Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 617
Filter
1.
Sci Total Environ ; 951: 175768, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39191325

ABSTRACT

The river course is a transitional area connecting the source and receiving water bodies. The dissolved organic matter (DOM) in the river course is an important factor affecting the aquatic environment and ecological health. However, there are shortcomings in studying the differences and quantitative contributions of river DOM in different seasons and sources. In this study, ultraviolet-visible (UV-vis) and three-dimensional fluorescence spectra were used to characterize the optical properties, analyze the spatiotemporal changes, and establish the quantitative relationship between environmental factors and DOM in the inflow rivers of Baiyangdian Lake. The results showed that the relative DOM concentrations in summer and autumn were significantly higher than those in the other seasons (P < 0.001) and that the DOM source (SR < 1) was mainly exogenous. The fluorescence abundance of protein-like substances (C1 + C2 + C3) was the highest in spring, whereas that of humus C4 was the highest in autumn. Moreover, the inflow rivers exhibited strong autogenetic characteristics (BIX > 1) throughout the year. Self-organizing maps (SOM) indicated that the main driving factors of water quality were NO3--N in spring, autumn, and winter and DO, pH, and chemical oxygen demand (COD) in summer. Random forest analysis showed that the fluorescent components (C1-C4) were closely related to the migration and transformation of nitrogen, and pH and nitrogen were the main predictors of each component. The Mantel test and structural equation model (SEM) showed that temperature and NO3--N significantly influenced the DOM concentration, components, and molecular properties in different seasons. Moreover, the river source also affected the distribution mechanism of DOM in the water body. Our study comprehensively analyzed the response of DOM in inflow rivers in different seasons and water sources, providing a basis for further understanding the driving mechanisms of water quality.

2.
Water Sci Technol ; 90(3): 908-919, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39141041

ABSTRACT

Fuel oil is widely used within Eskom, a power generation company in South Africa. Eskom's coal-fired power stations use up to 30,000 L of fuel oil per hour during a cold start-up, a consequence of which results in oil leaks to the dams. Oil contamination in water treatment plants causes irreversible membrane fouling, requiring costly replacement. This research work focused on the development of a rapid method for the identification of low concentrations of the water-soluble oil component fraction of crude fuel oil. For the developed method, known volumes of the water-soluble fraction of crude oil were spiked into various matrices of process water. FEEMs were collected using the patented HORIBA Aqualog spectrometer and data were modelled with PARAFAC. The results were well described with a four-component model, which included an oil component and three natural organic matter components, with a split-half validation match of 90%. The oil component was verified using linear regression of the PARAFAC component scores yielding an R2 value of 0.98. From the scores, a qualitative pass/fail test was developed such that process water can be analysed and subjected to the model to indicate the presence of oil contamination beyond a damaging threshold.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Factor Analysis, Statistical , Petroleum/analysis , Spectrometry, Fluorescence/methods
3.
bioRxiv ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39131377

ABSTRACT

Effective tools for exploration and analysis are needed to extract insights from large-scale single-cell measurement data. However, current techniques for handling single-cell studies performed across experimental conditions (e.g., samples, perturbations, or patients) require restrictive assumptions, lack flexibility, or do not adequately deconvolute condition-to-condition variation from cell-to-cell variation. Here, we report that the tensor decomposition method PARAFAC2 (Pf2) enables the dimensionality reduction of single-cell data across conditions. We demonstrate these benefits across two distinct contexts of single-cell RNA-sequencing (scRNA-seq) experiments of peripheral immune cells: pharmacologic drug perturbations and systemic lupus erythematosus (SLE) patient samples. By isolating relevant gene modules across cells and conditions, Pf2 enables straightforward associations of gene variation patterns across specific patients or perturbations while connecting each coordinated change to certain cells without pre-defining cell types. The theoretical grounding of Pf2 suggests a unified framework for many modeling tasks associated with single-cell data. Thus, Pf2 provides an intuitive universal dimensionality reduction approach for multi-sample single-cell studies across diverse biological contexts.

4.
Environ Res ; 261: 119682, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067800

ABSTRACT

Sediment-derived dissolved organic matter (SDOM) is instrumental in the cycling of nutrients and heavy metals within lakes, influencing ecological balance and contaminant distribution. Given the influence of photodegradation on the alteration and breakdown of SDOM, further understanding of this process is essential. In this research, the properties of the SDOM photodegradation process and its metal-binding reactions in Nansi Lake were analyzed using the EEM-PARAFAC and 2D-SF/FTIR-COS techniques. Our study identified three sorts of humic-like components and one protein-like component in SDOM, with the humic-like material accounting for 71.3 ± 5.19% of the fluorescence intensity (Fmax). Photodegradation altered the abundance and structure of SDOM, with a 41.6 ± 5.82% decrease in a280 and a 29.1 ± 9.31% reduction in Fmax after 7 days, notably reducing the protein-like component C4 by 54.0 ± 5.17% and the humic-like component C2 by 48.5 ± 2.54%, which led to SDOM being formed with lower molecular weight and aromaticity. After photodegradation, the LogKCu values for humic-like and protein-like substances decreased (humic-like C2: LogKCu: 1.35 ± 0.10-1.11 ± 0.15, protein-like C4: 1.49 ± 0.14-1.29 ± 0.34), yet the preferential binding sequence of protein-like materials and specific functional groups with Cu2+ such as aliphatic C-OH, amide (I) C=O and polysaccharide C-O groups remained unaltered. Our results enhance the knowledge of light-induced SDOM alterations and offer insights into SDOM-metal interactions in aquatic ecosystems.

5.
Environ Res ; 259: 119518, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38960351

ABSTRACT

Persulfate advanced oxidation technology is widely utilized for remediating organic-contaminated groundwater. Post-remediation by persulfate oxidation, the aromaticity of dissolved organic matter (DOM) in groundwater is significantly reduced. Nevertheless, the evolution trends of aromaticity and related structural changes in DOM remained unclear. Here, we selected eight types of DOM to analyze the variation in aromaticity, molecular weight, and fluorescence characteristics during oxidation by persulfate using optical spectroscopy and parallel faction analysis combined with two-dimensional correlation spectroscopy analysis (2D PARAFAC COS). The results showed diverse trends in the changes of aromaticity and maximum fluorescence intensity (Fmax) among different types of DOM as the reaction time increases. Four types of DOM (humic acid 1S104H, fulvic acid, and natural organic matters) exhibited an initially noteworthy increase in aromaticity followed by a decrease, while others demonstrated a continuous decreasing trend (14.3%-69.4%). The overall decreasing magnitude of DOM aromaticity follows the order of natural organic matters ≈ commercial humic acid > fulvic acid > extracted humic acid. The Fmax of humic acid increased, exception of commercial humic acid. The Fmax of fulvic acid initially decreased and then increased, while that of natural organic matters exhibited a decreasing trend (86.4%). The fulvic acid-like substance is the main controlling factor for the aromaticity and molecular weight of DOM during persulfate oxidation process. The oxidation sequence of fluorophores in DOM is as follows: fulvic-like substance, microbial-derived humic-like substance, humic-like substance, and aquatic humic-like substance. The fulvic-like and microbial-derived humic-like substances at longer excitation wavelengths were more sensitive to the response of persulfate oxidation than that of shorter excitation wavelengths. This result reveals the structure evolution of DOM during persulfate oxidation process and provides further support for predicting its environmental behavior.


Subject(s)
Oxidation-Reduction , Sulfates , Sulfates/chemistry , Humic Substances/analysis , Spectrometry, Fluorescence , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Benzopyrans/chemistry , Groundwater/chemistry
6.
bioRxiv ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39026852

ABSTRACT

Tensor factorization is a dimensionality reduction method applied to multidimensional arrays. These methods are useful for identifying patterns within a variety of biomedical datasets due to their ability to preserve the organizational structure of experiments and therefore aid in generating meaningful insights. However, missing data in the datasets being analyzed can impose challenges. Tensor factorization can be performed with some level of missing data and reconstruct a complete tensor. However, while tensor methods may impute these missing values, the choice of fitting algorithm may influence the fidelity of these imputations. Previous approaches, based on alternating least squares with prefilled values or direct optimization, suffer from introduced bias or slow computational performance. In this study, we propose that censored least squares can better handle missing values with data structured in tensor form. We ran censored least squares on four different biological datasets and compared its performance against alternating least squares with prefilled values and direct optimization. We used the error of imputation and the ability to infer masked values to benchmark their missing data performance. Censored least squares appeared best suited for the analysis of high-dimensional biological data by accuracy and convergence metrics across several studies.

7.
Luminescence ; 39(6): e4805, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38859619

ABSTRACT

In this study, a chemiluminescence (CL) method was developed to determine diphenoxylate in tablets and human plasma. This is the first CL method proposed to determine diphenoxylate. Creating three-dimensional data caused the parallel factor analysis algorithm (PARAFAC) to be used for the first time in CL methods. The method is based on the fact that diphenoxylate enhances the weak CL produced in the reaction of Ru(phen)3 2+ and acidic Ce(IV), and the concentration of Ce(IV) solution has a different effect on the CL response of diphenoxylate and the blank plasma. The calibration curve was linear from 4.0 × 10-8 to 1.6 × 10-6 mol L-1 (R2 = 0.9954), and the detection limit was 1.3 × 10-8 mol L-1 (S/N = 3). The sampling rate was about 30 samples per hour, and the % RSD for 10 repeated measurements of 4 × 10-7 mol L-1 diphenoxylate was 5.4%. The interference effects of some ions, amino acids, and common additives were also investigated. The CL method was successfully used to determine diphenoxylate in tablets, and the results were statistically confirmed by the reference method. The proposed CL method and the PARAFAC algorithm were successfully used to determine the concentration of diphenoxylate in human blood plasma samples.


Subject(s)
Luminescent Measurements , Tablets , Humans , Tablets/chemistry , Luminescent Measurements/methods , Luminescence , Limit of Detection , Algorithms , Oxalates/chemistry , Oxalates/blood , Factor Analysis, Statistical
8.
J Environ Manage ; 363: 121387, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850914

ABSTRACT

The persistence of dissolved organic matter (DOM) plays a crucial role in the cycling and distribution of carbon and nutrients. Nonetheless, our understanding of how environmental alterations affect the persistence of sedimentary DOM remains incomplete. Excitation Emission Fluorescence Matrix-Parallel Factor Analysis (EEM-PARAFAC) was used to examine the fluorescence and compositional characteristics of hydrophilic and hydrophobic DOM (separated using XAD-8 resin) within sediments from twelve lakes and reservoirs. Fluorescence analysis indicated that DOM persistence is dependent on the proportions of the three components derived from PARAFAC. The Mantel test showed that climatic factors had the most significant impact on DOM persistence (Mantel's r = 0.46-0.54, Mantel's p = 0.001-0.007), while anthropogenic (Mantel's r = 0.24-0.32, Mantel's p = 0.03-0.05) and hydrological factors (Mantel's r = 0.03-0.22, Mantel's p = 0.06-0.40) had a somewhat lesser influence. Environmental changes resulted in a consistent decline in DOM persistence from Northeast to Southwest China, accompanied by an increase in gross primary productivity (GPP). Reduced DOM persistence due to climate, hydrological, and anthropogenic factors may lead to elevated concentrations of total phosphorus (TP), contributing to deteriorating water quality and events such as algal blooms. The decline in water quality due to reduced DOM persistence in lakes with high GPP can exacerbate the transition from carbon sinks to carbon sources. Consequently, the persistence of sedimentary DOM significantly influences nutrient and carbon cycling in lakes. Investigating DOM persistence in lakes across diverse geographic locations offers a new perspective on lake eutrophication and carbon emissions. Furthermore, it is crucial to develop targeted recommendations for lake restoration and management.


Subject(s)
Carbon Cycle , Geologic Sediments , Lakes , Geologic Sediments/chemistry , Geologic Sediments/analysis , Lakes/chemistry , Carbon/analysis , Phosphorus/analysis , China , Environmental Monitoring
9.
Chemosphere ; 362: 142606, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876324

ABSTRACT

Roxarsone (ROX), commonly employed as a livestock feed additive, largely remains unmetabolized and is subsequently excreted via feces. ROX could cause serious environmental risks due to its rapid transformation and high mobility in the anaerobic subsurface environment. Dissolved organic matter (DOM) is an important constituent of fecal organics in livestock waste and could affect the ROX biotransformation. Nonetheless, the underlying mechanisms governing the interaction between DOM and ROX biotransformation have not yet been elucidated in the anaerobic environment. In this study, the changes of ROX, metabolites, and microbial biomass in the solutions with varying DOM concentrations (0, 50, 100, 200, and 400 mg/L) under anaerobic environments were investigated during the ROX (200 mg/L) degradation. EEM-PARAFAC and metagenomic sequencing were combined to identify the dynamic shifts of DOM components and the functional microbial populations responsible for ROX degradation. Results indicated that DOM facilitated the anaerobic biotransformation of ROX and 200 mg/L ROX could be degraded completely in 28 h. The tryptophan-like within DOM functioned as a carbon source to promote the growth of microorganisms, thus accelerating the degradation of ROX. The mixed microflora involved in ROX anaerobic degrading contained genes associated with arsenic metabolism (arsR, arsC, acr3, arsA, nfnB, and arsB), and arsR, arsC, acr3 exhibited high microbial diversity. Variations in DOM concentrations significantly impacted the population dynamics of microorganisms involved in arsenic metabolism (Proteiniclasticum, Exiguobacterium, Clostridium, Proteiniphilum, Alkaliphilus, and Corynebacterium spp.), which in turn affected the transformation of ROX and its derivatives. This study reveals the mechanism of ROX degradation influenced by the varying concentrations of DOM under anaerobic environments, which is important for the prevention of arsenic contamination with elevated levels of organic matter.


Subject(s)
Biodegradation, Environmental , Biotransformation , Microbiota , Roxarsone , Roxarsone/metabolism , Anaerobiosis , Microbiota/drug effects , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification
10.
Water Res ; 260: 121942, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38901311

ABSTRACT

Water quality modeling can help to understand the source, transport, transformation and fate of dissolved organic matter (DOM) in aquatic systems. However, water quality models typically use biological oxygen demand as the state variable for DOM, which poorly represents the bio-refractory fraction of the DOM pool. Furthermore, photodegradation, which has a significant impact on the fate of DOM, is often neglected in water quality models. To fill these gaps, we developed the FLOTATION (FLuorescent dOm Transport And TransformatION) model, which includes three processes: biodegradation, photodegradation, and primary production formation. We applied the model to the Nanfei River to understand the source, spatial distribution, and fate of DOM under low flow conditions. The model was set up and calibrated with the longitudinal measurements of four humic-like components (C1-C4) and one protein-like component (C5) identified by excitation-emission matrix parallel factor analysis (EEM-PARAFAC). The results showed that the simulation reproduced the longitudinal variations of all components well. The photodegradation process removed 18 %, 15 % and 21 % of the total input loadings of the humic-like components C1, C2 and C4, respectively. Algal primary production contributed 18 % of the downstream transport loading, constituting an important autochthonous source. For the protein-like C5, photodegradation and biodegradation together removed 7 % of the input loading. Our newly developed FLOATATION model can facilitate a comprehensive understanding of the fate and transport of DOM in aquatic environments.


Subject(s)
Rivers , Rivers/chemistry , Models, Theoretical , Humic Substances , Photolysis , Biodegradation, Environmental , Organic Chemicals/chemistry , Water Quality , Water Pollutants, Chemical/chemistry
11.
Sci Total Environ ; 945: 174144, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38901588

ABSTRACT

Coastal bays serve as undeniable dissolved organic matter (DOM) reactors and the role of prevalent mariculture in DOM cycling deserves investigation. This study, based on four seasonal field samplings and a laboratory incubation experiment, examined the source and seasonal dynamics of DOM and fluorescent dissolved organic matter (FDOM) in the seawater of fish (Larimichthys crocea, LC), seaweed (Gracilaria lemaneiformis, GL) and abalone (Haliotis sp., HA) culturing zones in Sansha Bay, China. Using three-dimensional fluorescence spectroscopy coupled with parallel factor analysis (EEMs-PARAFAC), three fluorescent components were identified, i.e. protein-like C1, protein-like C2, and humic-like C3. Our results showed that mariculture activities dominated the DOM pool by seasonal generating abundant DOM with lower aromaticity and humification degrees. Accounting for 40-95 % of total fluorescent components, C1 (Ex/Em = 300/340 nm) was regarded the same as D1 (Ex/Em = 300/335 nm) identified in a 180-day degradation experiments of G. lemaneiformis detritus, indicating that the cultured seaweed modulated DOM through the seasonal production of C1. In addition, the incubation experiment revealed that 0.7 % of the total carbon content of seaweed detritus could be preserved as recalcitrant dissolved organic carbon (RDOC). However, fish culture appeared to contribute to liable DOC and protein-like C2, exerting a substantial impact on DOM during winter but making a negligible contribution to carbon sequestration, while abalone culture might promote the potential export and sequestration of seaweed-derived carbon to the ocean. Our results highlight the influences of mariculture activities, especially seaweed culture, in shaping DOM pool in coastal bays. These findings can provide reference for future studies on the carbon accounting of mariculture.


Subject(s)
Bays , Carbon Sequestration , Environmental Monitoring , Gastropoda , Seasons , Seaweed , China , Animals , Seawater/chemistry , Fishes , Aquaculture , Carbon
12.
Sci Total Environ ; 946: 174245, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38925395

ABSTRACT

Dissolved organic matter (DOM) plays an important role in governing metal speciation and migration in aquatic systems. In this study, various DOM samples were collected from Lakes Erhai, Kokonor, and Chaka, and size-fractionated into high molecular weight (HMW, 1 kDa-0.7 µm) and low molecular weight (LMW, <1 kDa) fractions for measurements of dissolved organic carbon (DOC), spectral properties, and metal binding behaviors. Our results demonstrated that samples from Lake Chaka exhibited the highest DOC concentration and fluorescence indices but the lowest percentage of carbohydrates. Regardless of sampling locations, the HMW-DOM fractions contained higher abundances of aromatic DOM, carbohydrates and protein-like substances, but lower abundance of fulvic acid-like substances compared to those in the LMW fractions. Metal titration experiments coupled with the excitation-emission matrix (EEM)-parallel factor (PARAFAC) modeling revealed that the quenching of the PARAFAC-derived fluorescent components was more pronounced in the presence of Cu(II) compared to Pb(II). Humic-like components emerged as a superior model, exhibiting higher binding affinities for Cu(II) than protein-like substances, while the opposite trend was observed for Pb(II). In samples obtained from Lakes Erhai and Kokonor, the condition stability constants (Log KM) for the binding of both Cu(II) and Pb(II) with the HMW-DOM fraction were higher than those with the LMW-DOM fraction. Conversely, a contrasting trend was observed for Lake Chaka. This study highlighted the heterogeneity in spectral properties and metal-binding behaviors of natural DOMs, contributing to an improved understanding of the molecular interactions between DOM components and metal ions and their environmental fate in aquatic ecosystems.

13.
Metabolomics ; 20(3): 50, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722393

ABSTRACT

INTRODUCTION: Analysis of time-resolved postprandial metabolomics data can improve our understanding of the human metabolism by revealing similarities and differences in postprandial responses of individuals. Traditional data analysis methods often rely on data summaries or univariate approaches focusing on one metabolite at a time. OBJECTIVES: Our goal is to provide a comprehensive picture in terms of the changes in the human metabolism in response to a meal challenge test, by revealing static and dynamic markers of phenotypes, i.e., subject stratifications, related clusters of metabolites, and their temporal profiles. METHODS: We analyze Nuclear Magnetic Resonance (NMR) spectroscopy measurements of plasma samples collected during a meal challenge test from 299 individuals from the COPSAC2000 cohort using a Nightingale NMR panel at the fasting and postprandial states (15, 30, 60, 90, 120, 150, 240 min). We investigate the postprandial dynamics of the metabolism as reflected in the dynamic behaviour of the measured metabolites. The data is arranged as a three-way array: subjects by metabolites by time. We analyze the fasting state data to reveal static patterns of subject group differences using principal component analysis (PCA), and fasting state-corrected postprandial data using the CANDECOMP/PARAFAC (CP) tensor factorization to reveal dynamic markers of group differences. RESULTS: Our analysis reveals dynamic markers consisting of certain metabolite groups and their temporal profiles showing differences among males according to their body mass index (BMI) in response to the meal challenge. We also show that certain lipoproteins relate to the group difference differently in the fasting vs. dynamic state. Furthermore, while similar dynamic patterns are observed in males and females, the BMI-related group difference is observed only in males in the dynamic state. CONCLUSION: The CP model is an effective approach to analyze time-resolved postprandial metabolomics data, and provides a compact but a comprehensive summary of the postprandial data revealing replicable and interpretable dynamic markers crucial to advance our understanding of changes in the metabolism in response to a meal challenge.


Subject(s)
Metabolomics , Postprandial Period , Humans , Postprandial Period/physiology , Male , Female , Metabolomics/methods , Adult , Fasting/metabolism , Principal Component Analysis , Magnetic Resonance Spectroscopy/methods , Middle Aged , Data Analysis , Metabolome/physiology
14.
Talanta ; 276: 126231, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38788376

ABSTRACT

Extracellular polymeric substances (EPS), which were an important fraction of natural organic matter (NOM), played an important role in various environmental processes. However, the heterogeneity, complexity, and dynamics of EPS make their interactions with antibiotics elusive. Using advanced multispectral technology, this study examined how EPS interacts with different concentrations of tetracycline (TC) in the soil system. Our results demonstrated that protein-like (C1), fulvic-like (C2), and humic-like (C3) fractions were identified from EPS. Two-dimensional synchronous correlation spectroscopy (2D-SF-COS) indicated that the protein-like fraction gave faster responses than the fulvic-like fraction during the TC binding process. The sequence of structural changes in EPS due to TC binding was revealed by two-dimensional Fourier Transformation Infrared correlation spectroscopy (2D-FTIR-COS) as follows: 1550 > 1660 > 1395 > 1240 > 1087 cm-1. It is noteworthy that the sensitivity of the amide group to TC has been preserved, with its intensity gradually increasing to become the primary binding site for TC. The integration of hetero-2DCOS maps with moving window 2D correlation spectroscopy (MW2DCOS) provided a unique insight into understanding the correlation between EPS fractions and functional groups during the TC binding process. Moreover, molecular docking (MD) discovered that the extracellular proteins would provide plenty of binding sites with TC through salt bridges, hydrogen bonds, and π-π base-stacking forces. With these results, systematic investigations of the dynamic changes in EPS components under different concentrations of antibiotic exposure demonstrated the advanced capabilities of multispectral technology in examining intricate interactions with EPS in the soil environment.


Subject(s)
Escherichia coli , Extracellular Polymeric Substance Matrix , Molecular Docking Simulation , Tetracycline , Tetracycline/chemistry , Tetracycline/metabolism , Escherichia coli/metabolism , Escherichia coli/drug effects , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Binding Sites , Spectroscopy, Fourier Transform Infrared
15.
Water Environ Res ; 96(5): e11041, 2024 May.
Article in English | MEDLINE | ID: mdl-38797514

ABSTRACT

The aim of the study is to investigate the leaching of fluorescent dissolved organic matter (fDOM) from microplastics. In addition, this study identifies the connection between fDOM and microplastics in the aquatic environment. Three-dimensional excitation-emission matrix identified five fluorophores, that is, peak A, M, T, Tuv, and Wuv, and the parallel factor analysis modeling identified five components, that is, tryptophan-like, p-hydroxy acetophenone, humic acid (C-like), detergent-like, and fulvic acid (M-like) in the urban surface water. Mimic experiments using commonly used synthetic plastic (like microplastics) in Mili-Q water under solar radiation and dark environments demonstrate the release of fDOM from plastic. Two fluorophore peaks were observed at Ex/Em = 250/302 nm and Ex/Em = 260/333 nm for the expanded polystyrene plastic polymer and one fluorophore peak at Ex/Em = 260/333 nm for the low-density polyethylene. Fluorophore and component intensity exhibited notable associations with microplastics in the aquatic environment. These findings indicated that the characteristics and dynamics of fDOM in urban surface water are influenced by microplastics. PRACTITIONER POINTS: Fluorescent dissolved organic matters were identified in urban surface waters. Expanded polystyrene (EPS) had shown two fluorophores at Em/Ex = 250/302 and Em/Ex = 260/333. Low-density polyethylene (LDPE) had one fluorophore at Em/Ex = 260/333. Fluorophore and component intensity in the aquatic settings exhibited associations with microplastics.


Subject(s)
Lakes , Microplastics , Rivers , Water Pollutants, Chemical , Microplastics/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Lakes/chemistry , Rivers/chemistry , Factor Analysis, Statistical , Environmental Monitoring/methods , Organic Chemicals/analysis , Organic Chemicals/chemistry , Cities , Fluorescence
16.
Environ Sci Pollut Res Int ; 31(23): 34309-34323, 2024 May.
Article in English | MEDLINE | ID: mdl-38698097

ABSTRACT

Droughts are becoming more intense and frequent in the Brazilian semiarid because of El Niño and global climate changes. The Jaguaribe River estuary is a semiarid ecosystem that experiences a reduction in freshwater discharges due to droughts and river damming. The decrease in freshwater fluxes has increased metal availability through the water residence time increase in the Jaguaribe River estuary. Then, this study aimed to evaluate the dissolved organic matter quality and its interaction with metals in the Jaguaribe River estuary after a severe drought period. It was performed through carbon analyses, fluorescence spectroscopy, ultrafiltration technique, and determinations of metals by ICP-MS. Optical analysis showed that the dissolved organic carbon (DOC) was preponderantly composed of terrestrial-derived humic compounds, while the low ratio between the particulate organic carbon (POC) and chlorophyll-a indicated that POC was predominantly phytoplankton-derived. DOC and POC presented non-conservative removal during the estuarine mixing. DOM and dissolved elements were mostly distributed within the LMW fraction and presented a low percentage in the colloidal fraction. Li, Rb, Sr, Mo, and U showed conservative behavior, while Cu, Fe, Cr, and V had non-conservative behavior with a significant positive correlation with DOM, suggesting DOM as a relevant driver of metal availability at the Jaguaribe River estuary even during the rainy season.


Subject(s)
Environmental Monitoring , Estuaries , Metals , Water Pollutants, Chemical , Brazil , Metals/analysis , Water Pollutants, Chemical/analysis , Rivers/chemistry , Humic Substances
17.
J Hazard Mater ; 470: 134060, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38552395

ABSTRACT

Reverse osmosis (RO)-based treatment of municipal wastewater effluent allows for potable reuse, but this process generates reverse osmosis concentrate (ROC) that needs further treatment before disposal. This study investigated the application of UV-based advanced oxidation processes (AOPs) to degrade nine contaminants of emerging concern (CECs) from real ROC waste streams, using UV-only and UV-AOPs with hydrogen peroxide, free chlorine, and persulfate. Dissolved organic matter (DOM) in ROC was characterized using fluorescence excitation emission matrix data and analyzed by a four-component parallel factor (PARAFAC) analysis model. UV-only treatment showed considerable removal of CECs that displayed high values of quantum yields and molar absorption coefficients. UV-AOP treatment of ROC exhibited heavy scavenging of reactive species during CEC degradation. A probe-based approach established that hydroxyl radical was the dominant reactive species in all UV-AOPs. A kinetic analysis of PARAFAC components of DOM showed that the visible humic-like and protein-like components exhibited the higher reaction kinetics compared to UV humic-like and nutrient-like components. The strong linear correlation of protein-like component and seven of the nine CECs across multiple AOPs indicated that they have similar reactivity, enabling the establishment of chemical-reactivity based surrogates for prediction CEC fate in ROC wastes.

18.
Sci Total Environ ; 927: 172005, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38554969

ABSTRACT

Analysis of dissolved organic matter (DOM) composition and microbial characteristics is crucial for tracing the sources of rural black and odorous water bodies (BOWB). The aim of this study was to explore the DOM and microbial diversity and identify the primary environmental factors in BOWB from various pollution sources during different periods using EEMs-PARAFAC and Illumina sequencing. It was found that the physicochemical properties vary widely across different pollution types of BOWB, with higher overall content during the high-water period compared to the normal-water period. The types of dissolved organic matter in BOWB are Tyrosine proteins, Fulvic acid, Dissolved microbial metabolites, and Humic acid. During the normal-water period, DOM originates primarily from terrestrial sources in various water bodies. However, DOM affected by livestock and poultry waste and industrial effluents is influenced by both internal and external sources during periods of high water levels. In industrial waste-type BOWB, the biological sources of water are weak. Proteobacteria, Actinobacteria, Chloroflexi, Firmicutes were the dominant bacterial phyla. According to the redundancy analysis, pH (p = 0.047), Total nitrogen (TN) (p = 0.045), Organic carbon (OC) (p = 0.044), and Nickel (Ni) (p = 0.047) are the primary environmental factors influencing the composition of bacterial communities.


Subject(s)
Bacteria , Environmental Monitoring , Bacteria/classification , Water Microbiology , Microbiota , China , Odorants/analysis , Humic Substances/analysis , Water Pollutants, Chemical/analysis
19.
Water Res ; 255: 121429, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38503184

ABSTRACT

Given the complexity of dissolved organic matter (DOM) and its interactions with coagulant chemicals, the mechanisms of DOM removal by aluminum (Al) coagulants remains a significant unknown. In this study, six test waters containing DOM with molecular weight (MW, <1 kDa, 1-10 kDa and >10 kDa) and hydrophobicity (hydrophilic, transphilic and hydrophobic) were prepared and coagulated with Al0, Al13 and Al30. The molecular-level characteristics of DOM molecules that were removed or resistant to removal by Al species were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results showed that at the molecular level, saturated and reduced tannins and lignin-like compounds containing abundant carboxyl groups exhibited higher coagulation efficiency. Unsaturated and oxidized lipids, protein-like, and carbohydrates compounds were relatively resistant to Al coagulation due to their higher polarity and lower content of carboxyl groups. Al13 removed molecules across a wider range of molecular weights than Al0 and Al30, thus the DOC removal efficiency of Al13 was the highest. This study furthers the understanding of interactions between Al species and DOM, and provides scientific insights on the operation of water treatment plants to improve control of DOM.

20.
Water Res ; 254: 121399, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38447375

ABSTRACT

Despite numerous studies investigating the occurrence and fate of microplastics, no effort has been devoted toward exploring the characteristics of dissolved organic matter (DOM) leached from face masks mainly made of plastics and additives used in large quantities during the COVID-19 pandemic. By using FTIR, UV-vis, fluorescence EEM coupling with FRI and PARAFAC, and kinetic models of leaching experiments, we explored the leaching behaviors of face mask-derived DOM (FM-DOM) from commonly used face masks including N95, KN95, medical surgical masks, etc. The concentration of FM-DOM increased quickly at early 0-48 h and reached equilibrium at about 48 h measured in terms of dissolved organic carbon and fluorescence intensity. The protein-like materials ranged from 80.32 % to 89.40 % of percentage fluorescence response (Pi,n) were dominant in four types of FM-DOM analyzed by fluorescence EEM-FRI during the leaching experiments from 1 to 360 h. Four fluorescent components were identified, which included tryptophan-like components, tyrosine-like components, microbial protein-like components, and fulvic-like components with fluorescence EEM-PARAFAC models. The multi-order kinetic model (Radj2 0.975-0.999) fitted better than the zero-order and first-order kinetic model (Radj2 0.936-0.982) for all PARAFAC components of FM-DOM based on equations derived by pseudo kinetic models. The leaching rate constants (kn) ranged from 0.058 to 30.938 and the half-life times (T1/2) ranged from 2.73 to 24.87 h for four FM-DOM samples, following the solubility order of fulvic-like components (C4) > microbial protein-like components (C3) > tryptophan-like components (C1) > tyrosine-like components (C2) for FM-DOM from four types of face masks during the leaching experiment from 0 to 360 h. These novel findings will contribute to the understanding of the underappreciated environment impact of face masks in aquatic ecosystems.


Subject(s)
Dissolved Organic Matter , Plastics , Humans , Ecosystem , Masks , Pandemics , Tryptophan , Spectrometry, Fluorescence , Tyrosine , Humic Substances/analysis , Factor Analysis, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL