Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.351
Filter
1.
Semina cienc. biol. saude ; 45(2): 45-56, jul./dez. 2024. tab; ilus
Article in English | LILACS | ID: biblio-1554899

ABSTRACT

Enteroparasitosis are diseases caused by parasitic agents present in the environment and in the gastrointestinal tract of living beings. In addition, they are still considered neglected diseases, but of great importance for public health, especially when they are related to secondary infections and currently their co-infection profile with COVID-19. The interaction of protozoa and/or helminths with the SARS-CoV-2 virus is timely and its signs and symptoms are confused with other pathogen relationships. In this way, this study aims to correlate the incidence of enteroparasitosis and COVID-19, in the pandemic period from 2020 to April 2022. This is a documentary and exploratory study of secondary data from laboratory tests of patients who were treated and diagnosed with COVID-19 and enteroparasitosis at Hospital Doutor Cloves Bezerra Cavalcante, Municipal Hospital of Bananeiras, Paraíba, Brazil. In the analysis of the database, a significant increase of approximately 48.85% in the incidence of COVID-19 cases from 2020 to 2021 stands out, remaining high until 2022. In contrast, cases of enteroparasites peaked at 48.74% in 2021, followed by an average reduction of 23.12%, with a deviation of 1.49%, in relation to the years 2020 and 2022. It was concluded that COVID-19 is predominantly associated with an increase in secondary infections, highlighting the crucial need to promote health education, improve basic sanitation and guarantee access to health services as essential components in combating the increase in parasitic infections, especially those related to viral pathologies.


As enteroparasitoses são enfermidades originadas por agentes parasitários presentes no meio ambiente e no trato gastrointestinal dos seres vivos. Ademais, ainda são consideradas doenças negligenciadas, porém de grande importância para a saúde pública, em especial, quando estão relacionadas com infecções secundárias e atualmente seu perfil de coinfecção com a COVID-19. A interação de protozoários e/ou helmintos com o vírus SARS-CoV-2 é oportuna e seus sinais e sintomas são confundidos com outras relações de patógenos. Desta maneira, este estudo visa correlacionar a incidência de enteroparasitoses e COVID-19, no período pandêmico de 2020 a abril de 2022. Trata--se de uma pesquisa documental e exploratória, de dados secundários dos exames laboratoriais de pacientes que foram atendidos e diagnosticados com COVID-19 e enteroparasitoses no Hospital Doutor Cloves Bezerra Cavalcante, Hospital Municipal de Bananeiras, Paraíba, Brasil. Na análise da base de dados, destaca-se um aumento significativo de aproximadamente 48,85% na incidência de casos de COVID-19 de 2020 a 2021, mantendo-se elevado até 2022. Em contraste, os casos de enteroparasitas atingiram um pico de 48,74% em 2021, seguido por uma redução média de 23,12%, com um desvio de 1,49%, em relação aos anos de 2020 e 2022. Conclui-se que a COVID-19 está predominantemente associada ao aumento de infecções secundárias, destacando a necessidade crucial de promover a educação em saúde, melhorar o saneamento básico e garantir o acesso aos serviços de saúde como componentes essenciais no combate ao aumento de infecções parasitárias, especialmente aquelas relacionadas a patologias virais.


Subject(s)
Humans , Male , Female
2.
Arq. ciências saúde UNIPAR ; 28(2): 82-99, 20240000.
Article in English | LILACS-Express | LILACS | ID: biblio-1572323

ABSTRACT

Although research has investigated the host-parasite relationship in Strongyloides venezuelensis infection in the scope of its immunological implications, the morphological consequences of this response for the host organism are yet to be explored. Our objective was to perform an organ morphometric analysis in Wistar rats infected with the intestinal parasite Strongyloides venezuelensis compared with infected rats treated with ivermectin. Twenty-six animals composed three groups: control (non-infected), infected (infected with 2,000 Strongyloides venezuelensis larvae), and infected treated (infected with 2,000 Strongyloides venezuelensis larvae and treated with ivermectin). All rodents were killed 21 days after infection and morphometric analysis of different organs was performed. The results showed significantly higher body and fecal weight in the infected-treated group. The weight of the small intestine increased considerably in the infected group and decreased in the infected-treated group. Pancreas, right kidney, and heart volume increased in the infected group compared with the control group. Despite treatment, the volumes of the stomach, brain, and left kidney increased in both the infected groups compared with the control group indicating the possibility of non-reversible host morphological adaptations. S. venezuelensis infection can augment both, volume and weight of organs ­ not necessarily related to the Strongyloides expulsion process ­ even if the acute infection had been in remission. A potential explanation for these host adaptations, including the occurrence of organ plasticity, are briefly discussed. The following steps encompass a histological analysis to verify the occurrence of hypertrophy/hyperplasia and observe if such morphological alterations remain after infection.


Embora pesquisas tenham investigado a relação parasita-hospedeiro na infecção por Strongyloides venezuelensis no âmbito de suas implicações imunológicas, as consequências morfológicas dessa resposta para o organismo hospedeiro ainda precisam ser exploradas. Nosso objetivo foi realizar uma análise morfométrica de órgãos em ratos Wistar infectados com o parasito intestinal Strongyloides venezuelensis em comparação com ratos infectados tratados com ivermectina. Vinte e seis animais compuseram três grupos: controle (não infectados), infectados (infectados com 2.000 larvas de Strongyloides venezuelensis) e tratados infectados (infectados com 2.000 larvas de Strongyloides venezuelensis e tratados com ivermectina). Todos os roedores foram sacrificados 21 dias após a infecção e a análise morfométrica de diferentes órgãos foi realizada. Os resultados mostraram peso corporal e fecal significativamente maior no grupo tratado infectado. O peso do intestino delgado aumentou consideravelmente no grupo infectado e diminuiu no grupo infectado tratado. O volume do pâncreas, rim direito e coração aumentou no grupo infectado em comparação com o grupo controle. Apesar do tratamento, os volumes do estômago, cérebro e rim esquerdo aumentaram em ambos os grupos infectados em comparação com o grupo controle, indicando a possibilidade de adaptações morfológicas não reversíveis do hospedeiro. A infecção por S. venezuelensis pode aumentar tanto o volume quanto o peso dos órgãos ­ não necessariamente relacionado ao processo de expulsão de Strongyloides ­ mesmo que a infecção aguda estivesse em remissão. Uma possível explicação para essas adaptações do hospedeiro, incluindo a ocorrência de plasticidade de órgãos, é brevemente discutida. As etapas a seguir compreendem uma análise histológica para verificar a ocorrência de hipertrofia/hiperplasia e observar se tais alterações morfológicas permanecem após a infecção.


Aunque se ha investigado la relación parásito-hospedador en la infección por Strongyloides venezuelensis en el contexto de sus implicaciones inmunológicas, aún no se han explorado las consecuencias morfológicas de esta respuesta para el organismo hospedador. Nuestro objetivo fue realizar un análisis morfométrico de los órganos de ratas Wistar infectadas con el parásito intestinal Strongyloides venezuelensis en comparación con ratas infectadas tratadas con ivermectina. Veintiséis animales se distribuyeron en tres grupos: control (no infectados), infectados (infectados con 2000 larvas de Strongyloides venezuelensis) e infectados tratados (infectados con 2000 larvas de Strongyloides venezuelensis y tratados con ivermectina). Todos los roedores fueron sacrificados 21 días después de la infección y se realizaron análisis morfométricos de diferentes órganos. Los resultados mostraron pesos corporales y fecales significativamente superiores en el grupo infectado-tratado. El peso del intestino delgado aumentó considerablemente en el grupo derecho y el corazón aumentó en el grupo infectado en comparación con el grupo de control. A pesar del tratamiento, los volúmenes del estómago, el cerebro y el riñón izquierdo aumentaron en ambos grupos infectados en comparación con el grupo de control, lo que indica la posibilidad de adaptaciones morfológicas no reversibles del hospedador. La infección por S. venezuelensis puede aumentar tanto el volumen como el peso de los órganos, que no están necesariamente relacionados con el proceso de expulsión de Strongyloides, incluso si la infección aguda estaba en remisión. Se debate brevemente una posible explicación de estas adaptaciones del hospedador, incluida la ocurrencia de plasticidad de los órganos. Los pasos siguientes comprenden un análisis histológico para verificar la aparición de hipertrofia o hiperplasia y observar si estas alteraciones morfológicas persisten tras la infección.

3.
J Cell Sci ; 137(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39129707

ABSTRACT

Trichomonas vaginalis causes trichomoniasis, the most common non-viral sexually transmitted disease worldwide. As an extracellular parasite, adhesion to host cells is essential for the development of infection. During attachment, the parasite changes its tear ovoid shape to a flat ameboid form, expanding the contact surface and migrating through tissues. Here, we have identified a novel structure formed at the posterior pole of adherent parasite strains, resembling the previously described uropod, which appears to play a pivotal role as an anchor during the attachment process. Moreover, our research demonstrates that the overexpression of the tetraspanin T. vaginalis TSP5 protein (TvTSP5), which is localized on the cell surface of the parasite, notably enhances the formation of this posterior anchor structure in adherent strains. Finally, we demonstrate that parasites that overexpress TvTSP5 possess an increased ability to adhere to host cells, enhanced aggregation and reduced migration on agar plates. Overall, these findings unveil novel proteins and structures involved in the intricate mechanisms of T. vaginalis interactions with host cells.


Subject(s)
Protozoan Proteins , Trichomonas vaginalis , Trichomonas vaginalis/genetics , Humans , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Cell Adhesion , Tetraspanins/metabolism , Tetraspanins/genetics , Cell Membrane/metabolism , Host-Parasite Interactions , Cell Surface Extensions/metabolism , Animals
4.
Molecules ; 29(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39124949

ABSTRACT

Chagas disease, a silent but widespread disease that mainly affects a socioeconomically vulnerable population, lacks innovative safe drug therapy. The available drugs, benznidazole and nifurtimox, are more than fifty years old, have limited efficacy, and carry harmful side effects, highlighting the need for new therapeutics. This study presents two new series of pyrazole-thiadiazole compounds evaluated for trypanocidal activity using cellular models predictive of efficacy. Derivatives 1c (2,4-diCl) and 2k (4-NO2) were the most active against intracellular amastigotes. Derivative 1c also showed activity against trypomastigotes, with the detachment of the flagellum from the parasite body being a predominant effect at the ultrastructural level. Analogs have favorable physicochemical parameters and are predicted to be orally available. Drug efficacy was also evaluated in 3D cardiac microtissue, an important target tissue of Trypanosoma cruzi, with derivative 2k showing potent antiparasitic activity and a significant reduction in parasite load. Although 2k potentially reduced parasite load in the washout assay, it did not prevent parasite recrudescence. Drug combination analysis revealed an additive profile, which may lead to favorable clinical outcomes. Our data demonstrate the antiparasitic activity of pyrazole-thiadiazole derivatives and support the development of these compounds using new optimization strategies.


Subject(s)
Pyrazoles , Thiadiazoles , Trypanocidal Agents , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thiadiazoles/chemical synthesis , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Animals , Chagas Disease/drug therapy , Chagas Disease/parasitology , Humans
5.
Int J Parasitol Parasites Wildl ; 24: 100968, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39161339

ABSTRACT

The Neotropical freshwater stingrays of Potamotrygon genus present a unique and complex natural history and biogeographical pattern that can be traced to a marine origin and the colonization of the continental environment during the Miocene. During the evolution of potamotrygonids, several species of the parasitic fauna coevolved and co-opted concomitantly to their hosts during the colonization of the new environments. One striking example can be observed during the colonization of the upper Paraná River region. However, few studies explored the ecological and taxonomic aspects of potamotrygonid parasites. In this work, we investigate aspects of the ecology and taxonomy of the species of Monogenea and Cestoda that are parasites the species of freshwater stingrays of the genus Potamotrygon in the upper Paraná River. Our results indicate that at least six species of parasites are present in potamotrygonids in the region. Two of the observed parasites are putative new species and three of the parasitic species were identified for the first time in the region, hence expanding their geographic distributions. We quantified ecological aspects at different levels of communities for the collected parasite species. We compared the diversity in different locations and hosts and performed an exploratory analysis to investigate the differences in parasite abundance. Additionally, an identification key for the Monogenea and Cestoda species of the sampled region is provided.

6.
Curr Med Chem ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38967082

ABSTRACT

BACKGROUND: Neglected parasitic diseases constitute a broad spectrum of clinical conditions that, in the chronic phase, lack effective therapies for the target population. The utilization of vaccines based on liposomal nanocarrier systems is emerging, thereby enhancing clinical outcomes in various comorbidities. Consequently, this study aims to assess the immunological activity induced by liposomal nanocarriers against neglected parasitic diseases. METHODS: For the review, the Pubmed, Embase, and Lilacs databases were used using the descriptors vaccine, parasite, and liposome. The following inclusion criteria were adopted: in vivo and in vitro experimental articles. As exclusion criteria: book chapters, editorials, literature reviews and duplicate articles found during the database search. RESULTS: A total of 226 articles were identified, from which 34 were selected for review. The primary diseases identified included Babesia bovis, Entamoeba histolytica, Leishmania braziliensis, Leishmania donovani, Leishmania major, Leishmania infantum, Plasmodium falciparum, Plasmodium chabaudi, Plasmodium chabaudi, Plasmodium yoelii, Toxoplasma gondii and Trypanosoma cruzi. An elevation in cytokines such as GM-CSF, MCP-1, INF-γ, TNF-α, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, and IL-17 was observed in the studies evaluated regarding the parasitic diseases. Furthermore, cytokines such as IL-4, IL-10, and TGF-ß were diminished with the administration of the vaccine systems in those studies. CONCLUSION: Therefore, the administration of liposomal nanovaccine systems can effectively ameliorate the clinical condition of patients by modulating their immunological profile.

7.
Parasitol Res ; 123(7): 269, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995426

ABSTRACT

Nycteribiidae encompasses a specialized group of wingless blood-sucking flies that parasitize bats worldwide. Such relationships are frequently species- or genus-specific, indicating unique eco-evolutionary processes. However, despite this significance, comprehensive studies on the relationships of these flies with their hosts, particularly in the New World, have been scarce. Here, we provide a detailed description of the parasitological patterns of nycteribiid flies infesting a population of Myotis lavali bats in the Atlantic Forest of northeastern Brazil, considering the potential influence of biotic and abiotic factors on the establishment of nycteribiids on bat hosts. From July 2014 to June 2015, we captured 165 M. lavali bats and collected 390 Basilia travassosi flies. Notably, B. travassosi displayed a high prevalence and was the exclusive fly species parasitizing M. lavali in the surveyed area. Moreover, there was a significant predominance of female flies, indicating a female-biased pattern. The distribution pattern of the flies was aggregated; most hosts exhibited minimal or no parasitism, while a minority displayed heavy infestation. Sexually active male bats exhibited greater susceptibility to parasitism compared to their inactive counterparts, possibly due to behavioral changes during the peak reproductive period. We observed a greater prevalence and abundance of flies during the rainy season, coinciding with the peak reproductive phase of the host species. No obvious correlation was observed between the parasite load and bat body mass. Our findings shed light on the intricate dynamics of nycteribiid-bat interactions and emphasize the importance of considering various factors when exploring bat-parasite associations.


Subject(s)
Chiroptera , Diptera , Host-Parasite Interactions , Animals , Chiroptera/parasitology , Diptera/physiology , Brazil , Male , Female , Prevalence , Seasons
8.
Front Cell Infect Microbiol ; 14: 1412345, 2024.
Article in English | MEDLINE | ID: mdl-38988814

ABSTRACT

P21 is a protein secreted by all forms of Trypanosoma cruzi (T. cruzi) with recognized biological activities determined in studies using the recombinant form of the protein. In our recent study, we found that the ablation of P21 gene decreased Y strain axenic epimastigotes multiplication and increased intracellular replication of amastigotes in HeLa cells infected with metacyclic trypomastigotes. In the present study, we investigated the effect of P21 in vitro using C2C12 cell lines infected with tissue culture-derived trypomastigotes (TCT) of wild-type and P21 knockout (TcP21-/-) Y strain, and in vivo using an experimental model of T. cruzi infection in BALB/c mice. Our in-vitro results showed a significant decrease in the host cell invasion rate by TcP21-/- parasites as measured by Giemsa staining and cell count in bright light microscope. Quantitative polymerase chain reaction (qPCR) analysis showed that TcP21-/- parasites multiplied intracellularly to a higher extent than the scrambled parasites at 72h post-infection. In addition, we observed a higher egress of TcP21-/- trypomastigotes from C2C12 cells at 144h and 168h post-infection. Mice infected with Y strain TcP21-/- trypomastigotes displayed higher systemic parasitemia, heart tissue parasite burden, and several histopathological alterations in heart tissues compared to control animals infected with scrambled parasites. Therewith, we propose that P21 is important in the host-pathogen interaction during invasion, cell multiplication, and egress, and may be part of the mechanism that controls parasitism and promotes chronic infection without patent systemic parasitemia.


Subject(s)
Chagas Disease , Protozoan Proteins , Trypanosoma cruzi , Animals , Humans , Mice , Cell Line , Chagas Disease/parasitology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Disease Models, Animal , Gene Knockout Techniques , Host-Parasite Interactions , Mice, Inbred BALB C , Parasitemia , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Trypanosoma cruzi/genetics , Trypanosoma cruzi/pathogenicity , Trypanosoma cruzi/physiology , Trypanosoma cruzi/metabolism , Virulence
9.
Front Immunol ; 15: 1379471, 2024.
Article in English | MEDLINE | ID: mdl-39055712

ABSTRACT

Since the discovery of specific immune memory in invertebrates, researchers have investigated its immune response to diverse microbial and environmental stimuli. Nevertheless, the extent of the immune system's interaction with metabolism, remains relatively enigmatic. In this mini review, we propose a comprehensive investigation into the intricate interplay between metabolism and specific immune memory. Our hypothesis is that cellular endocycles and epigenetic modifications play pivotal roles in shaping this relationship. Furthermore, we underscore the importance of the crosstalk between metabolism and specific immune memory for understanding the evolutionary costs. By evaluating these costs, we can gain deeper insights into the adaptive strategies employed by invertebrates in response to pathogenic challenges. Lastly, we outline future research directions aimed at unraveling the crosstalk between metabolism and specific immune memory. These avenues of inquiry promise to illuminate fundamental principles governing host-pathogen interactions and evolutionary trade-offs, thus advancing our understanding of invertebrate immunology.


Subject(s)
Epigenesis, Genetic , Host-Pathogen Interactions , Immunologic Memory , Invertebrates , Animals , Invertebrates/immunology , Host-Pathogen Interactions/immunology , Biological Evolution , Immunity, Innate
10.
Acta Trop ; 257: 107286, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38876165

ABSTRACT

Forest regeneration is becoming a powerful tool to combat land conversion which covers 30 % of the Neotropical territory. However, little is known about the effect of forest regeneration on vector-borne diseases. Here, we describe the haemosporidian lineage composition across a successional gradient within an Atlantic Forest bird community. We test whether forest successional stages, in addition to host life history traits affect haemosporidian infection probability. We sampled birds at 16 sampling units with different successional stages between 2017 and 2018 within a forest remnant located in Antonina, Paraná, Brazil. We captured bird individuals using mist-nets, identified them to the species level, and collected blood samples to detect and identify Plasmodium and Haemoproteus lineages based on molecular analysis. We used a Bayesian phylogenetic linear model with a Bernoulli distribution to test whether the haemosporidian infection probability is affected by nest type, foraging stratum, and forest successional stage. We captured 322 bird individuals belonging to 52 species and 21 families. We found 31 parasite lineages and an overall haemosporidian prevalence of 23.9 %, with most infections being caused by Plasmodium (21.7 % of prevalence). The Plasmodium probability of infection was associated with forest successional stage and bird foraging stratum. Birds from the secondary forest in an intermediate stage of succession are more likely to be infected by the parasites than birds from the primary forests (ß = 1.21, 95 % CI = 0.11 - 2.43), birds from upper strata exhibit a lower probability of infection than birds from lower foraging strata (ß = -1.81, 95 % CI = -3.80 - -0.08). Nest type did not affect the Plasmodium probability of infection. Our results highlight the relevance of forest succession on haemosporidian infection dynamics, which is particularly relevant in a world where natural regeneration is the main tool used in forest restoration.


Subject(s)
Bird Diseases , Birds , Forests , Haemosporida , Animals , Birds/parasitology , Haemosporida/isolation & purification , Haemosporida/genetics , Brazil/epidemiology , Prevalence , Bird Diseases/parasitology , Bird Diseases/epidemiology , Plasmodium/isolation & purification , Plasmodium/classification , Phylogeny , Protozoan Infections, Animal/epidemiology , Protozoan Infections, Animal/parasitology , Bayes Theorem
11.
Parasitol Res ; 123(6): 246, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896311

ABSTRACT

Human toxocariasis is a neglected anthropozoonosis with global distribution. Treatment is based on the administration of anthelmintics; however, their effectiveness at the tissue level is low to moderate, necessitating the discovery of new drug candidates. Several groups of synthetic compounds, including coumarin derivatives, have demonstrated bioactivity against fungi, bacteria, and even parasites, such as Dactylogyrus intermedius, Leishmania major, and Plasmodium falciparum. The aim of this study was to evaluate the effect of ten coumarin-derived compounds against Toxocara canis larvae using in vitro, cytotoxicity, and in silico tests for selecting new drug candidates for preclinical tests aimed at evaluating the treatment of visceral toxocariasis. The compounds were tested in vitro in duplicate at a concentration of 1 mg/mL, and compounds with larvicidal activity were serially diluted to obtain concentrations of 0.5 mg/mL; 0.25 mg/mL; 0.125 mg/mL; and 0.05 mg/mL. The tests were performed in a microculture plate containing 100 T. canis larvae in RPMI-1640 medium. One compound (COU 9) was selected for cytotoxicity analysis using J774.A1 murine macrophages and it was found to be non-cytotoxic at any concentration tested. The in silico analysis was performed using computational models; the compound presented adequate results of oral bioavailability. To confirm the non-viability of the larvae, the contents of the microplate wells of COU 9 were inoculated intraperitoneally (IP) into female Swiss mice at 7-8 weeks of age. This confirmed the larvicidal activity of this compound. These results show that COU 9 exhibited larvicidal activity against T. canis larvae, which, after exposure to the compound, were non-viable, and that COU 9 inhibited infection in a murine model. In addition, COU 9 did not exhibit cytotoxicity and presented adequate bioavailability in silico, similar to albendazole, an anthelmintic, which is the first choice for treatment of human toxocariasis, supporting the potential for future investigations and preclinical tests on COU 9.


Subject(s)
Coumarins , Larva , Toxocara canis , Animals , Larva/drug effects , Toxocara canis/drug effects , Coumarins/pharmacology , Coumarins/chemistry , Anthelmintics/pharmacology , Anthelmintics/chemistry , Biological Availability , Mice , Computer Simulation , Toxocariasis/drug therapy , Toxocariasis/parasitology
12.
Parasitol Res ; 123(6): 254, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922478

ABSTRACT

The Americas hold the greatest bird diversity worldwide. Likewise, ectoparasite diversity is remarkable, including ticks of the Argasidae and Ixodidae families - commonly associated with birds. Considering that ticks have potential health implications for humans, animals, and ecosystems, we conducted a systematic review to evaluate the effects of bioclimatic, geographic variables, and bird species richness on tick infestation on wild birds across the Americas. We identified 72 articles that met our inclusion criteria and provided data on tick prevalence in wild birds. Using Generalized Additive Models, we assessed the effect of environmental factors, such as habitat type, climatic conditions, bird species richness, and geographic location, on tick infestation. Our findings show that most bird infestation case studies involved immature ticks, such as larvae or nymphs, while adult ticks represented only 13% of case studies. We found birds infested by ticks of the genera Amblyomma (68%), Ixodes (22%), Haemaphysalis (5%), Dermacentor (1%), and Rhipicephalus (0.8%) in twelve countries across the Americas. Our findings revealed that temperature variation and bird species richness were negatively associated with tick infestation, which also varied with geographic location, increasing in mid-latitudes but declining in extreme latitudes. Our results highlight the importance of understanding how environmental and bird community factors influence tick infestation in wild birds across the Americas and the dynamics of tick-borne diseases and their impact on biodiversity.


Subject(s)
Bird Diseases , Birds , Tick Infestations , Animals , Tick Infestations/veterinary , Tick Infestations/epidemiology , Tick Infestations/parasitology , Birds/parasitology , Americas/epidemiology , Bird Diseases/parasitology , Bird Diseases/epidemiology , Animals, Wild/parasitology , Ecosystem , Ticks/physiology , Ticks/classification , Biodiversity , Environment , Prevalence
13.
Parasitol Int ; 102: 102914, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38908472

ABSTRACT

Knowledge of parasite-host interactions is essential for understanding factors associated with the ecology and evolution of both groups. Some aspects, such as host size and phylogeny, as well as parasite specificity, are significant predictors that help unveil the parasite-host relationship. Thus, the goals of this study were: (1) to describe parasite diversity in regions of the Atlantic Forest; (2) to analyze which host characteristics can influence parasite richness of anuran's parasite component community; and (3) to investigate if the prevalence of parasite infection is related to specificity metrics (ecological and phylogenetic), number of infected hosts and parasite's abundance. We identified 49 parasite taxa, classified into three phyla: Nematoda, Acanthocephala, and Platyhelminthes. Supporting the existing literature, our findings corroborate the positive relationship between host size and parasite richness, further emphasizing the significance of this predictor. Parasite prevalence in the host community is related to the number of infected host species and parasite abundance, but not to phylogenetic and ecological specificity indices. This shows that parasite prevalence is strongly associated with infection opportunity, host sampling effort, and high parasite abundance.


Subject(s)
Anura , Biodiversity , Forests , Host-Parasite Interactions , Nematoda , Phylogeny , Animals , Anura/parasitology , Nematoda/classification , Brazil/epidemiology , Acanthocephala/classification , Acanthocephala/physiology , Acanthocephala/isolation & purification , Prevalence , Helminths/classification , Helminths/isolation & purification , Helminths/genetics , Host Specificity
14.
Vet Parasitol Reg Stud Reports ; 52: 101045, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880576

ABSTRACT

This study reports the presence of high parasitic load by Myzobdella lugubris Leidy, 1851 in the swimming crab Callinectes bocourti A. Milne-Edwards, 1879 from Amazon mangrove. We sampled the swimming crabs using a baited trap, between January and June 2023, in Santa Maria River, located in the municipality of Curuçá, state of Pará, Brazil (geographical coordinates 0°40'3.705"S, 047°54'43.405"W). After sampling, each swimming crab was individually placed in plastic containers for the count of leeches per individual. In the laboratory, the specimens were sexed, measured (parasite and host) and fixed in 70% alcohol. For the leech species identification, macroscopic techniques were combined with light microscopy (LM) and scanning electron microscopy (SEM). We examined 86 specimens of C. bocourti (75 males and 11 females) in a ratio of 1 M:0.14 F, all infested with leeches. In total, 186 leech specimens were collected, ranging from 1 to 21 leeches per host. Leeches oviposited the cocoons in greater quantities in ventral area of swimming crab carapace (32%), followed by dorsal area of carapace (29.09%), chelipeds (24.34%) and ambulatory legs (14.57%). The presence of M. lugubris is a risk to the health of the host, once it may transmit a range of diseases to aquatic organisms, and subsequently risk to human health.


Subject(s)
Brachyura , Leeches , Animals , Brazil , Leeches/physiology , Male , Female , Brachyura/parasitology , Introduced Species , Host-Parasite Interactions
15.
Int J Parasitol Parasites Wildl ; 24: 100941, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38807751

ABSTRACT

The municipality of Sumidouro in the state of Rio de Janeiro, southeastern Brazil, is considered an area with low endemicity of Schistosoma mansoni. In this municipality, the wild water rat Nectomys squamipes is a wild reservoir of S. mansoni. A helminth community survey was carried out on N. squamipes populations in Sumidouro from 1997 to 1999. In the present study, we compared the helminth fauna and the helminth community structure of N. squamipes with a recent survey after a 22-year time interval, considering that the prevalence of S. mansoni infection in humans remained stable and that the area showed the same environmental characteristics. Seventy-three host specimens of N. squamipes collected between 1997 and 1999 and 21 specimens collected in 2021 were analyzed in this study. Seven helminth species were found in each collection period. The nematode Syphacia evaginata was recorded for the first time in N. squamipes in 2021. Syphacia venteli was the most abundant species in both periods and the most prevalent in 2021. During the period from 1997 to 1999, the most prevalent species was Hassalstrongylus epsilon. Significant differences in prevalence and abundance in relation to host sex were observed only for S. mansoni in 1997-1999. Significant differences in the abundance of the helminth species over time were observed only in Physaloptera bispiculata. Hassalstrongylus epsilon, S. venteli and S. mansoni were the dominant species in both periods. Litomosoides chagasfilhoi, Echinostoma paraensei paraensei and P. bispiculata became dominant, codominant and subordinate, respectively, over time. In conclusion, the helminth community of N. squamipes remained stable, with similar species richness, prevalence and abundance values and low beta-diversity over time. The occurrence of S. mansoni in the water rat has remained stable for decades, highlighting its importance for schistosomiasis control.

16.
Parasitol Res ; 123(5): 200, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696061

ABSTRACT

The humpback whale (Megaptera novaeangliae) is a cosmopolitan migratory, seasonal mysticete that frequents the Brazilian coast. Strands of specimens may occur during the migratory stay in the country. In 2021 and 2022, three live humpback whales stranded on the coast of Rio Grande do Sul and Santa Catarina states in southern Brazil. After euthanasia, specimens were necropsied, and organs were thoroughly examined for lesions. Grossly, in all three cases, the liver exhibited multifocal, irregular, firm, white areas on the hepatic capsule, which extended into the parenchyma. On the cut surface, the livers were yellow to pale brown with orangish to greenish areas, the bile ducts were prominent, thickened, and severely dilated, and leaf-shaped flukes were found inside of them. Additionally, one case showed moderate atrophy of the right hepatic lobe. The histological findings included dilation of bile ducts, hyperplasia of the bile duct epithelium, marked inflammatory infiltration of lymphocytes, plasma cells, and eosinophils, and portal fibrosis. The parasite Brachycladium goliath was both morphologically and molecularly identified based on diagnostic key for trematodes and the original description of the species, and the amplification and sequencing of the ITS-2 region, respectively. Even though hepatic injury was not the primary cause of stranding, it may have contributed to the debilitation of the whales. To the authors' knowledge, this is the first study that reports M. novaeangliae as a definitive host of B. goliath and that describes the lesions caused by the parasite in cetaceans.


Subject(s)
Humpback Whale , Liver , Trematoda , Trematode Infections , Animals , Humpback Whale/parasitology , Brazil , Trematoda/classification , Trematoda/anatomy & histology , Trematoda/isolation & purification , Trematoda/genetics , Liver/parasitology , Liver/pathology , Trematode Infections/veterinary , Trematode Infections/parasitology , Phylogeny , Male
17.
J Wildl Dis ; 60(3): 634-646, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38741368

ABSTRACT

Pathogens have traditionally been studied in isolation within host systems; yet in natural settings they frequently coexist. This raises questions about the dynamics of co-infections and how host life-history traits might predict co-infection versus single infection. To address these questions, we investigated the presence of two parasites, a gut parasite (Isospora coccidians) and a blood parasite (Plasmodium spp.), in House Finches (Haemorhous mexicanus), a common passerine bird in North America. We then correlated these parasitic infections with various health and condition metrics, including hematological parameters, plasma carotenoids, lipid-soluble vitamins, blood glucose concentration, body condition, and prior disease history. Our study, based on 48 birds captured in Tempe, Arizona, US, in October 2021, revealed that co-infected birds exhibited elevated circulating lutein levels and a higher heterophil:lymphocyte ratio (H/L ratio) compared to those solely infected with coccidia Isospora spp. This suggests that co-infected birds experience heightened stress and may use lutein to bolster immunity against both pathogens, and that there are potentially toxic effects of lutein in co-infected birds compared to those infected solely with coccidia Isospora sp. Our findings underscore the synergistic impact of coparasitism, emphasizing the need for more co-infection studies to enhance our understanding of disease dynamics in nature, as well as its implications for wildlife health and conservation efforts.


Subject(s)
Bird Diseases , Coccidiosis , Coinfection , Finches , Isospora , Malaria, Avian , Plasmodium , Animals , Finches/parasitology , Coinfection/veterinary , Coinfection/parasitology , Coinfection/epidemiology , Malaria, Avian/epidemiology , Malaria, Avian/parasitology , Malaria, Avian/blood , Bird Diseases/parasitology , Bird Diseases/epidemiology , Bird Diseases/blood , Isospora/isolation & purification , Coccidiosis/veterinary , Coccidiosis/epidemiology , Coccidiosis/parasitology , Plasmodium/isolation & purification , Isosporiasis/veterinary , Isosporiasis/epidemiology , Isosporiasis/parasitology , Arizona/epidemiology , Male , Female
18.
Front Cell Infect Microbiol ; 14: 1355809, 2024.
Article in English | MEDLINE | ID: mdl-38606293

ABSTRACT

During the SARS-CoV-2 pandemic angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) were constantly under the scientific spotlight, but most studies evaluated ACE2 and TMPRSS2 expression levels in patients infected by SARS-CoV-2. Thus, this study aimed to evaluate the expression levels of both proteins before, during, and after-infection. For that, nasopharyngeal samples from 26 patients were used to measure ACE2/TMPRSS2 ex-pression via qPCR. Symptomatic patients presented lower ACE2 expression levels before and after the infection than those in asymptomatic patients; however, these levels increased during SARS-CoV-2 infection. In addition, symptomatic patients presented higher expression levels of TMPRSS2 pre-infection, which decreased in the following periods. In summary, ACE2 and TMPRSS2 expression levels are potential risk factors for the development of symptomatic COVID-19, and the presence of SARS-CoV-2 potentially modulates those levels.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Serine Endopeptidases , Humans , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2 , Serine Endopeptidases/genetics
19.
Parasitology ; 151(7): 637-649, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38682282

ABSTRACT

A total of 32 taxa of helminths were recovered from 52 individuals corresponding to 17 species of didelphiomorph marsupials collected across Bolivia. From these, 20 taxa are registered for the first time in this landlocked South American country, including the cestode Mathevotaenia bivittata, and the nematodes Moennigia sp., Travassostrongylus callis, Viannaia didelphis, V. hamata, V. metachirops, V. minispicula, V. philanderi, V. simplicispicula, V. skrjabini, V. viannai, Cruzia tentaculata, Monodelphoxyuris dollmeiri, Neohilgertia venusti, Pterygodermatites elegans, Pterygodermatites jeagerskioldi, Spirura guianensis, Gongylonemoides marsupialis, Turgida turgida and Trichuris reesali. We report for the first time parasites for Marmosops bishopi, Monodelphis emiliae, Monodeplhis glirina, Monodelphis sanctarosae, Monodelphis peruviana and Thylamys sponsorius and document 38 new records of parasites infecting marsupials. Twenty-six taxa of helminths infect 2 or more species of didelphiomorph marsupials, with the exception of Travassostrongylus callis, Viannaia didelphis, V. hamata, V. minispicula and V. hamate, which infected individuals of a single species.


Subject(s)
Helminthiasis, Animal , Helminths , Animals , Bolivia/epidemiology , Helminthiasis, Animal/parasitology , Helminthiasis, Animal/epidemiology , Helminths/classification , Helminths/isolation & purification , Opossums/parasitology , Male , Female , Intestinal Diseases, Parasitic/veterinary , Intestinal Diseases, Parasitic/parasitology , Intestinal Diseases, Parasitic/epidemiology , Prevalence
20.
J Exp Biol ; 227(Suppl_1)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38449328

ABSTRACT

Whether specific immune protection after initial pathogen exposure (immune memory) occurs in invertebrates has long been uncertain. The absence of antibodies, B-cells and T-cells, and the short lifespans of invertebrates led to the hypothesis that immune memory does not occur in these organisms. However, research in the past two decades has supported the existence of immune memory in several invertebrate groups, including Ctenophora, Cnidaria, Nematoda, Mollusca and Arthropoda. Interestingly, some studies have demonstrated immune memory that is specific to the parasite strain. Nonetheless, other work does not provide support for immune memory in invertebrates or offers only partial support. Moreover, the expected biphasic immune response, a characteristic of adaptive immune memory in vertebrates, varies within and between invertebrate species. This variation may be attributed to the influence of biotic or abiotic factors, particularly parasites, on the outcome of immune memory. Despite its critical importance for survival, the role of phenotypic plasticity in immune memory has not been systematically examined in the past two decades. Additionally, the features of immune responses occurring in diverse environments have yet to be fully characterized.


Subject(s)
Arthropods , Immunologic Memory , Animals , Invertebrates , Adaptation, Physiological , Antibodies
SELECTION OF CITATIONS
SEARCH DETAIL