Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters











Publication year range
1.
Chemosphere ; 366: 143455, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39366489

ABSTRACT

This study presents the effect of natural zeolite (NZ) on a nitrifying sequencing batch reactor for removing ibuprofen (IBP) and diclofenac (DFC) in the long term, including kinetics and microbial community. The research was conducted in two 2 L liquid-volume bioreactors, one with 5 g/L of NZ. Nitrogen load rates ranging between 5.8 and 8.5 mg N/L h were studied. Bioreactors were operated for 217 days, with IBP and DFC concentrations ranging between 20 and 2000 µg/L. The results showed that using NZ in a nitrifying SBR only improves IBP removal at low concentrations (40 µg/L). IBP and DFC do not affect the nitrification efficiency or kinetic of ammonia removal. In the presence of IBP and DFC, NZ also favored a higher relative abundance in the genus Nitrosomonas and the Bradyrhizobiaceae family (responsible for nitrite-oxidizing activity), allowing higher IBP degradations at low IBP concentrations. Finally, IBP and DFC stimulated heterotrophic nitrification.


Subject(s)
Bioreactors , Diclofenac , Ibuprofen , Nitrification , Water Pollutants, Chemical , Zeolites , Bioreactors/microbiology , Ibuprofen/metabolism , Diclofenac/metabolism , Zeolites/chemistry , Kinetics , Water Pollutants, Chemical/metabolism , Microbiota/drug effects , Waste Disposal, Fluid/methods , Ammonia/metabolism
2.
Bioresour Technol ; 399: 130527, 2024 May.
Article in English | MEDLINE | ID: mdl-38437971

ABSTRACT

The aim of this study was to evaluate two moving bed biofilm reactors (MBBR) without nitrifying bacteria inoculation. Biofilms and viable bacterial colonies were evaluated after 124 days. MBBR bioreactors received water from Oreochromis niloticus fish farming and water quality parameters were monitored daily. Four distinct phases with different fish stocking density were established.: phase 1 (2.40 kg m-3), phase 2 (4.95 kg m-3), phase 3 (8.71 kg m-3) and phase 4 (12.23 kg m-3). The successful maturation of the bioreactors occurred around on the 100th experimental day when the nitration rate increased to 57 % in MBBR1 and 38 % in MBBR2. 105 species were identified in the biofilms, which were grouped into 65 genera, three of which were essential: Pseudomonas (21.7 %), Nitrospira (15.1 %) and Gemmobacter (11.2 %). MBBR start-up without bacterial inoculation is time-consuming, however, strengthened by important nitrifying groups.


Subject(s)
Cichlids , Microbiota , Animals , Biofilms , Bioreactors/microbiology , Nitrification , Bacteria
3.
Rev. colomb. biotecnol ; 25(2)dic. 2023.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1535729

ABSTRACT

El ciclo del nitrógeno representa uno de los procesos biogeoquímicos más importantes para los ecosistemas terrestres y acuáticos. Las comunidades microbianas desempeñan un papel crucial en los procesos de transformación del nitrógeno en el suelo, ya que participan en diversas etapas como la nitrificación, de gran importancia para la producción agrícola. Dentro de los marcadores moleculares más utilizados para evaluar la actividad de poblaciones microbianas oxidantes de amonio se han considerado ampliamente los genes que codifican enzimas claves como la subunidad A de la actividad amonio monooxigenasa (AMO). Sin embargo, no se comprende completamente si la expresión de esta enzima tiene relación directa con el rendimiento de los cultivos. En este contexto, se evaluó la expresión del gen amo-A de comunidades bacterianas y archaeales presentes en un lote arrocero previamente caracterizado por ambientes. Para cuantificar la abundancia de arqueas y bacterias oxidantes de amonio, (AOA y AOB, respectivamente) se emplearon las técnicas de PCR en tiempo real (RT-qPCR) y PCR digital (RT-dPCR). En este trabajo se encontró a través del análisis de datos metagenómicos que hubo una mayor presencia de AOB en las muestras de suelo rizosférico mientras que las AOA fueron predominantes en las muestras de suelo de soporte "bulk", sin embargo, no se detectó la expresión del gen amo-A asociada a la comunidad de bacterias en las muestras de suelo analizadas. Por otra parte, no se presentaron diferencias entre los transcritos del gen amo-A asociados a la comunidad de AOA de los ambientes caracterizados. Además, la expresión de transcritos no estuvo relacionada con alguna de las propiedades químicas evaluadas. Finalmente, las estrategias de cuantificación para RT-qPCR (plásmido y templete) resultaron ser homólogas y funcionales para identificar la expresión del gen amo-A de AOA, mientras que la técnica de RT-dPCR fue más precisa para el análisis de la comunidad de AOB y AOA.


The nitrogen cycle represents one the most important biogeochemical process for terrestrial and aquatic ecosystems. Microbial communities play a crucial role in the processes of transformation of soil nitrogen in the, since they participate in various stages such as nitrification, which is of great importance for agricultural production. Among the most used molecular markers to assess ammonium oxidizing microbial populations activity have been considered widely the genes encoding key enzymes such as ammonium monooxygenase (AMO) subunit A. However, it is not fully understood whether the expression of this enzyme is directly related to the crop yield. In this context, this research work evaluated the expression of the amo-A gene of bacterial and archaeal communities present in a rice field previously characterized by environments. Real-time PCR (RT-qPCR) and digital PCR (RT-dPCR) techniques were used to quantify the abundance of archaea and ammonium-oxidizing bacteria (AOA and AOB, respectively). In this work it was found that in the analysis of metagenomic data there was a greater presence of AOB in rhizospheric soil samples while AOA were predominant in bulk soil samples, however, the expression of the amo-A gene was not detected. associated with the community of bacteria in the soil samples analyzed. On the other hand, it was found that the transcripts of the amo-A gene of the AOA community did not present differences between the characterized environments. Furthermore, the expression of transcripts is not related to any of the chemical properties evaluated. Finally, the quantification strategies for RT-qPCR (plasmid and quenching) turned out to be homologous and functional to identify the expression of the AOA amo-A gene, while the RT-dPCR technique was more precise for the analysis of the community of AOB and AOA.

4.
Int Microbiol ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38010565

ABSTRACT

Antibiotics in wastewater treatment plants can alter the physiological activity and the structure of microbial communities through toxic and inhibitory effects. Physiological adaptation, kinetic, and population dynamics behavior of a nitrifying sludge was evaluated in a sequential batch reactor (SBR) fed with 14.4 mg/L of ampicillin (AMP). The addition of AMP did not affect ammonium consumption (100 mg NH4+-N/L) but provoked nitrite accumulation (0.90 mg NO2--N formed/mg NH4+-N consumed) and an inhibition of up to 67% on the nitrite oxidizing process. After 30 cycles under AMP feeding, the sludge recovered its nitrite oxidizing activity with a high nitrate yield (YNO3-) of 0.87 ± 0.10 mg NO3--N formed/mg NH4+-N consumed, carrying out again a stable and complete nitrifying process. Increases in specific rate of nitrate production (qNO3-) showed the physiological adaptation of the nitrite oxidizing bacteria to AMP inhibition. Ampicillin was totally removed since the first cycle of addition. Exposure to AMP had effects on the abundance of bacterial populations, promoting adaptation of the nitrifying sludge to the presence of the antibiotic and its consumption. Nitrosomonas and Nitrosospira always remained within the dominant genera, keeping the ammonium oxidizing process stable while an increase in Nitrospira abundance was observed, recovering the stability of the nitrite oxidizing process. Burkholderia, Pseudomonas, and Thauera might be some of the heterotrophic bacteria involved in AMP consumption.

5.
Environ Sci Pollut Res Int ; 30(39): 91060-91073, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37464210

ABSTRACT

The objective of this research was to evaluate the performance of a structured bed reactor (SBRIA), carried out with intermittent aeration (IA), in the removal of organic matter and nitrogen from dairy effluent, when run with different organic loading rates (OLR). The SBRIA was operated for 227 days, with 2:1 AI cycles (2 h with aeration on and 1 h off) and Hydraulic Retention Time (HRT) of 16 h. Three phases, with different OLR, were evaluated: phases A (1000 gCOD m-3 day-1 - 63 days), B (1400 gCOD m-3 day-1 - 94 days), and C (1800 gCOD m-3 day-1 - 70 days). The percentage of COD, NH4+-N removal, and nitrogen removal, respectively, were above 85 ± 7%, 73 ± 27%, and 83 ± 5, in all phases. There was no accumulation of the oxidized forms of nitrogen in the reactor. The kinetic test, performed to evaluate the nitrification and denitrification in the system, indicated that even in dissolved oxygen concentrations of 4.5 mg L-1, it was possible to obtain the denitrification process in the system. The results demonstrate that the reactor under study has positive characteristics to be used as an alternative for removing the removal of organic material and nitrogen in the biological treatment of dairy effluents.


Subject(s)
Denitrification , Nitrogen , Bioreactors , Nitrification , Waste Disposal, Fluid/methods
6.
Bioresour Technol ; 372: 128639, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36681348

ABSTRACT

The structured-bed reactor with intermittent aeration (SBRIA) is a promising technology for simultaneous carbon and nitrogen removal from wastewater. An in depth understanding of the microbiological in the reactor is crucial for its optimization. In this research, biofilm samples from the aerobic and anoxic zones of an SBRIA were analyzed through 16S rRNA sequencing to evaluate the bacterial community shift with variations in the airflow and aeration time. The control of the airflow and aeration time were essential to guarantee reactor performances to nitrogen removal close to 80%, as it interfered in nitrifying and denitrifying communities. The aeration time of 1.75 h led to establishment of different nitrogen removal pathways by syntrophic relationships between nitrifier, denitrifier and anammox species. Additionally, the predominance of these different species in the internal and external parts of the biofilm varied according to the airflow.


Subject(s)
Denitrification , Nitrogen , Nitrogen/metabolism , Nitrification , Carbon , RNA, Ribosomal, 16S/genetics , Bioreactors/microbiology , Biofilms , Sewage
7.
Environ Technol ; 44(22): 3367-3381, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35348424

ABSTRACT

The foam-aerated biofilm reactor (FABR) is a novel biofilm process that can simultaneously remove carbon and nitrogen from wastewater. A porous polyurethane foam sheet forms an interface between wastewater and aerated water, making it a counter-diffusional biofilm process similar to the membrane-aerated biofilm reactor (MABR). However, it is not clear how biofilm develops the foam interior, and how this impacts mass transfer and performance. This research explored biofilm development within the foam sheet and determined whether advective transport within the sheet played a significant role. Foam sheets with 2-, 4.5- and 9-mm thicknesses were explored. Oxygen, nitrate, nitrite and ammonia profiles in the sheet were measured using microsensors, and biofilm imaging studies were carried out using optical coherence tomography (OCT). On the foam's aerated side, a dense nitrifying biofilm formed. Beyond the aerobic zone, much less biomass was observed, with a high porosity foam-biofilm layer. The higher effective diffusivity within the foam for the 4- and 9-mm sheets suggested advective transport within the foam channel structures. Using an effective diffusivity factor in conventional 1-D biofilm models reproduced the measured substrate concentration profiles within the foam. Four different practical conditions were modelled. The maximum TN removal efficiency was about 70% and a nitrogen removal flux of 1.25 gN.m-2.d-1. We conclude that mass transfer resistance occurred primarily in the dense, nitrifying layer near the aerated side. The rest of the foam sheet was porous, allowing the advective mass transfer.


Subject(s)
Bioreactors , Wastewater , Ammonia , Nitrogen , Biofilms
8.
Environ Sci Pollut Res Int ; 30(5): 11755-11768, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36100786

ABSTRACT

The nutrient biological removal from sewage, especially from anaerobic reactor effluents, still represents a major challenge in conventional sewage treatment plants. In this work, the nitrogen and phosphorus removal from anaerobic pre-treated domestic sewage in an up-flow anaerobic sludge blanket (UASB) reactor was assessed in a structured fixed bed reactor (SFBR) operated in a continuous and in a batch mode using polyurethane foam as material support for biomass and fermented glycerol as the exogenous carbon source. The SFBR was operated as a sequencing batch reactor with cycles of 90, 120, and 150 min under anaerobic, oxic, and anoxic conditions, respectively, reaching average efficiencies for total nitrogen and phosphorus removal of 88% and 56%, respectively. Fermented glycerol was added during the non-aerated periods. Under continuous feeding, the SFBR was operated with aeration/non-aeration periods of 2/1 (h) and 3/1 (h), hydraulic retention time of 12 h, and a recirculation ratio of 3. Without fermented glycerol addition, the maximum removal of total nitrogen (TN) reached 42%, while adding glycerol in the non-aerated period improved TN removal to 64.9% (2/1 h) and 69.5% (3/1 h). During continuous operation, no phosphorus removal was observed, which was released during the non-aerated period, remaining in the effluent. Optical microscopy analyses confirmed the presence of polyphosphate granules and of the phosphorus accumulating organisms in the reactor biofilm. It was concluded that the batch feeding method was determinant for phosphorus removal. The structured fixed bed reactor with polyurethane foam proved to be feasible in the removal of organic matter and nutrients remaining in the UASB reactor effluent.


Subject(s)
Bioreactors , Sewage , Glycerol , Nitrogen , Phosphorus , Waste Disposal, Fluid/methods , Denitrification , Nitrification
9.
Rev. med. vet. zoot ; 70(3): e8, 2023.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1576553

ABSTRACT

RESUMEN La acuaponía es un sistema de producción que integra la acuicultura y la hidroponía, se destaca por su capacidad de producir alimentos de forma sostenible, promoviendo el reciclaje de nutrientes, el uso eficiente del agua y generando alimentos de alta calidad e inocuidad. Por ese motivo, el objetivo de este artículo de revisión fue compilar los conceptos más relevantes y avances alcanzados en la aplicación de esta técnica productiva mediante la exploración y sistematización de investigaciones publicadas en bases de datos de revistas indexadas durante la década 2012-2022. Los resultados obtenidos se organizaron en cuatro grandes categorías: 1. La acuaponía desde una perspectiva biológica; 2. viabilidad y rentabilidad del sistema acuapónico; 3. desarrollos ingenieriles, nuevas tendencias y tecnologías en acuaponía; y 4. aspectos ambientales y sociales de la acuaponía. La información científica y tecnológica compilada permitirá conocer el potencial, la viabilidad y adaptabilidad de los sistemas acuapónicos en un contexto de cambios ambientales, sociales y económicos. En ese sentido, la bibliometría, realizada con 55 publicaciones seleccionadas, permite identificar que el año de mayor producción científica en sistemas acuapónicos fue 2020, con 23% de la producción total en la década analizada, y que el 63% de las investigaciones se publicó en los últimos cinco años (2018 a 2022). Finalmente, por área temática, se encontró que el 44% de las investigaciones realizadas corresponden a la categoría "desarrollos ingenieriles, nuevas tendencias y tecnologías", seguido por la "perspectiva biológica" y "aspectos ambientales y sociales" con 28% y 20%, respectivamente. El área con menor cantidad de publicaciones correspondió a "viabilidad y rentabilidad" (8% del total de referencias).


ABSTRACT Aquaponics, a production system that integrates aquaculture and hydroponics, stands out for its ability to produce food sustainably, promoting the recycling of nutrients, the efficient use of water and generating high quality and safe foods. For this reason, the objective of this review article was to compile the most relevant concepts and advances achieved in the application of this productive technique, through exploration and systematization of research published in indexed journal databases during the decade between 2012 to 2022. Results obtained were organized into four large categories: 1. Aquaponics from a biological perspective; 2. viability and profitability of aquaponic systems; 3. engineering developments, new trends and technologies in aquaponics; and 4. environmental and social aspects of aquaponics. The information presented below will allow to know the potential feasibility and adaptability of aquaponic systems in the context of environmental, social, and economic changes. In this sense, bibliometrics, carried out in 55 selected publications, allows to identify the year 2020 as the highest scientific production in aquaponic systems with 23% of total production in the decade studied and that 63% of research was published in the last 5 years (2018 to 2022). Finally, by thematic area, it was found that 44% of the research carried out corresponds to the "engineering developments, new trends and technologies" category, followed by "biological perspective", and "environmental and social aspects" (28% and 20%, respectively). The area with the lowest quantity of publications corresponded to "viability and profitability" (8% of the total references).

10.
Environ Technol ; : 1-17, 2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36322430

ABSTRACT

Phenol is a noteworthy pollutant, found in effluents of many industrial processes, like oil refining and drugs production, which can impair the treatment efficiency of bioreactors. This study evaluated the performance of phenol, COD, and nitrogen removal of an aerobic bench-scale Moving Bed Biofilm Reactor (MBBR) exposed to gradually increasing phenol content over 233 days. The reactor had Hydraulic Retention Time (HRT) set at 3 h and 40% filling degree (K1 media), and was fed with synthetic wastewater containing phenol (10, 20, 50, 100, 250 and 400 mg/L), glucose (400 mgCOD/L), and 40 mgN-NH3/L. Phenol, COD, and ammoniacal nitrogen removal averages were high - above 88%, 81%, and 82%, respectively -, even when the MBBR was exposed to the greatest phenol loads, indicating that the biofilm was able to acclimate and resist high phenol concentrations. However, the intense EPS production revealed the impact caused by phenol to the biofilm from the concentration of 250 mg/L onwards. Even though, at this concentration, the average removals of COD and phenol were 87.2% and 89.7%. The removal of ammoniacal nitrogen by nitrification was compromised, being 91.6% of the ammoniacal nitrogen removed by assimilation and only 0.35% removed by nitrification. At 400 mg phenol/L, the reactor provided COD and phenol average removals equal 88.6% and 80.9%, respectively. On the last day of operation, the removal of COD dropped to 55.4% and phenol removal was equal 49.0%. Novel microscopical evaluation of the MBBR's biofilm revealed some negative effects of the phenol on the microbiota composition.

11.
J Environ Manage ; 323: 116294, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36261994

ABSTRACT

Municipal and industrial wastewater discharges in coastal and marine environments are of major concern due to their high carbon and nitrogen loads and the resulted phenomenon of eutrophication. Bioelectrochemical reactors (BERs) for simultaneous nitrogen and carbon removal have gained attention owing to their cost efficiency and versatility, as well as the possibility of electrochemical enrich specific groups. This study presented a scalable two-chamber BERs using graphite granules as electrode material. BERs were inoculated and operated for 37 days using natural seawater with high concentrations of ammonium and acetate. The BERs demonstrated a maximum current density of 0.9 A m-3 and removal rates of 7.5 mg NH4+-N L-1 d-1 and 99.5 mg L-1 d-1 for total organic carbon (TOC). Removals observed for NH4+-N and TOC were 96.2% and 68.7%, respectively. The results of nutrient removal (i.e., ammonium, nitrate, nitrite and TOC) and microbial characterization (i.e., next-generation sequencing of the 16S rRNA gene and fluorescence in situ hybridization) showed that BERs operated with a poised cathode at -260 mV (vs. Ag/AgCl) significantly enriched nitrifying microorganisms in the anode and denitrifying microorganisms and planctomycetes in the cathode. Interestingly, the electrochemical enrichment did not increase the total number of microorganisms in the formed biofilms but controlled their composition. Thus, this work shows the first successful attempt to electrochemically enrich marine nitrifying and denitrifying microorganisms and presents a technique to accelerate the start-up process of BERs to remove dissolved inorganic nitrogen and total organic carbon from seawater.


Subject(s)
Ammonium Compounds , Graphite , Nitrogen/chemistry , Denitrification , Nitrification , Wastewater , Carbon , Nitrates , Bioreactors , RNA, Ribosomal, 16S , Nitrites , In Situ Hybridization, Fluorescence , Seawater
12.
Environ Technol ; : 1-15, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35980262

ABSTRACT

The constant presence of triclosan (TCS) in surface water and wastewater has been verified due to its application in several pharmaceutical and personal care products. Thus, removing this emerging contaminant is essential to minimize the contamination of water bodies. The anaerobic-aerobic-anoxic (AOA) system is an innovative alternative that combines the removal of nutrients and triclosan. This study focuses on the simultaneous removal of carbonaceous matter, nitrogen, phosphorus, and triclosan in a continuous pilot-scale AOA system from synthetic wastewater. The upflow system, in series, was operated at hydraulic retention time (HRT) of 8 h and a flowrate of 2.40 L h-1. Glucose (190 mg L-1) was added to the anoxic reactor as the external carbon source. Besides that, bacterial community structure was investigated using 16S rRNA sequencing in each reactor. The system achieved average removal efficiencies of 96% (14.03 g d-1) for Chemical Oxygen Demand (COD), 85% (2.64 g d-1) for Total Kjeldahl Nitrogen (TKN), 88% (1.40 g d-1) for Total Ammonia Nitrogen (TAN), 20% (0.12 g d-1) for Total Phosphorus (TP), and 93% (1.87 µg d-1) for Triclosan (TCS). The phyla Proteobacteria, Firmicutes, Bacteroidetes, and Chloroflexi were found in greater abundance. The main genera identified were Anaeromusa, Aeromonas, Azospira, Clostridium, and Lactococcus. The organisms related to phylum and genus corroborate the involved processes and the removal performance achieved. In addition, Lactococcus, Thermomonas, Ferruginibacter, and Dechloromonas were involved in triclosan biodegradation. The anaerobic-oxic-anoxic system successfully removed carbonaceous, nitrogenous matter, and triclosan, with glucose increasing the denitrifying activity.

13.
Environ Sci Pollut Res Int ; 29(56): 85026-85035, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35789460

ABSTRACT

Condensed tannins are a potentially important treatment option to mitigate N2O (nitrous oxide) and affect carbon dioxide (CO2) and methane (CH4) emissions; however, their effect has been poorly assessed. Here, we quantified the emissions of N2O, CH4, and CO2, soil N mineralization, and nitrification with increasing doses of condensed tannins added to the urine of cattle raised on pasture. The experiment consisted of incubation with doses of 0%, 0.5%, and 1.0% of condensed tannins added directly to the collected urine. The experimental design was completely randomized. Greenhouse gas fluxes were quantified for four weeks using static chambers and gas chromatography. The addition of condensed tannins increased N2O emissions (P < 0.05), with total emissions averaging 95.84 mg N-N2O kg-1, 265.30 mg N-N2O kg-1, and 199.32 mg N-N2O kg-1 dry soil in the treatments with 0%, 0.5%, and 1% tannins, respectively. Methane emissions were reduced with the addition of tannins (P < 0.05), with total emissions of 8.84 g CH4 kg-1, 1.87 g CH4 kg-1, and 3.34 g CH4 kg-1 dry soil in the treatments with 0%, 0.5%, and 1% tannins, respectively. Soil respiration increased with the addition of condensed tannins (P < 0.05), with total emissions of 3.80 g CO2 kg-1, 6.93 g CO2 kg-1, and 5.87 g CO2 kg-1 in dry soil, in the treatments with 0%, 0.5%, and 1% tannins, respectively. The addition of condensed tannins reduced N mineralization and nitrification. We found evidence that the use of condensed tannins might not be a suitable option to mitigate N2O emissions. However, soil CH4 emissions can be abated. The increases in soil respiration suggest that tannins affect soil microorganisms, and the effects on CH4 and N2O could be related to the variation in the soil microbiome, which requires further clarification.


Subject(s)
Greenhouse Gases , Proanthocyanidins , Cattle , Animals , Greenhouse Gases/analysis , Soil/chemistry , Nitrogen/analysis , Carbon Dioxide/analysis , Grassland , Nitrous Oxide/analysis , Methane/analysis
14.
Plants (Basel) ; 11(14)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35890524

ABSTRACT

Improvements in nitrogen use efficiency (NUE) in corn production systems are necessary, to decrease the economic and environmental losses caused by loss of ammonia volatilization (NH3-N). The objective was to study different nitrogen (N) fertilizer technologies through characterization of N sources, NH3-N volatilization losses, and their effects on the nutrient concentration and yield of corn grown in clayey and sandy soils in south Brazil. The treatments consisted of a control without N application as a topdressing, three conventional N sources (urea, ammonium sulfate, and ammonium nitrate + calcium sulfate), and three enhanced-efficiency fertilizers [urea treated with NBPT + Duromide, urea formaldehyde, and polymer-coated urea (PCU) + urea treated with NBPT and nitrification inhibitor (NI)]. The losses by NH3-N volatilization were up to 46% of the N applied with urea. However, NI addition to urea increased the N losses by NH3-N volatilization by 8.8 and 23.3%, in relation to urea alone for clayey and sandy soils, respectively. Clayey soil was 38.4% more responsive than sandy soil to N fertilization. Ammonium sulfate and ammonium nitrate + calcium sulfate showed the best results, because it increased the corn yield in clayey soil and contributed to reductions in NH3-N emissions of 84 and 80% in relation to urea, respectively.

15.
Sci Total Environ ; 843: 156988, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35772566

ABSTRACT

Simultaneous removal of organic matter, nitrogen, and phosphorus, via simultaneous nitrification and denitrification (SND) and enhanced biological phosphorus removal processes, was evaluated in a pilot-scale sequential batch reactor. The focus was on granule's morphology, stability, microbiological composition, and reactor performance while treating diluted domestic wastewater with total chemical oxygen demand (CODt) of ≈ 200 mg.L-1. The applied organic loading rate was 0.9 ± 0.3 kg CODt.m-3.d-1 in the experiment. Aerobic granular sludge developed gradually. After 87-day operation, granules (diameter ≥ 0.2 mm) were ≥ 50 % of the biomass, and after 168 days, complete granulation was obtained (≥ 80 % of biomass). In the third period (days 168-247, complete granulation), mixed liquor biomass reached a volatile suspended solids (VSS) concentration of 1.2 ± 0.3 g VSS.L-1, with the granules remaining stable until the experimental end. In this period, low effluent concentrations of COD, nitrogen (NH4+-N, NO2--N and NO3--N) and phosphate (PO43-P) were obtained (mg.L-1): 36 ± 11; 4 ± 5; 3 ± 3, 4 ± 5; and 0.9 ± 0.4, respectively. COD, NH4+-N, and PO43--P removal efficiencies (%) were 80 ± 11; 83 ± 20; and 55 ± 24, respectively. Heterotrophic nitrification and SND were observed, resulting in a process efficiency of 31 % even with dissolved oxygen applied to saturation. The phosphate removal was mainly attributed to denitrifying phosphorus accumulating organisms. Pseudomonas, the dominant genus found, acted in nitrogen and phosphorus removal. Pseudoxanthomonas also assisted in phosphorus removal. Bacterial communities in the flocs (≈ 20 % of biomass) during the last period were similar to those in the granules; therefore, they constituted the basis for granule formation, directly contributed to the simultaneous good removal of organic matter and nutrients.


Subject(s)
Sewage , Wastewater , Bioreactors/microbiology , Denitrification , Nitrification , Nitrogen/analysis , Nutrients , Phosphates , Phosphorus , Sewage/microbiology , Waste Disposal, Fluid/methods , Wastewater/chemistry
16.
Front Microbiol ; 13: 821902, 2022.
Article in English | MEDLINE | ID: mdl-35401462

ABSTRACT

Marine ammonia oxidizers that oxidize ammonium to nitrite are abundant in polar waters, especially during the winter in the deeper mixed-layer of West Antarctic Peninsula (WAP) waters. However, the activity and abundance of ammonia-oxidizers during the summer in surface coastal Antarctic waters remain unclear. In this study, the ammonia-oxidation rates, abundance and identity of ammonia-oxidizing bacteria (AOB) and archaea (AOA) were evaluated in the marine surface layer (to 30 m depth) in Chile Bay (Greenwich Island, WAP) over three consecutive late-summer periods (2017, 2018, and 2019). Ammonia-oxidation rates of 68.31 nmol N L-1 day-1 (2018) and 37.28 nmol N L-1 day-1 (2019) were detected from illuminated 2 m seawater incubations. However, high ammonia-oxidation rates between 267.75 and 109.38 nmol N L-1 day-1 were obtained under the dark condition at 30 m in 2018 and 2019, respectively. During the late-summer sampling periods both stratifying and mixing events occurring in the water column over short timescales (February-March). Metagenomic analysis of seven nitrogen cycle modules revealed the presence of ammonia-oxidizers, such as the Archaea Nitrosopumilus and the Bacteria Nitrosomonas and Nitrosospira, with AOA often being more abundant than AOB. However, quantification of specific amoA gene transcripts showed number of AOB being two orders of magnitude higher than AOA, with Nitrosomonas representing the most transcriptionally active AOB in the surface waters. Additionally, Candidatus Nitrosopelagicus and Nitrosopumilus, phylogenetically related to surface members of the NP-ε and NP-γ clades respectively, were the predominant AOA. Our findings expand the known distribution of ammonium-oxidizers to the marine surface layer, exposing their potential ecological role in supporting the marine Antarctic system during the productive summer periods.

17.
Article in English | MEDLINE | ID: mdl-35206599

ABSTRACT

For many years, the world's coastal marine ecosystems have received industrial waste with high nitrogen concentrations, generating the eutrophication of these ecosystems. Different physicochemical-biological technologies have been developed to remove the nitrogen present in wastewater. However, conventional technologies have high operating costs and excessive production of brines or sludge which compromise the sustainability of the treatment. Microbial electrochemical technologies (METs) have begun to gain attention due to their cost-efficiency in removing nitrogen and organic matter using the metabolic capacity of microorganisms. This article combines a critical review of the environmental problems associated with the discharge of the excess nitrogen and the biological processes involved in its biogeochemical cycle; with a comparative analysis of conventional treatment technologies and METs especially designed for nitrogen removal. Finally, current METs limitations and perspectives as a sustainable nitrogen treatment alternative and efficient microbial enrichment techniques are included.


Subject(s)
Denitrification , Nitrogen , Bioreactors , Ecosystem , Nitrogen/metabolism , Wastewater
18.
Environ Technol ; 43(17): 2671-2683, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33616004

ABSTRACT

Counter-diffusional biofilms are efficient in the removal of nitrogen from low strength wastewaters. Although counter-diffusion is usually established using expensive gas-permeable membranes, a polyurethane sheet is used to separate the aerobic and anoxic environments in the novel foam aerated biofilm reactor (FABR). Foam sheets with thicknesses of 10, 5 and 2 mm and synthetic wastewater with COD/N ratios of 5 and 2.5 were evaluated. The 2 mm thick foam reactor did not show good biomass adherence and, therefore, did not show N removal efficiency. The 5 and 10 mm reactors, in both COD/N ratios, showed similar total nitrogen and COD removal performance, up to 60% and 80%, respectively. The denitrification efficiency was close to 100% throughout the experimental period. Nitrification efficiency decreased with microbial growth, which was recovered after removal of excessive biomass. Lower values of polyurethane foam thickness and COD/N ratio did not provide a higher nitrification rate, as expected. The increase in resistance to mass transfer was associated with the growth of biomass attached to the foam rather than to its thickness and resulted in specialization of the microbial communities as revealed by 16S amplicon sequencing. FABR reveals as a promising alternative for simultaneous removal of nitrogen and COD from low COD/N ratio wastewaters.


Subject(s)
Denitrification , Nitrogen , Biofilms , Bioreactors , Nitrification , Wastewater
19.
Environ Technol ; 43(16): 2540-2552, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33546577

ABSTRACT

The Structured Bed Reactor with Recirculation and Intermittent Aeration (SBRRIA) is a reactor configuration that presents high efficiency of organic matter and nitrogen removal, besides low sludge production. However, operational parameters, as the recirculation rate, aeration time, and airflow, are not fully established. A bench-scale structured bed reactor with intermittent aeration was fed with synthetic effluent simulating the characteristics of sanitary sewage. The reactor was operated for 280 days with an operational hydraulic retention time (HRT) of 10 h. The reactor was operated without effluent recirculation for the first time since this approach was not yet reported, and was named Structured Bed Reactor with Intermittent Aeration (SBRIA). The COD removal was higher than 81% for all operational conditions, and the total nitrogen removal ranged from 10 to 80%. The highest efficiencies were obtained with an aeration time of 1 h 45 min (total cycle of 3 h) and an airflow rate of 4.5 L.min-1. Different nitrification and denitrification behaviours were observed, resulting in nitrification efficiencies over 90% when the reactor was submitted to higher aeration times and denitrification efficiencies above 90% when the reactor was submitted to low aeration times. The airflow ranges tested in this study affected the nitrification and the total nitrogen efficiencies. Even without effluent recirculation, the temporal profile showed that there were no peaks in the concentration of the nitrogen forms in the reactor effluent, saving electrical energy up to 75% due to pumping.


Subject(s)
Carbon , Nitrogen , Bioreactors , Denitrification , Nitrification , Sewage , Waste Disposal, Fluid/methods
20.
Environ Technol ; 43(16): 2443-2456, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33502955

ABSTRACT

This research aimed the performance evaluation of a structured bed reactor with different cycles of Intermittent Aeration (IA)(SBRRIA) in the municipal sewage treatment and the verification of the effect of IA cycles on the total nitrogen (TN) removal and organic matter (COD). Three IA cycles were evaluated: phase I (4 h AE (aeration on) - 2 h NA (aeration off)); II (2 h AE-1 h NA) and III (2 h AE-2 h NA), with Hydraulic Retention Time of 16 h. The best nitrogen removal was obtained during phase II, with the lowest non-aeration time: efficiency of nitrification, denitrification, TN and COD removal of 80 ± 15%, 82 ± 12%, 67 ± 6% and 94 ± 7%, respectively. The mean cell residence time was 19, 26 and 33 d in phases I, II and III, respectively. The statistical analysis applied to the AE/NA profiles showed that the time of AE and NA in the cycles did not influence nitrogen and organic matter removal. Thus, this indicates the recirculation and the gradient formed in the support material facilitate the process of Simultaneous Nitrification and Denitrification. The lowest concentration of nitrifying and denitrifying microorganisms was obtained in effluent and sludge at the end of phase III. From the TP (Total Proteins)/TPS (Total Polysaccharides) ratio obtained (0.8 ± 0.1, 1.3 ± 0.1 e 1.5 ± 0.1 in phases I, II and III), it was possible to conclude that the biofilm in phase I was more porous, with a thin layer if compared to that in phase II and III.


Subject(s)
Denitrification , Nitrogen , Biofilms , Bioreactors , Nitrification , Nitrogen/metabolism , Sewage , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL