Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 227
Filter
1.
Redox Rep ; 29(1): 2395779, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39221774

ABSTRACT

OBJECTIVES: Alcohol and its metabolites, such as acetaldehyde, induced hepatic mitochondrial dysfunction play a pathological role in the development of alcohol-related liver disease (ALD). METHODS: In this study, we investigated the potential of nobiletin (NOB), a polymethoxylated flavone, to counter alcohol-induced mitochondrial dysfunction and liver injury. RESULTS: Our findings demonstrate that NOB administration markedly attenuated alcohol-induced hepatic steatosis, endoplasmic reticulum stress, inflammation, and tissue damage in mice. NOB reversed hepatic mitochondrial dysfunction and oxidative stress in both alcohol-fed mice and acetaldehyde-treated hepatocytes. Mechanistically, NOB restored the reduction of hepatic mitochondrial transcription factor A (TFAM) at both mRNA and protein levels. Notably, the protective effects of NOB against acetaldehyde-induced mitochondrial dysfunction and cell death were abolished in hepatocytes lacking Tfam. Furthermore, NOB administration reinstated the levels of hepatocellular NRF1, a key transcriptional regulator of TFAM, which were decreased by alcohol and acetaldehyde exposure. Consistent with these findings, hepatocyte-specific overexpression of Nrf1 protected against alcohol-induced hepatic Tfam reduction, mitochondrial dysfunction, oxidative stress, and liver injury. CONCLUSIONS: Our study elucidates the involvement of the NRF1-TFAM signaling pathway in the protective mechanism of NOB against chronic-plus-binge alcohol consumption-induced mitochondrial dysfunction and liver injury, suggesting NOB supplementation as a potential therapeutic strategy for ALD.


Subject(s)
Flavones , Signal Transduction , Animals , Mice , Flavones/pharmacology , Signal Transduction/drug effects , Male , Transcription Factors/metabolism , Transcription Factors/genetics , Oxidative Stress/drug effects , Mice, Inbred C57BL , Liver/drug effects , Liver/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Ethanol/toxicity , Ethanol/adverse effects , Mitochondria/drug effects , Mitochondria/metabolism , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/pathology , Hepatocytes/drug effects , Hepatocytes/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Nuclear Respiratory Factor 1/metabolism , Nuclear Respiratory Factor 1/genetics , Protective Agents/pharmacology , NF-E2-Related Factor 1/metabolism , NF-E2-Related Factor 1/genetics , High Mobility Group Proteins
2.
J Neuroimmune Pharmacol ; 19(1): 41, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103507

ABSTRACT

Neuroinflammation has been considered involved in the process of cerebral ischemia-reperfusion injury (CIRI). Transcription factors play a crucial role in regulating gene transcription and the expressions of specific proteins during the progression of various neurological diseases. Evidence showed that transcription factor nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as Nrf1) possessed strong biological activities including antioxidant, anti-inflammatory and neuroprotective properties. However, its role and potential molecular mechanisms in CIRI remain unclear. In our study, we observed a significant elevation of Nrf1 in the cerebral cortex following cerebral ischemia-reperfusion in rats. The Nrf1 downregulation markedly raised COX-2, TNF-α, IL-1ß, and IL-6 protein levels during middle cerebral artery occlusion/reperfusion in rats, which led to worsened neurological deficits, higher cerebral infarct volume, and intensified cortical histopathological damage. In subsequent in vitro studies, the expression of Nrf1 protein increased following oxygen-glucose deprivation/reperfusion treatment on neurons. Subsequently, Nrf1 knockdown resulted in a significant upregulation of inflammatory factors, leading to a substantial increase in the cell death rate. Through analyzing the alterations in the expression of inflammatory factors under diverse interventions, it is indicated that Nrf1 possesses the capacity to discern variations in inflammatory factors via specific structural domains. Our findings demonstrate the translocation of the Nrf1 protein from the cytoplasm to the nucleus, thereby modulating the protein expression of IL-6/TNF-α and subsequently reducing the expression of multiple inflammatory factors. This study signifies, for the first time, that during cerebral ischemia-reperfusion, Nrf1 translocases to the nucleus to regulate the protein expression of IL-6/TNF-α, consequently suppressing COX-2 expression and governing cellular inflammation, ultimately upholding cellular homeostasis.


Subject(s)
Cyclooxygenase 2 , Homeostasis , Interleukin-6 , Rats, Sprague-Dawley , Reperfusion Injury , Tumor Necrosis Factor-alpha , Animals , Rats , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Male , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/biosynthesis , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Interleukin-6/biosynthesis , Homeostasis/physiology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , NF-E2-Related Factor 1/metabolism , NF-E2-Related Factor 1/genetics , NF-E2-Related Factor 1/biosynthesis , Neurons/metabolism , Neurons/pathology , Cells, Cultured
3.
Int J Mol Sci ; 25(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126100

ABSTRACT

Acute myeloid leukemia (AML) has a poor survival rate for both pediatric and adult patients due to its frequent relapse. To elucidate the bioenergetic principle underlying AML relapse, we investigated the transcriptional regulation of mitochondrial-nuclear dual genomes responsible for metabolic plasticity in treatment-resistant blasts. Both the gain and loss of function results demonstrated that NFκB2, a noncanonical transcription factor (TF) of the NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) family, can control the expression of TFAM (mitochondrial transcription factor A), which is known to be essential for metabolic biogenesis. Furthermore, genetic tracking and promoter assays revealed that NFκB2 is in the mitochondria and can bind the specific "TTGGGGGGTG" region of the regulatory D-loop domain to activate the light-strand promoter (LSP) and heavy-strand promoter 1 (HSP1), promoters of the mitochondrial genome. Based on our discovery of NFκB2's novel function of regulating mitochondrial-nuclear dual genomes, we explored a novel triplet therapy including inhibitors of NFκB2, tyrosine kinase, and mitochondrial ATP synthase that effectively eliminated primary AML blasts with mutations of the FMS-related receptor tyrosine kinase 3 (FLT3) and displayed minimum toxicity to control cells ex vivo. As such, effective treatments for AML must include strong inhibitory actions on the dual genomes mediating metabolic plasticity to improve leukemia prognosis.


Subject(s)
Genome, Mitochondrial , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Cell Line, Tumor , Promoter Regions, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Nucleus/metabolism , Cell Nucleus/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Gene Expression Regulation, Leukemic
4.
J Biol Chem ; : 107677, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151728

ABSTRACT

The tricarboxylic acid (TCA) cycle plays a crucial role in mitochondrial ATP production in the healthy heart. However, in heart failure, the TCA cycle becomes dysregulated. Understanding the mechanism by which TCA cycle genes are transcribed in the healthy heart is an important prerequisite to understanding how these genes become dysregulated in the failing heart. PGC-1α is a transcriptional coactivator that broadly induces genes involved in mitochondrial ATP production. PGC-1α potentiates its effects through coactivation of coupled transcription factors, such as ERR, Nrf1, Gabpa, and YY1. We hypothesized that PGC-1α plays an essential role in transcription of TCA cycle genes. Thus, by utilizing localization peaks of PGC-1α to TCA cycle gene promoters, it would allow the identification of coupled transcription factors. PGC-1α potentiated the transcription of 13 out of 14 TCA cycle genes, partly through ERR, Nrf1, Gabpa, and YY1. ChIP-sequencing showed PGC-1α localization peaks in TCA cycle gene promoters. Transcription factors with binding elements that were found proximal to PGC-1α peak localization were generally essential for transcription of the gene. These transcription factor binding elements were well conserved between mice and humans. Among the four transcription factors, ERR and Gabpa played a major role in potentiating transcription when compared to Nrf1 and YY1. These transcription factor-dependent PGC-1α recruitment was verified with Idh3a, Idh3g, and Sdha promoters with DNA binding assay. Taken together, this study clarifies the mechanism by which TCA cycle genes are transcribed, which could be useful to understand how those genes are dysregulated in pathological conditions.

5.
Cell Mol Biol Lett ; 29(1): 114, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198723

ABSTRACT

BACKGROUND: Stroke is a type of acute brain damage that can lead to a series of serious public health challenges. Demonstrating the molecular mechanism of stroke-related neural cell degeneration could help identify a more efficient treatment for stroke patients. Further elucidation of factors that regulate microglia and nuclear factor (erythroid-derived 2)-like 1 (Nrf1) may lead to a promising strategy for treating neuroinflammation after ischaemic stroke. In this study, we investigated the possible role of pterostilbene (PTS) in Nrf1 regulation in cell and animal models of ischaemia stroke. METHODS: We administered PTS, ITSA1 (an HDAC activator) and RGFP966 (a selective HDAC3 inhibitor) in a mouse model of middle cerebral artery occlusion-reperfusion (MCAO/R) and a model of microglial oxygen‒glucose deprivation/reperfusion (OGD/R). The brain infarct size, neuroinflammation and microglial availability were also determined. Dual-luciferase reporter, Nrf1 protein stability and co-immunoprecipitation assays were conducted to analyse histone deacetylase 3 (HDAC3)/Nrf1-regulated Nrf1 in an OGD/R-induced microglial injury model. RESULTS: We found that PTS decreased HDAC3 expression and activity, increased Nrf1 acetylation in the cell nucleus and inhibited the interaction of Nrf1 with p65 and p65 accumulation, which reduced infarct volume and neuroinflammation (iNOS/Arg1, TNF-α and IL-1ß levels) after ischaemic stroke. Furthermore, the CSF1R inhibitor PLX5622 induced elimination of microglia and attenuated the therapeutic effect of PTS following MCAO/R. In the OGD/R model, PTS relieved OGD/R-induced microglial injury and TNF-α and IL-1ß release, which were dependent on Nrf1 acetylation through the upregulation of HDAC3/Nrf1 signalling in microglia. However, the K105R or/and K139R mutants of Nrf1 counteracted the impact of PTS in the OGD/R-induced microglial injury model, which indicates that PTS treatment might be a promising strategy for ischaemia stroke therapy. CONCLUSION: The HDAC3/Nrf1 pathway regulates the stability and function of Nrf1 in microglial activation and neuroinflammation, which may depend on the acetylation of the lysine 105 and 139 residues in Nrf1. This mechanism was first identified as a potential regulatory mechanism of PTS-based neuroprotection in our research, which may provide new insight into further translational applications of natural products such as PTS.


Subject(s)
Histone Deacetylases , Ischemic Stroke , Mice, Inbred C57BL , Microglia , Neuroinflammatory Diseases , Stilbenes , Animals , Histone Deacetylases/metabolism , Microglia/metabolism , Microglia/drug effects , Mice , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Male , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Stilbenes/pharmacology , Stilbenes/therapeutic use , Disease Models, Animal , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/complications , Signal Transduction/drug effects , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism
6.
Mol Cell ; 84(16): 3115-3127.e11, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39116872

ABSTRACT

Proteasome is essential for cell survival, and proteasome inhibition induces proteasomal gene transcription via the activated endoplasmic-reticulum-associated transcription factor nuclear factor erythroid 2-like 1 (Nrf1/NFE2L1). Nrf1 activation requires proteolytic cleavage by DDI2 and N-glycan removal by NGLY1. We previously showed that Nrf1 ubiquitination by SKP1-CUL1-F-box (SCF)FBS2/FBXO6, an N-glycan-recognizing E3 ubiquitin ligase, impairs its activation, although the molecular mechanism remained elusive. Here, we show that SCFFBS2 cooperates with the RING-between-RING (RBR)-type E3 ligase ARIH1 to ubiquitinate Nrf1 through oxyester bonds in human cells. Endo-ß-N-acetylglucosaminidase (ENGASE) generates asparagine-linked N-acetyl glucosamine (N-GlcNAc) residues from N-glycans, and N-GlcNAc residues on Nrf1 served as acceptor sites for SCFFBS2-ARIH1-mediated ubiquitination. We reconstituted the polyubiquitination of N-GlcNAc and serine/threonine residues on glycopeptides and found that the RBR-specific E2 enzyme UBE2L3 is required for the assembly of atypical ubiquitin chains on Nrf1. The atypical ubiquitin chains inhibited DDI2-mediated activation. The present results identify an unconventional ubiquitination pathway that inhibits Nrf1 activation.


Subject(s)
Nuclear Respiratory Factor 1 , Ubiquitination , Humans , HEK293 Cells , Nuclear Respiratory Factor 1/metabolism , Nuclear Respiratory Factor 1/genetics , NF-E2-Related Factor 1/metabolism , NF-E2-Related Factor 1/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Acetylglucosamine/metabolism , HeLa Cells , Proteasome Endopeptidase Complex/metabolism , F-Box Proteins/metabolism , F-Box Proteins/genetics
7.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125617

ABSTRACT

Progression of metabolic dysfunction-associated steatites liver disease (MASLD) to steatohepatitis (MASH) is driven by stress-inducing lipids that promote liver inflammation and fibrosis, and MASH can lead to cirrhosis and hepatocellular carcinoma. Previously, we showed coordinated defenses regulated by transcription factors, nuclear factor erythroid 2-related factor-1 (Nrf1) and -2 (Nrf2), protect against hepatic lipid stress. Here, we investigated protective effects of hepatocyte Nrf1 and Nrf2 against MASH-linked liver fibrosis and tumorigenesis. Male and female mice with flox alleles for genes encoding Nrf1 (Nfe2l1), Nrf2 (Nfe2l2), or both were fed a MASH-inducing diet enriched with high fat, fructose, and cholesterol (HFFC) or a control diet for 24-52 weeks. During this period, hepatocyte Nrf1, Nrf2, or combined deficiency for ~7 days, ~7 weeks, and ~35 weeks was induced by administering mice hepatocyte-targeting adeno-associated virus (AAV) expressing Cre recombinase. The effects on MASH, markers of liver fibrosis and proliferation, and liver tumorigenesis were compared to control mice receiving AAV-expressing green fluorescent protein. Also, to assess the impact of Nrf1 and Nrf2 induction on liver fibrosis, HFFC diet-fed C57bl/6J mice received weekly injections of carbon tetrachloride, and from week 16 to 24, mice were treated with the Nrf2-activating drug bardoxolone, hepatocyte overexpression of human NRF1 (hNRF1), or both, and these groups were compared to control. Compared to the control diet, 24-week feeding with the HFFC diet increased bodyweight as well as liver weight, steatosis, and inflammation. It also increased hepatocyte proliferation and a marker of liver damage, p62. Hepatocyte Nrf1 and combined deficiency increased liver steatosis in control diet-fed but not HFFC diet-fed mice, and increased liver inflammation under both diet conditions. Hepatocyte Nrf1 deficiency also increased hepatocyte proliferation, whereas combined deficiency did not, and this also occurred for p62 level in control diet-fed conditions. In 52-week HFFC diet-fed mice, 35 weeks of hepatocyte Nrf1 deficiency, but not combined deficiency, resulted in more liver tumors in male mice, but not in female mice. In contrast, hepatocyte Nrf2 deficiency had no effect on any of these parameters. However, in the 15-week CCL4-exposed and 24-week HFFC diet-fed mice, Nrf2 induction with bardoxolone reduced liver steatosis, inflammation, fibrosis, and proliferation. Induction of hepatic Nrf1 activity with hNRF1 enhanced the effect of bardoxolone on steatosis and may have stimulated liver progenitor cells. Physiologic Nrf1 delays MASLD progression, Nrf2 induction alleviates MASH, and combined enhancement synergistically protects against steatosis and may facilitate liver repair.


Subject(s)
Hepatocytes , NF-E2-Related Factor 2 , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , Hepatocytes/metabolism , Male , Female , Disease Progression , Mice, Inbred C57BL , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , NF-E2-Related Factor 1/metabolism , NF-E2-Related Factor 1/genetics , Nuclear Respiratory Factor 1/metabolism , Nuclear Respiratory Factor 1/genetics , Diet, High-Fat/adverse effects , Liver/metabolism , Liver/pathology , Humans
8.
Biochem Biophys Res Commun ; 737: 150478, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39128225

ABSTRACT

Genetic polymorphisms in nuclear respiratory factor-1 (Nrf1), a key transcriptional regulator of nuclear-encoded mitochondrial proteins, have been linked to diabetes. Homozygous deletion of Nrf1 is embryonic lethal in mice. Our goal was to generate mice with ß-cell-specific reduction in NRF1 function to investigate the relationship between NRF1 and diabetes. We report the generation of mice expressing a dominant-negative allele of Nrf1 (DNNRF1) in pancreatic ß-cells. Heterozygous transgenic mice had high fed blood glucose levels detected at 3 wks of age, which persisted through adulthood. Plasma insulin levels in DNNRF1 transgenic mice were reduced, while insulin sensitivity remained intact in young animals. Islet size was reduced with increased numbers of apoptotic cells, and insulin content in islets by immunohistochemistry was low. Glucose-stimulated insulin secretion in isolated islets was reduced in DNNRF1-mice, but partially rescued by KCl, suggesting that decreased mitochondrial function contributed to the insulin secretory defect. Electron micrographs demonstrated abnormal mitochondrial morphology in ß-cells. Expression of NRF1 target genes Tfam, Tfb1m and Tfb2m, and islet cytochrome c oxidase and succinate dehydrogenase activities were reduced in DNNRF1-mice. Rescue of mitochondrial function with low level activation of transgenic c-Myc in ß-cells was sufficient to restore ß-cell mass and prevent diabetes. This study demonstrates that reduced NRF1 function can lead to loss of ß-cell function and establishes a model to study the interplay between regulators of bi-genomic gene transcription in diabetes.

9.
Neurol Res ; : 1-10, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007840

ABSTRACT

BACKGROUND: Ubiquitin-specific protease 7 (USP7) has been found to be associated with motor function recovery after spinal cord injury (SCI). Therefore, its role and mechanism in SCI process need further exploration. METHODS: SCI rat models were established via performing laminectomy at the T9-T11 spinal vertebrae and cutting spinal cord tissues. SCI cell models were constructed by inducing PC12 cells with lipopolysaccharide (LPS). The protein levels of USP7, nuclear respiratory factor 1 (NRF1), Krüppel-like factor 7 (KLF7) and apoptosis-related markers were detected by western blot. Cell viability and apoptosis were tested by cell counting kit-8 assay and flow cytometry. The contents of inflammatory factors were examined using ELISA. The interaction between NRF1 and USP7 or KLF7 was analyzed by co-immunoprecipitation assay, chromatin immunoprecipitation assay and dual-luciferase reporter assay, respectively. RESULTS: USP7 was downregulated in SCI rat models and LPS-induced PC12 cells. Overexpressed USP7 promoted viability, while repressed apoptosis and inflammation in LPS-induced PC12 cells. USP7 could stabilize NRF1 protein expression via deubiquitination, and NRF1 knockdown reversed the protective effect of USP7 against LPS-induced PC12 cell injury. NRF1 is bound to KLF7 promoter to enhance its transcription. NRF1 overexpression inhibited LPS-induced PC12 cell inflammation and apoptosis via increasing KLF7 expression. CONCLUSION: USP7 alleviated inflammation and apoptosis in LPS-induced PC12 cells via NRF1/KLF7 axis, indicating that targeting of USP7/NRF1/KLF7 axis might be a promising treatment strategy for SCI.

10.
Cell Biochem Biophys ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888870

ABSTRACT

Isoquercitrin (ISO) is a traditional Chinese medicine extract, that has been found to possess potent neuroprotective properties. However, its precise role in the context of ischemic stroke (IS) remains to be fully elucidated. We constructed an in vitro model of IS induced by OGD/R in SH-SY5Y cells. Cell viability, the levels of oxidative stress-related indicators (8-OHDG, MDA, SOD, GSH, and GSH-Px), ROS, and mitochondrial membrane potential were measured by using detection kits. The protein levels of GPX1, SOD, Cytc were measured. The mRNA levels of mitochondrial biogenesis-related indicators (Cytb, CO1, ND2, ND5, and ND6), and mtDNA copy number were measured by RT-qPCR. ATP levels were measured. Molecular docking between ISO and NRF1, and Co-IP assay for NRF1 and TFAM interaction were performed. Expression of NRF1 and TFAM was evaluated. ISO treatment reversed the detrimental effects of OGD/R on cell viability, attenuated the elevation of oxidative stress markers, restored antioxidant levels, and alleviated the impairment of mitochondrial biogenesis in SH-SY5Y cells. ISO interacted with NRF1 and increased its expression along with TFAM. Silencing NRF1 reversed the protective effects of ISO, suggesting its involvement in mediating the neuroprotective effects of ISO. ISO alleviates oxidative stress and mitochondrial biogenesis damage induced by OGD/R in SH-SY5Y cells by upregulating the NRF1/TFAM pathway.

11.
Cell Signal ; 121: 111245, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38849105

ABSTRACT

BACKGROUND: To investigate the mechanism of exosomes (Exo) secretion by hypoxic pretreated adipose-derived mesenchymal stem cells (ADSCs) promoting skin wound healing in diabetic (DM) mice. METHODS: High-throughput sequencing was used to investigate abnormal expression of circRNA in hypoxic pretreatment ADSCs exosome (HExo) and ADSCs exosome (Exo). Bioinformatics analysis and luciferase reporting analysis were used to clarify the interacted relationship among circRNA, miRNA and mRNA. EPCs cells were employ to analysis the ROS, inflammatory cytokines expression, angiogenic differentiation function under hypoxic condition by using immunofluorescence, ELISA detection and tube forming experiment. DM ulceration mice model were constructed and the therapeutic effect of Exo were detected using immunohistochemistry, immunofluorescence. RESULTS: The result show that HExo have more treatment effect than Exo in promotes cutaneous wound healing of DM mice. High-throughput sequencing found that circ-Erbb2ip play a role in HExo mediated tissues repair. Downregulation circ-Erbb2ip decreased the therapeutic effect of HExo to wound healing in diabetic mice. Bioinformatics analysis and luciferase reporting analysis confirmed that both miR-670-5p and Nrf1 were downstream targets of circ-Erbb2ip. Downregulation of Nrf1 or overexpression of miR-670-5p reversed the protective effect of circ-Erbb2ip to EPCs after exposure to high glucose microenvironment. Upregulation circ-Erbb2ip increased the therapeutic effect of Exo to wound healing in diabetic mice by increased angiogenesis and decreased ROS, inflammatory cytokines expression. CONCLUSION: In conclusion, ADSC-Exos containing circ-Erbb2ip promotes wound healing by targeting miR-670-5p/Nrf1 pathway, and their effects in promoting soft tissue wound healing warrant further study.


Subject(s)
Diabetes Mellitus, Experimental , Exosomes , Mesenchymal Stem Cells , MicroRNAs , RNA, Circular , Wound Healing , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Mice , RNA, Circular/genetics , RNA, Circular/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/therapy , Male , Adipose Tissue/metabolism , Adipose Tissue/cytology , Mice, Inbred C57BL , Signal Transduction
12.
Mol Med ; 30(1): 65, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773376

ABSTRACT

OBJECTIVE: Catalpol (CAT) has various pharmacological activities and plays a protective role in cerebral ischemia. It has been reported that CAT played a protective role in cerebral ischemia by upregulaing NRF1 expression. Bioinformatics analysis reveals that NRF1 can be used as a transcription factor to bind to the histone acetyltransferase KAT2A. However, the role of KAT2A in cerebral ischemia remains to be studied. Therefore, we aimed to investigate the role of CAT in cerebral ischemia and its related mechanism. METHODS: In vitro, a cell model of oxygen and glucose deprivation/reperfusion (OGD/R) was constructed, followed by evaluation of neuronal injury and the expression of METTL3, Beclin-1, NRF1, and KAT2A. In vivo, a MCAO rat model was prepared by means of focal cerebral ischemia, followed by assessment of neurological deficit and brain injury in MCAO rats. Neuronal autophagy was evaluated by observation of autophagosomes in neurons or brain tissues by TEM and detection of the expression of LC3 and p62. RESULTS: In vivo, CAT reduced the neurological function deficit and infarct volume, inhibited neuronal apoptosis in the cerebral cortex, and significantly improved neuronal injury and excessive autophagy in MCAO rats. In vitro, CAT restored OGD/R-inhibited cell viability, inhibited cell apoptosis, LDH release, and neuronal autophagy. Mechanistically, CAT upregulated NRF1, NRF1 activated METTL3 via KAT2A transcription, and METTL3 inhibited Beclin-1 via m6A modification. CONCLUSION: CAT activated the NRF1/KAT2A/METTL3 axis and downregulated Beclin-1 expression, thus relieving neuronal injury and excessive autophagy after cerebral ischemia.


Subject(s)
Autophagy , Beclin-1 , Brain Ischemia , Iridoid Glucosides , Neurons , Animals , Autophagy/drug effects , Beclin-1/metabolism , Beclin-1/genetics , Rats , Neurons/metabolism , Neurons/drug effects , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Male , Iridoid Glucosides/pharmacology , Iridoid Glucosides/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Disease Models, Animal , Apoptosis/drug effects , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Adenosine/analogs & derivatives
13.
Elife ; 122024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619391

ABSTRACT

Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.


Subject(s)
Proteasome Endopeptidase Complex , Proteasome Inhibitors , Animals , Endopeptidases , Mammals , Proteasome Inhibitors/pharmacology
14.
BMC Gastroenterol ; 24(1): 97, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438958

ABSTRACT

BACKGROUND: Cellular response to oxidative stress plays significant roles in hepatocellular carcinoma (HCC) development, yet the exact mechanism by which HCC cells respond to oxidative stress remains poorly understood. This study aimed to investigate the role and mechanism of super enhancer (SE)-controlled genes in oxidative stress response of HCC cells. METHODS: The GSE112221 dataset was used to identify SEs by HOMER. Functional enrichment of SE-controlled genes was performed by Metascape. Transcription factors were predicted using HOMER. Prognosis analysis was conducted using the Kaplan-Meier Plotter website. Expression correlation analysis was performed using the Tumor Immune Estimation Resource web server. NRF1 and SPIDR expression in HCC and normal liver tissues was analyzed based on the TCGA-LIHC dataset. ChIP-qPCR was used to detect acetylation of lysine 27 on histone 3 (H3K27ac) levels of SE regions of genes, and the binding of NRF1 to the SE of SPIDR. To mimic oxidative stress, HepG2 and Hep3B cells were stimulated with H2O2. The effects of NRF1 and SPIDR on the oxidative stress response of HCC cells were determined by the functional assays. RESULTS: A total of 318 HCC-specific SE-controlled genes were identified. The functions of these genes was significant association with oxidative stress response. SPIDR and RHOB were enriched in the "response to oxidative stress" term and were chosen for validation. SE regions of SPIDR and RHOB exhibited strong H3K27ac modification, which was significantly inhibited by JQ1. JQ1 treatment suppressed the expression of SPIDR and RHOB, and increased reactive oxygen species (ROS) levels in HCC cells. TEAD2, TEAD3, NRF1, HINFP and TCFL5 were identified as potential transcription factors for HCC-specific SE-controlled genes related to oxidative stress response. The five transcription factors were positively correlated with SPIDR expression, with the highest correlation coefficient for NRF1. NRF1 and SPIDR expression was up-regulated in HCC tissues and cells. NRF1 activated SPIDR transcription by binding to its SE. Silencing SPIDR or NRF1 significantly promoted ROS accumulation in HCC cells. Under oxidative stress, silencing SPIDR or NRF1 increased ROS, malondialdehyde (MDA) and γH2AX levels, and decreased superoxide dismutase (SOD) levels and cell proliferation of HCC cells. Furthermore, overexpression of SPIDR partially offset the effects of NRF1 silencing on ROS, MDA, SOD, γH2AX levels and cell proliferation of HCC cells. CONCLUSION: NRF1 driven SPIDR transcription by occupying its SE, protecting HCC cells from oxidative stress-induced damage. NRF1 and SPIDR are promising biomarkers for targeting oxidative stress in the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Nuclear Respiratory Factor 1/genetics , Reactive Oxygen Species , Hydrogen Peroxide , Super Enhancers , Liver Neoplasms/genetics , Transcription Factors , Oxidative Stress , Superoxide Dismutase , Basic Helix-Loop-Helix Transcription Factors
15.
Front Immunol ; 15: 1334882, 2024.
Article in English | MEDLINE | ID: mdl-38426112

ABSTRACT

Immunosuppression increases the risk of nosocomial infection in patients with chronic critical illness. This exploratory study aimed to determine the immunometabolic signature associated with nosocomial infection during chronic critical illness. We prospectively recruited patients who were admitted to the respiratory care center and who had received mechanical ventilator support for more than 10 days in the intensive care unit. The study subjects were followed for the occurrence of nosocomial infection until 6 weeks after admission, hospital discharge, or death. The cytokine levels in the plasma samples were measured. Single-cell immunometabolic regulome profiling by mass cytometry, which analyzed 16 metabolic regulators in 21 immune subsets, was performed to identify immunometabolic features associated with the risk of nosocomial infection. During the study period, 37 patients were enrolled, and 16 patients (43.2%) developed nosocomial infection. Unsupervised immunologic clustering using multidimensional scaling and logistic regression analyses revealed that expression of nuclear respiratory factor 1 (NRF1) and carnitine palmitoyltransferase 1a (CPT1a), key regulators of mitochondrial biogenesis and fatty acid transport, respectively, in natural killer (NK) cells was significantly associated with nosocomial infection. Downregulated NRF1 and upregulated CPT1a were found in all subsets of NK cells from patients who developed a nosocomial infection. The risk of nosocomial infection is significantly correlated with the predictive score developed by selecting NK cell-specific features using an elastic net algorithm. Findings were further examined in an independent cohort of COVID-19-infected patients, and the results confirm that COVID-19-related mortality is significantly associated with mitochondria biogenesis and fatty acid oxidation pathways in NK cells. In conclusion, this study uncovers that NK cell-specific immunometabolic features are significantly associated with the occurrence and fatal outcomes of infection in critically ill population, and provides mechanistic insights into NK cell-specific immunity against microbial invasion in critical illness.


Subject(s)
COVID-19 , Cross Infection , Humans , Critical Illness , Cross Infection/epidemiology , Killer Cells, Natural , Fatty Acids
16.
Poult Sci ; 103(5): 103559, 2024 May.
Article in English | MEDLINE | ID: mdl-38430780

ABSTRACT

Peroxisome proliferator-activated receptor gamma (PPARγ) is a master regulator of adipogenesis. Our previous study revealed that chicken PPARγ has 3 alternative promoters named as P1, P2, and P3, and the DNA methylation of promoter P3 was negatively associated with PPARγ mRNA expression in abdominal adipose tissue (AAT). However, the methylation status of promoters P1 and P2 is unclear. Here we assessed promoter P1 methylation status in AAT of Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF). The results showed that promoter P1 methylation differed in AAT between the lean and fat lines of NEAUHLF at 7 wk of age (p < 0.05), and AAT expression of PPARγ transcript 1 (PPARγ1), which was derived from the promoter P1, was greatly higher in fat line than in lean line at 2 and 7 wk of age. The results of the correlation analysis showed that P1 methylation was positively correlated with PPARγ1 expression at 7 wk of age (Pearson's r = 0.356, p = 0.0242), suggesting P1 methylation promotes PPARγ1 expression. To explore the underlying molecular mechanism of P1 methylation on PPARγ1 expression, bioinformatics analysis, dual-luciferase reporter assay, pyrosequencing, and electrophoresis mobility shift assay (EMSA) were performed. The results showed that transcription factor NRF1 repressed the promoter activity of the unmethylated P1, but not the methylated P1. Of all the 4 CpGs (CpG48, CpG49, CpG50, and CpG51), which reside within or nearby the NRF1 binding sites of the P1, only CpG49 methylation in AAT was remarkably higher in the fat line than in lean line at 7 wk of age (3.18 to 0.57, p < 0.05), and CpG49 methylation was positively correlated with PPARγ1 expression (Pearson's r = 0.3716, p = 0.0432). Furthermore, EMSA showed that CpG49 methylation reduced the binding of NRF1 to the P1. Taken together, our findings illustrate that P1 methylation promotes PPARγ1 expression at least in part by preventing NRF1 from binding to the promoter P1.


Subject(s)
Chickens , DNA Methylation , Nuclear Respiratory Factor 1 , PPAR gamma , Promoter Regions, Genetic , Animals , PPAR gamma/genetics , PPAR gamma/metabolism , Chickens/genetics , Chickens/metabolism , Nuclear Respiratory Factor 1/genetics , Nuclear Respiratory Factor 1/metabolism , Avian Proteins/genetics , Avian Proteins/metabolism , Gene Expression Regulation , Abdominal Fat/metabolism
17.
J Chem Neuroanat ; 137: 102412, 2024 04.
Article in English | MEDLINE | ID: mdl-38460773

ABSTRACT

Organ damage brought on by ischemia is exacerbated by the reperfusion process. L-cysteine is a semi-essential amino acid that acts as a substrate for cystathionine-ß-synthase in the central nervous system. The aim of this study was to investigate the possible protective effects of L- cysteine against the structural and biochemical changes that occur in the rat sciatic nerve after ischemia reperfusion (I/R) and to address some of the underlying mechanisms of these effects. Rats were divided into 4 groups: sham, l-cysteine, I/R, and l-cysteine- I/R groups. Specimens of sciatic nerve were processed for biochemical, histological, and immunohistochemical assessment. The results showed in I/R group, a significant increase in malondialdehyde with a significant decrease in both Nuclear respiratory factor-1 (NRF1) and superoxide dismutase levels. Moreover, with histological alteration. There was a significant increase in the mean surface area fraction of anti-caspase immunopositive cells as well as a significantdecrease in mean surface area fraction of anti-CD 34 immunopositive cells. In contrast, the l-cysteine- I/R group showed amelioration of these biochemical, structural, and immunohistochemical changes. To the best of our knowledge, this is the first study showed the protective effects of l-cysteine in sciatic nerve I/R via NRF1and caspase 3 modulation as well as telocyte activation.


Subject(s)
Caspase 3 , Cysteine , Rats, Wistar , Reperfusion Injury , Sciatic Nerve , Animals , Rats , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Sciatic Nerve/drug effects , Sciatic Nerve/metabolism , Sciatic Nerve/pathology , Cysteine/pharmacology , Male , Caspase 3/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Immunohistochemistry , Nuclear Respiratory Factor 1/metabolism , Disease Models, Animal
18.
Bioorg Chem ; 145: 107212, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38377819

ABSTRACT

As a vital hallmarker of cancer, the metabolic reprogramming has been shown to play a pivotal role in tumour occurrence, metastasis and drug resistance. Amongst a vast variety of signalling molecules and metabolic enzymes involved in the regulation of cancer metabolism, two key transcription factors Nrf1 and Nrf2 are required for redox signal transduction and metabolic homeostasis. However, the regulatory effects of Nrf1 and Nrf2 (both encoded by Nfe2l1 and Nfe2l2, respectively) on the metabolic reprogramming of hepatocellular carcinoma cells have been not well understood to date. Here, we found that the genetic deletion of Nrf1 and Nrf2 from HepG2 cells resulted in distinct metabolic reprogramming. Loss of Nrf1α led to enhanced glycolysis, reduced mitochondrial oxygen consumption, enhanced gluconeogenesis and activation of the pentose phosphate pathway in the hepatocellular carcinoma cells. By striking contrast, loss of Nrf2 attenuated the glycolysis and gluconeogenesis pathways, but with not any significant effects on the pentose phosphate pathway. Moreover, knockout of Nrf1α also caused fat deposition and increased amino acid synthesis and transport, especially serine synthesis, whilst Nrf2 deficiency did not cause fat deposition, but attenuated amino acid synthesis and transport. Further experiments revealed that such distinctive metabolic programming of between Nrf1α-/- and Nrf2-/- resulted from substantial activation of the PI3K-AKT-mTOR signalling pathway upon the loss of Nrf1, leading to increased expression of critical genes for the glucose uptake, glycolysis, the pentose phosphate pathway, and the de novo lipid synthesis, whereas deficiency of Nrf2 resulted in the opposite phenomenon by inhibiting the PI3K-AKT-mTOR pathway. Altogether, these provide a novel insight into the cancer metabolic reprogramming and guide the exploration of a new strategy for targeted cancer therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Metabolic Reprogramming , NF-E2-Related Factor 1 , NF-E2-Related Factor 2 , Humans , Amino Acids/pharmacology , Hep G2 Cells , Liver Neoplasms/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , NF-E2-Related Factor 1/genetics , NF-E2-Related Factor 1/metabolism
19.
Biomolecules ; 14(2)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38397457

ABSTRACT

Childhood maltreatment has been repeatedly linked to a higher incidence of health conditions with an underlying proinflammatory component, such as asthma, chronic obstructive pulmonary disease, stroke, and cardiovascular disease. Childhood maltreatment has also been linked to elevated systemic inflammation prior to the onset of disease. However, childhood maltreatment is highly comorbid with other risk factors which have also been linked to inflammation, namely major depression. The present analysis addresses this issue by assessing the association of maltreatment with genome-wide transcriptional profiling of immune cells collected from four orthogonal groups of adolescents (aged 13-17): maltreated and not maltreated in childhood, with and without major depressive disorder. Maltreatment and psychiatric history were determined using semi-structured clinical interviews and cross-validated using self-report questionnaires. Dried whole blood spots were collected from each participant (n = 133) and assayed to determine the extent to which maltreatment in childhood was associated with a higher prevalence of transcriptional activity among differentially expressed genes, specific immune cell subtypes, and up- or down-regulation of genes involved in immune function after accounting for current major depression. Maltreatment was associated with increased interferon regulatory factor (IRF) transcriptional activity (p = 0.03), as well as nuclear factor erythroid-2 related factor 1 (NRF1; p = 0.002) and MAF (p = 0.01) among up-regulated genes, and increased activity of nuclear factor kappa beta (NF-κB) among down-regulated genes (p = 0.01). Non-classical CD16+ monocytes were implicated in both the up- and down-regulated genes among maltreated adolescents. These data provide convergent evidence supporting the role of maltreatment in altering intracellular and molecular markers of immune function, as well as implicate monocyte/macrophage functions as mechanisms through which childhood maltreatment may shape lifelong immune development and function.


Subject(s)
Child Abuse , Depressive Disorder, Major , Humans , Adolescent , Child , Depressive Disorder, Major/genetics , Monocytes , Inflammation , Gene Expression Profiling , Child Abuse/psychology
20.
Free Radic Biol Med ; 213: 488-511, 2024 03.
Article in English | MEDLINE | ID: mdl-38278308

ABSTRACT

Cisplatin (cis-Dichlorodiamineplatinum[II], CDDP) is generally accepted as a platinum-based alkylating agent type of the DNA-damaging anticancer drug, which is widely administrated in clinical treatment of many solid tumors. The pharmacological effect of CDDP is mainly achieved by replacing the chloride ion (Cl-) in its structure with H2O to form active substances with the strong electrophilic properties and then react with any nucleophilic molecules, primarily leading to genomic DNA damage and subsequent cell death. In this process, those target genes driven by the consensus electrophilic and/or antioxidant response elements (EpREs/AREs) in their promoter regions are also activated or repressed by CDDP. Thereby, we here examined the expression profiling of such genes regulated by two principal antioxidant transcription factors Nrf1 and Nrf2 (both encoded by Nfe2l1 and Nfe2l2, respectively) in diverse cellular signaling responses to this intervention. The results demonstrated distinct cellular metabolisms, molecular pathways and signaling response mechanisms by which Nrf1 and Nrf2 as the drug targets differentially contribute to the anticancer efficacy of CDDP on hepatoma cells and xenograft tumor mice. Interestingly, the role of Nrf1, rather than Nrf2, is required for the anticancer effect of CDDP, to suppress malignant behavior of HepG2 cells by differentially monitoring multi-hierarchical signaling to gene regulatory networks. To our surprise, it was found there exists a closer relationship of Nrf1α than Nrf2 with DNA repair, but the hyperactive Nrf2 in Nrf1α-∕- cells manifests a strong correlation with its resistance to CDDP, albeit their mechanistic details remain elusive.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Mice , Animals , Cisplatin/pharmacology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Cell Line , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL