Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
J Virol ; 97(8): e0082723, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37560924

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) causes a febrile illness that can progress to neurological disease with the possibility of death in human cases. The evaluation and optimization of therapeutics that target brain infections demands knowledge of the host's response to VEEV, the dynamics of infection, and the potential for within-host evolution of the virus. We hypothesized that selective pressures during infection of the brain may differ temporally and spatially and so we investigated the dynamics of the host response, viral transcript levels, and genetic variation of VEEV TC-83 in eight areas of the brain in mice over 7 days post-infection (dpi). Viral replication increased throughout the brain until 5-6 dpi and decreased thereafter with neurons as the main site of viral replication. Low levels of genetic diversity were noted on 1 dpi and were followed by an expansion in the genetic diversity of VEEV and nonsynonymous (Ns) mutations that peaked by 5 dpi. The pro-inflammatory response and the influx of immune cells mirrored the levels of virus and correlated with substantial damage to neurons by 5 dpi and increased activation of microglial cells and astrocytes. The prevalence and dynamics of Ns mutations suggest that the VEEV is under selection within the brain and that progressive neuroinflammation may play a role in acting as a selective pressure. IMPORTANCE Treatment of encephalitis in humans caused by Venezuelan equine encephalitis virus (VEEV) from natural or aerosol exposure is not available, and hence, there is a great interest to address this gap. In contrast to natural infections, therapeutic treatment of infections from aerosol exposure will require fast-acting drugs that rapidly penetrate the blood-brain barrier, engage sites of infection in the brain and mitigate the emergence of drug resistance. Therefore, it is important to understand not only VEEV pathogenesis, but the trafficking of the viral population within the brain, the potential for within-host evolution of the virus, and how VEEV might evolve resistance.


Subject(s)
Encephalitis Virus, Venezuelan Equine , Encephalitis , Animals , Humans , Mice , Brain , Cell Death , Encephalitis Virus, Venezuelan Equine/genetics , Genetic Variation , Encephalitis/virology
2.
Plant Biotechnol J ; 21(5): 1058-1072, 2023 05.
Article in English | MEDLINE | ID: mdl-36710373

ABSTRACT

The rubber tree (Hevea brasiliensis) is grown in tropical regions and is the major source of natural rubber. Using traditional breeding approaches, the latex yield has increased by sixfold in the last century. However, the underlying genetic basis of rubber yield improvement is largely unknown. Here, we present a high-quality, chromosome-level genome sequence of the wild rubber tree, the first report on selection signatures and a genome-wide association study (GWAS) of its yield traits. Population genomic analysis revealed a moderate population divergence between the Wickham clones and wild accessions. Interestingly, it is suggestive that H. brasiliensis and six relatives of the Hevea genus might belong to the same species. The selective sweep analysis found 361 obvious signatures in the domesticated clones associated with 245 genes. In a 15-year field trial, GWAS identified 155 marker-trait associations with latex yield, in which 326 candidate genes were found. Notably, six genes related to sugar transport and metabolism, and four genes related to ethylene biosynthesis and signalling are associated with latex yield. The homozygote frequencies of the causal nonsynonymous SNPs have been greatly increased under selection, which may have contributed to the fast latex yield improvement during the short domestication history. Our study provides insights into the genetic basis of the latex yield trait and has implications for genomic-assisted breeding by offering valuable resources in this new domesticated crop.


Subject(s)
Hevea , Rubber , Rubber/metabolism , Hevea/genetics , Hevea/metabolism , Latex/metabolism , Genome-Wide Association Study , Plant Breeding , Genomics , Chromosomes/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics
3.
Genes (Basel) ; 13(4)2022 03 29.
Article in English | MEDLINE | ID: mdl-35456418

ABSTRACT

Premature ovarian insufficiency (POI) is one of the main causes of female premature infertility. POI is a genetically heterogeneous disorder with a complex molecular etiology; as such, the genetic causes remain unknown in the majority of patients. Therefore, this study aimed to identify mutations and characterize the associated molecular contribution of gonadogenesis-determinant genes to POI. Genomic assays, including PCR-SSCP and Sanger sequencing, followed by in silico analyses were used to investigate the underpinnings of ovarian deficiency in 11 women affected by POI. Large deletions and nucleotide insertions and duplications were excluded by PCR. Thirteen genetic variants were identified in the WT1 (c.213G>T, c.609T>C, c.873A>G, c.1122G>A), NR0B1 (c.353C>T, c.425G>A), NR5A1 (c.437G>C, IVS4-20C>T), LHX9 (IVS2-12G>C, IVS3+13C>T, c.741T>C), ZNF275 (c.969C>T), and NRIP1 (c.3403C>T) genes. Seven novel genetic variants and five unpublished substitutions were identified. No genetic aberrations were detected in the ZFP92 and INSL3 genes. Each variant was genotyped using PCR-SSCP in 100 POI-free subjects, and their allelic frequencies were similar to the patients. These analyses indicated that allelic variation in the WT1, NR0B1, NR5A1, LHX9, ZFP92, ZNF275, INSL3, and NRIP1 genes may be a non-disease-causing change or may not contribute significantly to the genetics underlying POI disorders. Findings support the polygenic nature of this clinical disorder, with the SNVs identified representing only a probable contribution to the variability of the human genome.


Subject(s)
Infertility, Female , Primary Ovarian Insufficiency , Alleles , Cohort Studies , DAX-1 Orphan Nuclear Receptor/genetics , Female , Humans , Infertility, Female/genetics , LIM-Homeodomain Proteins/genetics , Male , Mutation , Mutation, Missense , Primary Ovarian Insufficiency/genetics , Steroidogenic Factor 1/genetics , Transcription Factors/genetics , WT1 Proteins/genetics
4.
Pathogens ; 10(6)2021 Jun 20.
Article in English | MEDLINE | ID: mdl-34203053

ABSTRACT

Persistent infection with the human papillomavirus 16 (HPV 16) is the cause of half of all cervical carcinomas (CC) cases. Moreover, mutations in the oncoproteins E6 and E7 are associated with CC development. In this study, E6/E7 variants circulating in southern Mexico and their association with CC and its precursor lesions were evaluated. In total, 190 DNA samples were obtained from scrapes and cervical biopsies of women with HPV 16 out of which 61 are from patients with CC, 6 from patients with high-grade squamous intraepithelial lesions (HSIL), 68 from patients with low-grade squamous intraepithelial lesions (LSIL), and 55 from patients without intraepithelial lesions. For all E7 variants found, the E7-C732/C789/G795 variant (with three silent mutations) was associated with the highest risk of CC (odd ratio (OR) = 3.79, 95% confidence interval (CI) = 1.46-9.85). The analysis of E6/E7 bicistron conferred to AA-a*E7-C732/C789/G795 variants revealed the greatest increased risk of CC (OR = 110, 95% CI = 6.04-2001.3), followed by AA-c*E7-C732/C789/G795 and A176/G350*E7-p. These results highlight the importance of analyzing the combinations of E6/E7 variants in HPV 16 infection and suggest that AA-a*E7-C732/C789/G795, AA-c*E7-C732/C789/G795, and A176/G350*E7-p can be useful markers for predicting CC development.

5.
Pathogens ; 10(2)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572190

ABSTRACT

In December 2019, the first cases of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were identified in the city of Wuhan, China. Since then, it has spread worldwide with new mutations being reported. The aim of the present study was to monitor the changes in genetic diversity and track non-synonymous substitutions (dN) that could be implicated in the fitness of SARS-CoV-2 and its spread in different regions between December 2019 and November 2020. We analyzed 2213 complete genomes from six geographical regions worldwide, which were downloaded from GenBank and GISAID databases. Although SARS-CoV-2 presented low genetic diversity, there has been an increase over time, with the presence of several hotspot mutations throughout its genome. We identified seven frequent mutations that resulted in dN substitutions. Two of them, C14408T>P323L and A23403G>D614G, located in the nsp12 and Spike protein, respectively, emerged early in the pandemic and showed a considerable increase in frequency over time. Two other mutations, A1163T>I120F in nsp2 and G22992A>S477N in the Spike protein, emerged recently and have spread in Oceania and Europe. There were associations of P323L, D614G, R203K and G204R substitutions with disease severity. Continuous molecular surveillance of SARS-CoV-2 will be necessary to detect and describe the transmission dynamics of new variants of the virus with clinical relevance. This information is important to improve programs to control the virus.

6.
Infect Genet Evol ; 85: 104557, 2020 11.
Article in English | MEDLINE | ID: mdl-32950697

ABSTRACT

SARS-CoV-2 is a new member of the genus Betacoronavirus, responsible for the COVID-19 pandemic. The virus crossed the species barrier and established in the human population taking advantage of the spike protein high affinity for the ACE receptor to infect the lower respiratory tract. The Nucleocapsid (N) and Spike (S) are highly immunogenic structural proteins and most commercial COVID-19 diagnostic assays target these proteins. In an unpredictable epidemic, it is essential to know about their genetic variability. The objective of this study was to describe the substitution frequency of the S and N proteins of SARS-CoV-2 in South America. A total of 504 amino acid and nucleotide sequences of the S and N proteins of SARS-CoV-2 from seven South American countries (Argentina, Brazil, Chile, Ecuador, Peru, Uruguay, and Colombia), reported as of June 3, and corresponding to samples collected between March and April 2020, were compared through substitution matrices using the Muscle algorithm. Forty-three sequences from 13 Colombian departments were obtained in this study using the Oxford Nanopore and Illumina MiSeq technologies, following the amplicon-based ARTIC network protocol. The substitutions D614G in S and R203K/G204R in N were the most frequent in South America, observed in 83% and 34% of the sequences respectively. Strikingly, genomes with the conserved position D614 were almost completely replaced by genomes with the G614 substitution between March to April 2020. A similar replacement pattern was observed with R203K/G204R although more marked in Chile, Argentina and Brazil, suggesting similar introduction history and/or control strategies of SARS-CoV-2 in these countries. It is necessary to continue with the genomic surveillance of S and N proteins during the SARS-CoV-2 pandemic as this information can be useful for developing vaccines, therapeutics and diagnostic tests.


Subject(s)
Amino Acid Substitution , COVID-19/diagnosis , SARS-CoV-2/classification , Viral Proteins/genetics , Coronavirus Nucleocapsid Proteins/genetics , High-Throughput Nucleotide Sequencing , Humans , Phylogeny , SARS-CoV-2/genetics , Sequence Analysis, RNA , South America , Spike Glycoprotein, Coronavirus/genetics
7.
Pathogens ; 9(9)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942526

ABSTRACT

Bovine papillomavirus (BPV) can cause damage to the epithelial and mucosal tissue and currently presents 28 known types. Not all BPV types are associated with the development of cancer in cattle. Studies have shown that variants of human papillomavirus types can present different pathogenic profiles. However, despite the similarity, it is not yet known whether variants of BPV types can also present varying degrees of pathogenicity. Thus, the aim of this study was to evaluate the genetic variability of BPV types and variants isolated in Northeastern Brazil. Samples were obtained from animals with papillomatous lesions. BPV DNA was detected by the amplification of the L1 gene and genotyping was performed by sequencing. Mutations were analyzed in a phylogenetic, structural and functional context. In total, 52 positive samples were obtained and 11 different BPV types were identified in the samples. Ten putative new BPV types were also identified. In addition, several non-synonymous mutations were identified and predicted to alter protein stability, having an impact on immune evasion. The study demonstrated a high genetic diversity of BPV in the region with a large number of mutations identified, serving as a basis for more efficient control measures to be adopted for bovine papillomatosis.

8.
Front Genet ; 10: 771, 2019.
Article in English | MEDLINE | ID: mdl-31543897

ABSTRACT

In the present work, we performed a comparative genome-wide analysis of 22 species representative of the main clades and lifestyles of the phylum Platyhelminthes. We selected a set of 700 orthologous genes conserved in all species, measuring changes in GC content, codon, and amino acid usage in orthologous positions. Values of 3rd codon position GC spanned over a wide range, allowing to discriminate two distinctive clusters within freshwater turbellarians, Cestodes and Trematodes respectively. Furthermore, a hierarchical clustering of codon usage data differs remarkably from the phylogenetic tree. Additionally, we detected a synonymous codon usage bias that was more dramatic in extreme GC-poor or GC-rich genomes, i.e., GC-poor Schistosomes preferred to use AT-rich terminated synonymous codons, while GC-rich M. lignano showed the opposite behavior. Interestingly, these biases impacted the amino acidic usage, with preferred amino acids encoded by codons following the GC content trend. These are associated with non-synonymous substitutions at orthologous positions. The detailed analysis of the synonymous and non-synonymous changes provides evidence for a two-hit mechanism where both mutation and selection forces drive the diverse coding strategies of flatworms.

9.
Genome Biol Evol ; 7(2): 431-43, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25567667

ABSTRACT

Study of proteins located at the host-parasite interface in schistosomes might provide clues about the mechanisms utilized by the parasite to escape the host immune system attack. Micro-exon gene (MEG) protein products and venom allergen-like (VAL) proteins have been shown to be present in schistosome secretions or associated with glands, which led to the hypothesis that they are important components in the molecular interaction of the parasite with the host. Phylogenetic and structural analysis of genes and their transcripts in these two classes shows that recent species-specific expansion of gene number for these families occurred separately in three different species of schistosomes. Enrichment of transposable elements in MEG and VAL genes in Schistosoma mansoni provides a credible mechanism for preferential expansion of gene numbers for these families. Analysis of the ratio between synonymous and nonsynonymous substitution rates (dN/dS) in the comparison between schistosome orthologs for the two classes of genes reveals significantly higher values when compared with a set of a control genes coding for secreted proteins, and for proteins previously localized in the tegument. Additional analyses of paralog genes indicate that exposure of the protein to the definitive host immune system is a determining factor leading to the higher than usual dN/dS values in those genes. The observation that two genes encoding S. mansoni vaccine candidate proteins, known to be exposed at the parasite surface, also display similar evolutionary dynamics suggests a broad response of the parasite to evolutionary pressure imposed by the definitive host immune system.


Subject(s)
Evolution, Molecular , Genes, Helminth , Host-Parasite Interactions/genetics , Open Reading Frames/genetics , Schistosoma/genetics , Animals , DNA Transposable Elements/genetics , Databases, Genetic , Gene Duplication , Introns/genetics , Mutagenesis, Insertional , Parasites/genetics , Phylogeny , Saposins , Sequence Homology, Nucleic Acid , Species Specificity , Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL