), isolated from forsythia, is used in a number of biomedical applications, and is known to exhibit anti-neuroinflammation activity. In this study, we investigated the role and mechanistic ability of PHI in the activation of microglia-mediated neuroinflammation and subsequent neuronal apoptosis following SCI. Methods: A rat model of SCI was used to investigate the impact of PHI on inflammation, axonal regeneration, neuronal apoptosis, and the restoration of motor function. In vitro, neuroinflammation models were induced by stimulating microglia with lipopolysaccharide (LPS); then, we investigated the influence of PHI on pro-inflammatory mediator release in LPS-treated microglia along with the underlying mechanisms. Finally, we established a co-culture system, featuring microglia and VSC 4.1 cells, to investigate the role of PHI in the activation of microglia-mediated neuronal apoptosis. Results: In vivo, PHI significantly inhibited the inflammatory response and neuronal apoptosis while enhancing axonal regeneration and improving motor function recovery. In vitro, PHI inhibited the release of inflammation-related factors from polarized BV2 cells in a dose-dependent manner. The online Swiss Target Prediction database predicted that toll-like receptor 4 (TLR4) was the target protein for PHI. In addition, Molecular Operating Environment software was used to perform molecular docking for PHI with the TLR4 protein; this resulted in a binding energy interaction of -6.7 kcal/mol. PHI inhibited microglia-mediated neuroinflammation, the production of reactive oxygen species (ROS), and activity of the NF-κb signaling pathway. PHI also increased mitochondrial membrane potential (MMP) in VSC 4.1 neuronal cells. In BV2 cells, PHI attenuated the overexpression of TLR4-induced microglial polarization and significantly suppressed the release of inflammatory cytokines. Conclusion: PHI ameliorated SCI-induced neuroinflammation by modulating the TLR4/MYD88/NF-κB signaling pathway. PHI has the potential to be administered as a treatment for SCI and represents a novel candidate drug for addressing neuroinflammation mediated by microglial cells. The translational potential of this article: We demonstrated that PHI is a potential drug candidate for the therapeutic management of SCI with promising developmental and translational applications.

6.
Heliyon ; 10(17): e36470, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39281517

ABSTRACT

Alzheimer's disease (AD) is a neurological disease with memory loss and cognitive decline, which affects a large proportion of the aging population. Regrettably, there are no drug to reverse or cure AD and drug development for the primary theory of amyloid beta deposition has mostly failed. Therefore, there is an urgent need to investigate novel strategies for preventing AD. Recent studies demonstrate that imbalance of mitochondrial homeostasis is a driver in Aß accumulation, which can lead to the occurrence and deterioration of cognitive impairment in AD patients. This suggests that regulating neuronal mitochondrial homeostasis may be a new strategy for AD. We summarize the importance of mitochondrial homeostasis in AD neuron and its regulatory mechanisms in this review. In addition, we summarize the results of studies indicating mitochondrial dysfunction in AD subjects, including impaired mitochondrial energy production, oxidative stress, imbalance of mitochondrial protein homeostasis, imbalance of fusion and fission, imbalance of neuronal mitochondrial biogenesis and autophagy, and altered mitochondrial motility, in hope of providing possible therapeutic approaches for AD.

7.
Eur J Pharmacol ; 981: 176903, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39154823

ABSTRACT

BACKGROUND: Epilepsy is a prevalent disorder of the central nervous system. Approximately, one-third of patients show resistance to pharmacological interventions. The pathogenesis of epilepsy is complex, and neuronal apoptosis plays a critical role. Aberrantly reactive astrocytes, induced by cytokine release from activated microglia, may lead to neuronal apoptosis. This study investigated the role of glucagon-like peptide 1 receptor (GLP1R) in microglial activation in epilepsy and its impact on astrocyte-mediated neurotoxicity. METHODS: We used human hippocampal tissue from patients with temporal lobe epilepsy and a pilocarpine-induced epileptic mouse model to assess neurobiological changes in epilepsy. BV2 microglial cells and primary astrocytes were used to evaluate cytokine release and astrocyte activation in vitro. The involvement of GLP1R was explored using the GLP1R agonist, Exendin-4 (Ex-4). RESULTS: Our findings indicated that reduced GLP1R expression in hippocampal microglia in both epileptic mouse models and human patients, correlated with increased cytokine release and astrocyte activation. Ex-4 treatment restored microglial homeostasis, decreased cytokine secretion, and reduced astrocyte activation, particularly of the A1 phenotype. These changes were associated with a reduction in neuronal apoptosis. In addition, Ex-4 treatment significantly decreased the frequency and duration of seizures in epileptic mice. CONCLUSIONS: This study highlights the crucial role of microglial GLP1R in epilepsy pathophysiology. GLP1R downregulation contributes to microglial- and astrocyte-mediated neurotoxicity, exacerbating neuronal death and seizures. Activation of GLP1R with Ex-4 has emerged as a promising therapeutic strategy to reduce neuroinflammation, protect neuronal cells, and control seizures in epilepsy. This study provides a foundation for developing novel antiepileptic therapies targeting microglial GLP1R, with the potential to improve outcomes in patients with epilepsy.


Subject(s)
Apoptosis , Glucagon-Like Peptide-1 Receptor , Hippocampus , Microglia , Neurons , Animals , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Apoptosis/drug effects , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Male , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Mice , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Exenatide/pharmacology , Exenatide/therapeutic use , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Epilepsy/drug therapy , Epilepsy/metabolism , Epilepsy/chemically induced , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Female , Adult , Pilocarpine , Disease Models, Animal , Cytokines/metabolism , Mice, Inbred C57BL , Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/metabolism , Epilepsy, Temporal Lobe/pathology , Middle Aged
8.
Int J Mol Sci ; 25(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39201562

ABSTRACT

Neonatal hypoxic-ischemic encephalopathy (HIE) is a critical condition characterized by significant brain damage due to insufficient blood flow and oxygen delivery at birth, leading to high rates of neonatal mortality and long-term neurological deficits worldwide. 2,3-Diphosphoglyceric acid (2,3-DPG), a small molecule metabolite prevalent in erythrocytes, plays an important role in regulating oxygen delivery, but its potential neuroprotective role in hypoxic-ischemic brain damage (HIBD) has yet to be fully elucidated. Our research reveals that the administration of 2,3-DPG effectively reduces neuron damage caused by hypoxia-ischemia (HI) both in vitro and in vivo. We observed a notable decrease in HI-induced neuronal cell apoptosis, attributed to the downregulation of Bax and cleaved-caspase 3, alongside an upregulation of Bcl-2 expression. Furthermore, 2,3-DPG significantly alleviates oxidative stress and mitochondrial damage induced by oxygen-glucose deprivation/reperfusion (OGD/R). The administration of 2,3-DPG in rats subjected to HIBD resulted in a marked reduction in brain edema and infarct volume, achieved through the suppression of neuronal apoptosis and neuroinflammation. Using RNA-seq analysis, we validated that 2,3-DPG offers protection against neuronal apoptosis under HI conditions by modulating the p38 MAPK pathway. These insights indicated that 2,3-DPG might act as a promising novel therapeutic candidate for HIE.


Subject(s)
Apoptosis , Hypoxia-Ischemia, Brain , p38 Mitogen-Activated Protein Kinases , Animals , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/pathology , p38 Mitogen-Activated Protein Kinases/metabolism , Rats , Apoptosis/drug effects , Oxidative Stress/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Rats, Sprague-Dawley , Male , Mitochondria/metabolism , Mitochondria/drug effects
9.
Neurosci Biobehav Rev ; 165: 105848, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39142542

ABSTRACT

Microglia, as immune cells in the central nervous system, are closely related to cognitive impairment associated with type 2 diabetes (T2D). Preliminary explorations have investigated the relationship between T2D-related cognitive impairment and the activation and polarization of microglia. This review summarizes the potential mechanisms of microglial activation and polarization in the context of T2D. It discusses central inflammatory responses, neuronal apoptosis, amyloid-ß deposition, and abnormal phosphorylation of Tau protein mediated by microglial activation and polarization, exploring the connections between microglial activation and polarization and T2D-related cognitive impairment from multiple perspectives. Additionally, this review provides references for future treatment targeting microglia in T2D-related cognitive impairment and for clinical translation.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Microglia , Humans , Microglia/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Animals
10.
Int J Biol Macromol ; 278(Pt 4): 134972, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39181373

ABSTRACT

Numerous academic literature suggests that amyloid-ß (Aß) deposition, tau protein phosphorylation, and irreversible neuronal death are the three major causes of AD. The chloride intracellular channel (CLIC) protein family not only regulates the polarisation of neurons, but also has important implications for neuronal survival. Chloride intracellular channel 4 (CLIC4) can be pathologically activated by cyclin-dependent kinase 5 (Cdk5), which causes a significant increase in the expression of CLIC4 and mediates neuronal apoptosis. CLIC4 knockdown inhibits H2O2-induced neuronal apoptosis; however, the relationship between CLIC4 and AD remains unknown. In the present study, we showed that CLIC4 expression was elevated in the hippocampus of AD mice; knockdown of hippocampal CLIC4 alleviated Aß25-35-induced cognitive impairment in mice; overexpression of hippocampal CLIC4 accelerated Aß deposition and tau protein hyperphosphorylation in young AD mice (APP/PS1 mice at three months of age). CLIC4 overexpressing mice had a longer escape latency compared to controls in behavioural testing (Morris water maze and T-maze tests). By Co-immunoprecipitation/mass spectrometry (Co-IP/MS) of HT22 cells to identify proteins that specifically bind to CLIC4, we found interactions with CCAAT enhancer binding protein (C/EBPß); a critical pathway involved in the development of various neurodegenerative diseases. In addition, the knockdown of hippocampal CLIC4 alleviated AD-like pathology by inhibiting the C/EBPß/AEP signaling pathway. These data suggest an essential role for high CLIC4 expression in the pathophysiology of AD and reveal that inhibition of CLIC4 expression may provide an opportunity for treatment.


Subject(s)
Alzheimer Disease , Chloride Channels , Cognition , Hippocampus , tau Proteins , Animals , Chloride Channels/metabolism , Chloride Channels/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Phosphorylation , tau Proteins/metabolism , tau Proteins/genetics , Mice , Cognition/drug effects , Hippocampus/metabolism , Amyloid beta-Peptides/metabolism , Male , Disease Models, Animal , Mice, Transgenic , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Mitochondrial Proteins
11.
J Biol Chem ; 300(9): 107698, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39173945

ABSTRACT

Aberrant activation of the cell cycle of terminally differentiated neurons results in their apoptosis and is known to contribute to neuronal loss in various neurodegenerative disorders like Alzheimer's Disease. However, the mechanisms that regulate cell cycle-related neuronal apoptosis are poorly understood. We identified several miRNA that are dysregulated in neurons from a transgenic APP/PS1 mouse model for AD (TgAD). Several of these miRNA are known to and/or are predicted to target cell cycle-related genes. Detailed investigation on miR-449a revealed the following: a, it promotes neuronal differentiation by suppressing the neuronal cell cycle; b, its expression in cortical neurons was impaired in response to amyloid peptide Aß42; c, loss of its expression resulted in aberrant activation of the cell cycle leading to apoptosis. miR-449a may prevent cell cycle-related neuronal apoptosis by targeting cyclin D1 and protein phosphatase CDC25A, which are important for G1-S transition. Importantly, the lentiviral-mediated delivery of miR-449a in TgAD mouse brain significantly reverted the defects in learning and memory, which are associated with AD.


Subject(s)
Alzheimer Disease , Apoptosis , Mice, Transgenic , MicroRNAs , Neurons , cdc25 Phosphatases , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Neurons/metabolism , Neurons/pathology , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , cdc25 Phosphatases/metabolism , cdc25 Phosphatases/genetics , Humans , Cyclin D1/metabolism , Cyclin D1/genetics , Cell Cycle , Amyloid beta-Peptides/metabolism , Cell Differentiation
12.
Mol Neurobiol ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102109

ABSTRACT

This study was dedicated to investigating the effects of microRNA-128-3p (miR-128-3p) on neuronal apoptosis and neurobehavior in cerebral palsy (CP) rats via the Smurf2/YY1 axis.In vivo modeling of hypoxic-ischemic (HI) CP was established in neonatal rats. Neurobehavioral tests (geotaxis reflex, cliff avoidance reaction, and grip test) were measured after HI induction. The HI-induced neurological injury was evaluated by HE staining, Nissl staining, TUNEL staining, immunohistochemical staining, and RT-qPCR. The expression of miR-128-3p, Smurf2, and YY1 was determined by RT-qPCR and western blot techniques. Moreover, primary cortical neurons were used to establish the oxygen and glucose deprivation (OGD) model in vitro, cell viability was detected by CCK-8 assay, neuronal apoptosis was assessed by flow cytometry and western blot, and the underlying mechanism between miR-128-3p, Smurf2 and YY1 was verified by bioinformatics analysis, dual luciferase reporter assay, RIP, Co-IP, ubiquitination assay, western blot, and RT-qPCR.In vivo, miR-128-3p and YY1 expression was elevated, and Smurf2 expression was decreased in brain tissues of hypoxic-ischemic CP rats. Downregulation of miR-128-3p or overexpression of Smurf2 improved neurobehavioral performance, reduced neuronal apoptosis, and elevated Nestin and NGF expression in hypoxic-ischemic CP rats, and downregulation of Smurf2 reversed the effects of downregulation of miR-128-3p on neurobehavioral performance, neuronal apoptosis, and Nestin and NGF expression in hypoxic-ischemic CP rats, while overexpression of YY1 reversed the effects of Smurf2 on neurobehavioral performance, neuronal apoptosis, and Nestin and NGF expression in hypoxic-ischemic CP rats. In vitro, downregulation of miR-128-3p effectively promoted the neuronal survival, reduced the apoptosis rate, and decreased caspase3 protein expression after OGD, and overexpression of YY1 reversed the ameliorative effect of downregulation of miR-128-3p on OGD-induced neuronal injury. miR-128-3p targeted to suppress Smurf2 to lower YY1 ubiquitination degradation and decrease its expression.Inhibition of miR-128-3p improves neuronal apoptosis and neurobehavioral changes in hypoxic-ischemic CP rats by promoting Smurf2 to promote YY1 ubiquitination degradation and reduce YY1 expression.

13.
Neurochem Res ; 49(10): 2854-2870, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39023805

ABSTRACT

This study aimed to assess the impact of conditioned medium from epidermal neural crest stem cells (EPI-NCSCs-CM) on functional recovery following spinal cord injury (SCI), while also exploring the involvement of the PI3K-AKT signaling pathway in regulating neuronal apoptosis. EPI-NCSCs were isolated from 10-day-old Sprague-Dawley rats and cultured for 48 h to obtain EPI-NCSC-CM. SHSY-5Y cells were subjected with H2O2 treatment to induce apoptosis. Cell viability and survival rates were evaluated using the CCK-8 assay and calcein-AM/PI staining. SCI contusion model was established in adult Sprague-Dawley rats to assess functional recovery, utilizing the Basso, Beattie and Bresnahan (BBB) scoring system, inclined test, and footprint observation. Neurological restoration after SCI was analyzed through electrophysiological recordings. Histological analysis included hematoxylin and eosin (H&E) staining and Nissl staining to evaluate tissue organization. Apoptosis and oxidative stress levels were assessed using TUNEL staining and ROS detection methods. Additionally, western blotting was performed to examine the expression of apoptotic markers and proteins related to the PI3K/AKT signaling pathway. EPI-NCSC-CM significantly facilitated functional and histological recovery in SCI rats by inhibiting neuronal apoptosis through modulation of the PI3K/AKT pathway. Administration of EPI-NCSCs-CM alleviated H2O2-induced neurotoxicity in SHSY-5Y cells in vitro. The use of LY294002, a PI3K inhibitor, underscored the crucial role of the PI3K/AKT signaling pathway in regulating neuronal apoptosis. This study contributes to the ongoing exploration of molecular pathways involved in spinal cord injury (SCI) repair, focusing on the therapeutic potential of EPI-NCSC-CM. The research findings indicate that EPI-NCSC-CM exerts a neuroprotective effect by suppressing neuronal apoptosis through activation of the PI3K/AKT pathway in SCI rats. These results highlight the promising role of EPI-NCSC-CM as a potential treatment strategy for SCI, emphasizing the significance of the PI3K/AKT pathway in mediating its beneficial effects.


Subject(s)
Apoptosis , Neural Stem Cells , Neurons , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Apoptosis/drug effects , Apoptosis/physiology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Culture Media, Conditioned/pharmacology , Neural Stem Cells/drug effects , Neurons/drug effects , Neurons/metabolism , Recovery of Function/drug effects , Recovery of Function/physiology , Neural Crest/drug effects , Rats , Signal Transduction/drug effects , Male
14.
J Mol Histol ; 55(5): 721-740, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39083161

ABSTRACT

L-type voltage-gated calcium channels (L-VGCCs) are thought to be involved in epileptogenesis and acute excitotoxicity. However, little is known about the role of L-VGCCs in neuroinflammation or delayed neuronal death following excitotoxic insult. We examined the effects of repeated treatment with the L-VGCC blocker nimodipine on neuroinflammatory changes and delayed neuronal apoptosis in the dentate gyrus following trimethyltin (TMT)-induced convulsions. Male C57BL/6 N mice were administered TMT (2.6 mg/kg, i.p.), and the expression of the Cav1.2 and Cav1.3 subunits of L-VGCC were evaluated. The expression of both subunits was significantly decreased; however, the astroglial expression of Cav1.3 L-VGCC was significantly induced at 6 and 10 days after TMT treatment. Furthermore, astroglial Cav1.3 L-VGCCs colocalized with both the pro-inflammatory phenotype marker C3 and the anti-inflammatory phenotype marker S100A10 of astrocytes. Nimodipine (5 mg/kg, i.p. × 5 at 12-h intervals) did not significantly affect TMT-induced astroglial activation. However, nimodipine significantly attenuated the pro-inflammatory phenotype changes, while enhancing the anti-inflammatory phenotype changes in astrocytes after TMT treatment. Consistently, nimodipine reduced the levels of pro-inflammatory astrocytes-to-microglia mediators, while increasing the levels of anti-inflammatory astrocytes-to-microglia mediators. These effects were accompanied by an increase in the phosphorylation of extracellular signal-regulated kinase (ERK), supporting our previous finding that p-ERK is a signaling factor that regulates astroglial phenotype changes. In addition, nimodipine significantly attenuated TMT-induced microglial activation and delayed apoptosis of dentate granule neurons. Our results suggest that L-VGCC blockade attenuates neuroinflammation and delayed neurotoxicity following TMT-induced convulsions through the regulation of astroglial phenotypic changes by promoting ERK signaling.


Subject(s)
Apoptosis , Dentate Gyrus , Mice, Inbred C57BL , Neuroinflammatory Diseases , Neurons , Nimodipine , Trimethyltin Compounds , Animals , Nimodipine/pharmacology , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Trimethyltin Compounds/toxicity , Male , Mice , Apoptosis/drug effects , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Astrocytes/metabolism , Astrocytes/drug effects , Astrocytes/pathology , Calcium Channels, L-Type/metabolism
15.
Neuromolecular Med ; 26(1): 29, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014255

ABSTRACT

Vascular dementia (VaD) is a cognitive disorder characterized by a decline in cognitive function resulting from cerebrovascular disease. The hippocampus is particularly susceptible to ischemic insults, leading to memory deficits in VaD. Astaxanthin (AST) has shown potential therapeutic effects in neurodegenerative diseases. However, the mechanisms underlying its protective effects in VaD and against hippocampal neuronal death remain unclear. In this study, We used the bilateral common carotid artery occlusion (BCCAO) method to establish a chronic cerebral hypoperfusion (CCH) rat model of VaD and administered a gastric infusion of AST at 25 mg/kg per day for 4 weeks to explore its therapeutic effects. Memory impairments were assessed using Y-maze and Morris water maze tests. We also performed biochemical analyses to evaluate levels of hippocampal neuronal death and apoptosis-related proteins, as well as the impact of astaxanthin on the PI3K/Akt/mTOR pathway and oxidative stress. Our results demonstrated that AST significantly rescued memory impairments in VaD rats. Furthermore, astaxanthin treatment protected against hippocampal neuronal death and attenuated apoptosis. We also observed that AST modulated the PI3K/Akt/mTOR pathway, suggesting its involvement in promoting neuronal survival and synaptic plasticity. Additionally, AST exhibited antioxidant properties, mitigating oxidative stress in the hippocampus. These findings provide valuable insights into the potential therapeutic effects of AST in VaD. By elucidating the mechanisms underlying the actions of AST, this study highlights the importance of protecting hippocampal neurons and suggests potential targets for intervention in VaD. There are still some unanswered questions include long-term effects and optimal dosage of the use in human. Further research is warranted to fully understand the therapeutic potential of AST and its application in the clinical treatment of VaD.


Subject(s)
Apoptosis , Dementia, Vascular , Hippocampus , Memory Disorders , Neurons , Neuroprotective Agents , Oxidative Stress , Rats, Sprague-Dawley , Xanthophylls , Animals , Xanthophylls/therapeutic use , Xanthophylls/pharmacology , Hippocampus/drug effects , Dementia, Vascular/drug therapy , Rats , Male , Memory Disorders/drug therapy , Memory Disorders/etiology , Oxidative Stress/drug effects , Neurons/drug effects , Apoptosis/drug effects , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Maze Learning/drug effects , Disease Models, Animal , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Cell Death/drug effects , Antioxidants/therapeutic use , Antioxidants/pharmacology , Morris Water Maze Test/drug effects
16.
Neurotox Res ; 42(4): 35, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008165

ABSTRACT

This study elucidates the molecular mechanisms by which FABP3 regulates neuronal apoptosis via mitochondrial autophagy in the context of cerebral ischemia-reperfusion (I/R). Employing a transient mouse model of middle cerebral artery occlusion (MCAO) established using the filament method, brain tissue samples were procured from I/R mice. High-throughput transcriptome sequencing on the Illumina CN500 platform was performed to identify differentially expressed mRNAs. Critical genes were selected by intersecting I/R-related genes from the GeneCards database with the differentially expressed mRNAs. The in vivo mechanism was explored by infecting I/R mice with lentivirus. Brain tissue injury, infarct volume ratio in the ischemic penumbra, neurologic deficits, behavioral abilities, neuronal apoptosis, apoptotic factors, inflammatory factors, and lipid peroxidation markers were assessed using H&E staining, TTC staining, Longa scoring, rotation experiments, immunofluorescence staining, and Western blot. For in vitro validation, an OGD/R model was established using primary neuron cells. Cell viability, apoptosis rate, mitochondrial oxidative stress, morphology, autophagosome formation, membrane potential, LC3 protein levels, and colocalization of autophagosomes and mitochondria were evaluated using MTT assay, LDH release assay, flow cytometry, ROS/MDA/GSH-Px measurement, transmission electron microscopy, MitoTracker staining, JC-1 method, Western blot, and immunofluorescence staining. FABP3 was identified as a critical gene in I/R through integrated transcriptome sequencing and bioinformatics analysis. In vivo experiments revealed that FABP3 silencing mitigated brain tissue damage, reduced infarct volume ratio, improved neurologic deficits, restored behavioral abilities, and attenuated neuronal apoptosis, inflammation, and mitochondrial oxidative stress in I/R mice. In vitro experiments demonstrated that FABP3 silencing restored OGD/R cell viability, reduced neuronal apoptosis, and decreased mitochondrial oxidative stress. Moreover, FABP3 induced mitochondrial autophagy through ROS, which was inhibited by the free radical scavenger NAC. Blocking mitochondrial autophagy with sh-ATG5 lentivirus confirmed that FABP3 induces mitochondrial dysfunction and neuronal apoptosis by activating mitochondrial autophagy. In conclusion, FABP3 activates mitochondrial autophagy through ROS, leading to mitochondrial dysfunction and neuronal apoptosis, thereby promoting cerebral ischemia-reperfusion injury.


Subject(s)
Apoptosis , Autophagy , Fatty Acid Binding Protein 3 , Mitochondria , Neurons , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Apoptosis/physiology , Autophagy/physiology , Neurons/metabolism , Neurons/pathology , Mice , Mitochondria/metabolism , Male , Fatty Acid Binding Protein 3/metabolism , Fatty Acid Binding Protein 3/genetics , Mice, Inbred C57BL , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Brain Ischemia/metabolism , Brain Ischemia/pathology , Oxidative Stress/physiology
17.
ACS Chem Neurosci ; 15(16): 3022-3033, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39026168

ABSTRACT

Exosomes have shown good potential for alleviating neurological deficits and delaying memory deterioration, but the neuroprotective effects of exosomes remain unknown. Methylmalonic acidemia is a metabolic disorder characterized by the accumulation of methylmalonic acid (MMA) in various tissues that inhibits neuronal survival and function, leading to accelerated neurological deterioration. Effective therapies to mitigate these symptoms are lacking. The purpose of this study was to explore the neuroprotective effects of plasma exosomes on cells and a mouse model of MMA-induced injury. We evaluated the ability of plasma exosomes to reduce the neuronal apoptosis, cross the blood-brain barrier, and affect various parameters related to neuronal function. MMA promoted cell apoptosis, disrupted the metabolic balance, and altered the expression of B-cell lymphoma-2 (Bcl-2), Bcl2-associated X (Bax), and synaptophysin-1 (Syp-1), and these changes may be involved in MMA-induced neuronal apoptosis. Additionally, plasma exosomes normalized learning and memory and protected against MMA-induced neuronal apoptosis. Our findings indicate that neurological deficits are linked to the pathogenesis of methylmalonic acidemia, and healthy plasma exosomes may exert neuroprotective and therapeutic effects by altering the expression of exosomal microRNAs, facilitating neuronal functional recovery in the context of this inherited metabolic disease. Intravenous plasma-derived exosome treatment may be a novel clinical therapeutic strategy for methylmalonic acidemia.


Subject(s)
Apoptosis , Exosomes , Hippocampus , Methylmalonic Acid , Neurons , Neuroprotective Agents , Animals , Exosomes/metabolism , Neurons/metabolism , Neurons/drug effects , Neuroprotective Agents/pharmacology , Hippocampus/metabolism , Mice , Apoptosis/drug effects , Apoptosis/physiology , Male , Mice, Inbred C57BL , Amino Acid Metabolism, Inborn Errors
18.
Pathogens ; 13(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39057782

ABSTRACT

Zika virus (ZIKV), a mosquito-borne flavivirus, is prominently associated with microcephaly in babies born to infected mothers as well as Guillain-Barré Syndrome in adults. Each cell type infected by ZIKV-neuronal cells (radial glial cells, neuronal progenitor cells, astrocytes, microglia cells, and glioblastoma stem cells) and non-neuronal cells (primary fibroblasts, epidermal keratinocytes, dendritic cells, monocytes, macrophages, and Sertoli cells)-displays its own characteristic changes to their cell physiology and has various impacts on disease. Here, we provide an in-depth review of the ZIKV life cycle and its cellular targets, and discuss the current knowledge of how infections cause neuropathologies, as well as what approaches researchers are currently taking to further advance such knowledge. A key aspect of ZIKV neuropathogenesis is virus-induced neuronal apoptosis via numerous mechanisms including cell cycle dysregulation, mitochondrial fragmentation, ER stress, and the unfolded protein response. These, in turn, result in the activation of p53-mediated intrinsic cell death pathways. A full spectrum of infection models including stem cells and co-cultures, transwells to simulate blood-tissue barriers, brain-region-specific organoids, and animal models have been developed for ZIKV research.

19.
Article in English | MEDLINE | ID: mdl-38980528

ABSTRACT

PURPOSE: To evaluate the ventricular electrophysiologic effects of long-term stimulation of the left dorsal branch of thoracic nerve (LDTN) derived from the left stellate ganglion (LSG) in a canine model of chronic myocardial infarction (MI). METHODS: Seventeen adult male beagles were randomly divided into three groups: the sham group (sham operated, n = 6), the MI group (n = 6), and the MI + LDTN group (MI plus LDTN stimulation, n = 5). The canine model of chronic MI was induced by the occlusion of the left anterior descending artery (LADO). The LDTN was separated and intermittently stimulated immediately after LADO for 2 months. The heart rate variability (HRV) analysis, in vivo electrophysiology, the evaluation of LSG function and neural activity, histological staining, and western blotting (WB) assay were performed to evaluate the effect of LDTN stimulation on the heart. RESULTS: The canine MI model was successfully established by LADO, and the LDTN was separated and stimulated immediately after LADO. The HRV analysis showed that LDTN stimulation reversed the increased LF value and LF/HF ratio of the MI group. LDTN stimulation prolonged the shortening ERP and APD90, decreased the dispersion of ERP and APD90, and increased the VFT. Additionally, LDTN stimulation inhibits the LSG function and neural activity. Furthermore, LDTN stimulation suppressed the activation of Wnt/ß-catenin signaling, which contributed to the LSG neuronal apoptosis by upregulation of pro-apoptotic Bax and downregulation of anti-apoptotic Bcl-2. CONCLUSION: LDTN stimulation could attenuate cardiac sympathetic remodeling and improve ventricular electrical remodeling, which may be mediated by suppressing the activated Wnt/ß-catenin signaling pathway and then promoting the LSG neuronal apoptosis.

20.
Neurotox Res ; 42(4): 31, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935306

ABSTRACT

Endoplasmic reticulum (ER) stress and oxidative stress (OS) are often related states in pathological conditions including Parkinson's disease (PD). This study investigates the role of anti-oxidant protein paraoxonase 2 (PON2) in ER stress and OS in PD, along with its regulatory molecule. PD was induced in C57BL/6 mice using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treatment and in SH-SY5Y cells using 1-methyl-4-phenylpyridinium. PON2 was found to be poorly expressed in the substantia nigra pars compacta (SNc) of PD mice, and its overexpression improved motor coordination of mice. Through the evaluation of tyrosine hydroxylase, dopamine transporter, reactive oxygen species (ROS), and C/EBP homologous protein (CHOP) levels and neuronal loss in mice, as well as the examination of CHOP, glucose-regulated protein 94 (GRP94), GRP78, caspase-12, sarco/endoplasmic reticulum calcium ATPase 2, malondialdehyde, and superoxide dismutase levels in SH-SY5Y cells, we observed that PON2 overexpression mitigated ER stress, OS, and neuronal apoptosis both in vivo and in vitro. Forkhead box A1 (FOXA1) was identified as a transcription factor binding to the PON2 promoter to activate its transcription. Upregulation of FOXA1 similarly protected against neuronal loss by alleviating ER stress and OS, while the protective roles were abrogated by additional PON2 silencing. In conclusion, this study demonstrates that FOXA1-mediated transcription of PON2 alleviates ER stress and OS, ultimately reducing neuronal apoptosis in PD.


Subject(s)
Apoptosis , Aryldialkylphosphatase , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Hepatocyte Nuclear Factor 3-alpha , Mice, Inbred C57BL , Oxidative Stress , Animals , Humans , Male , Mice , Apoptosis/drug effects , Apoptosis/physiology , Aryldialkylphosphatase/metabolism , Aryldialkylphosphatase/genetics , Cell Line, Tumor , Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum Stress/drug effects , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Neurons/metabolism , Neurons/drug effects , Oxidative Stress/drug effects , Oxidative Stress/physiology
SELECTION OF CITATIONS
SEARCH DETAIL