Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 27(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35889353

ABSTRACT

Humpback grouper Chromileptes altivelis (HG), red-spotted grouper Epinephelus akaara (RG) and black seabream Acanthopagrus schlegelii (BS) are three popular perciform fishes with an increasingly important farming industry. The prices of BS are much lower than other grouper species; however, the differences in the nutritive values of these three perciform fishes with commercial specifications have not been reported. In this study, the biochemical composition and non-volatile taste active compounds of adult HG, RG and BS were investigated. Moisture contents in BS were significantly higher than in HG and RG (p < 0.05), and relatively lower crude protein contents in BS were observed. Lipid contents of back muscle were lower than that of abdomen muscle in the three fish species. C22:6n-3 (DHA) was the major poly-unsaturated fatty acid (PUFA) in HG and BS, while the main PUFA in RG was C18:2n-6. The total healthy omega-3 fatty acid (Σn-3) profiles in HG were the highest (24.08−24.59%), followed by RG (18.24−19.06%) and BS (13.63−15.91%) (p < 0.05). Glycine was the most abundant free amino acid (FAA) in HG and RG, while lysine was the major FAA in BS. Equivalent umami concentration (EUC) values in BS were the highest, followed by HG and RG (p < 0.05). Lactic acid and PO43− were the major organic acids and inorganic ions, respectively. In conclusion, HG and RG provided more protein and healthy omega-3 fatty acids than BS, while BS had a stronger umami taste according to the EUC values.


Subject(s)
Bass , Perciformes , Abdominal Muscles , Animals , Fatty Acids, Unsaturated/metabolism , Fishes/metabolism , Taste
2.
Dev Comp Immunol ; 134: 104460, 2022 09.
Article in English | MEDLINE | ID: mdl-35667467

ABSTRACT

CD40 and CD154 are well-characterized costimulatory molecules involved in adaptive humoral immunity in humans and other mammals. These two costimulatory molecules were found to be originated from teleost fish during vertebrate evolution. However, the functionality of fish CD40 and CD154 remains to be explored. In this study, we identified the CD40 and CD154 homologs (LcCD40 and LcCD154) from large yellow croaker (Larimichthys crocea), a marine species of the perciform fish family. The LcCD40 and LcCD154 share conserved structural features to their mammalian counterparts, and are widely expressed in immune-relevant tissues and leukocytes at different transcriptional levels. Immunofluorescence staining and FCM analysis showed that LcCD40 and LcCD154 proteins are distributed on MHC-II+ APCs and CD4-2+ T cells, and are significantly upregulated in response to antigen stimulation. Co-IP assay exhibited strong association between LcCD40 and LcCD154 proteins. Blockade of LcCD154 with anti-LcCD154 antibody (Ab) or recombinant soluble LcCD40-Ig fusion protein remarkably decreased the MHC-II+ APC-initiated CD4+ T cell response upon Aeromonas hydrophila stimulation, and alloreactive T cell activation as examined by mixed lymphocyte reaction (MLR). These findings highlight the costimulatory role of LcCD40 and LcCD154 in T cell activities in Larimichthys crocea. Thus, the CD40 and CD154 costimulators may extensively participate in the regulation of multiple T cell-mediated immune responses in teleost fish. It is anticipated that this study would provide a cross-species understanding of the evolutionary history of CD40 and CD154 costimulatory signals from fish to mammals.


Subject(s)
Perciformes , T-Lymphocytes , Animals , CD40 Antigens/genetics , CD40 Ligand/genetics , Interleukin-2 , Lymphocyte Activation , Mammals
3.
Dev Comp Immunol ; 128: 104312, 2022 03.
Article in English | MEDLINE | ID: mdl-34767880

ABSTRACT

The BTLA and HVEM are two well-characterized immune checkpoint inhibitors in humans and other mammalian species. However, the occurrence and functionality of these two molecules in non-mammalian species remain poorly understood. In the present study, we identified the BTLA and HVEM homologs from large yellow croaker (Larimichthys crocea), an economically important marine species of the perciform fish family. The Larimichthys crocea BTLA and HVEM (LcBTLA and LcHVEM) share conserved structural features to their mammalian counterparts, and they were expressed in various tissues and cells examined at different transcriptional levels, with particular abundance in immune-relevant tissues and splenic leukocytes. Immunofluorescence staining and flow cytometry analysis showed that LcHVEM and LcBTLA proteins were distributed on MHC-II+ APCs and CD4-2+ T cells, and a strong interaction between LcBTLA and LcHVEM was detected in splenic leukocytes in the mixed lymphocyte reaction (MLR). By blockade assays using anti-LcBTLA and anti-LcHVEM Abs as well as recombinant soluble LcBTLA and LcHVEM proteins in different combinations, it was found that LcBTLA-LcHVEM interactions play an important inhibitory role in the activation of alloreactive T cells using MLR as a model, and APC-initiated antigen-specific CD4-2+ T cells in response to A. hydrophila (A. h) stimulation. These observations highlight the extensive functional roles of LcBTLA and LcHVEM immune-checkpoint inhibitors in allogeneic T cell reactions, and CD4-2+ T cell-mediated adaptive immune responses in Larimichthys crocea. Thus, the BTLA-HVEM checkpoint may represent an ancient coinhibitory pathway, which was originated in fish and was conserved from fish to mammals throughout the vertebrate evolution.


Subject(s)
Perciformes , Receptors, Tumor Necrosis Factor, Member 14 , Animals , Lymphocyte Activation , Mammals , Perciformes/metabolism , Receptors, Immunologic/metabolism , Receptors, Tumor Necrosis Factor, Member 14/genetics , Receptors, Tumor Necrosis Factor, Member 14/metabolism , T-Lymphocytes
4.
Article in English | MEDLINE | ID: mdl-29670580

ABSTRACT

Kisspeptin, a novel neuropeptide product of the Kiss1 gene, activates the G protein-coupled membrane receptor G protein-coupled receptor 54 (now termed Kiss1r). Over the last 15 years, the importance of the kisspeptin system has been the subject of much debate in the mammalian research field. At the heart of the debate is whether kisspeptin is an absolute upstream regulator of gonadotropin-releasing hormone secretion, as it has been proposed to be the master molecule in reproductive events and plays a special role not only during puberty but also in adulthood. The teleostean kisspeptin system was first documented in 2004. Although there have been a number of kisspeptin studies in various fish species, the role of kisspeptin in reproduction remains a subject of controversy and has not been widely recognized. There is an extensive literature on the physiological and endocrinological bases of gametogenesis in fish, largely derived from studying small, model fish species, and reports on non-model species are limited. The reason for this discrepancy is the technical difficulty inherent in developing rigorous experimental systems in many farmed fish species. We have already established methods for the full life-cycle breeding of a commercially important marine fish, the chub mackerel (cm), and are interested in understanding the reproductive function of kisspeptins from various perspectives. Based on a series of experiments clarifying the role of the brain-pituitary-gonad axis in modulating reproduction in cm, we theorize that the kisspeptin system plays an important role in the reproduction of this scombroid species. In this review article, we provide an overview of kisspeptin studies in cm, which substantially aids in elucidating the role of kisspeptins in fish reproduction.

5.
J Exp Biol ; 219(Pt 21): 3353-3365, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27591305

ABSTRACT

Kisspeptins are well known as mediators of the coordinated communication between the brain-pituitary axis and the gonads in many vertebrates. To test the hypothesis that gonadal steroids regulate kiss1 and kiss2 mRNA expression in European sea bass (a teleost fish), we examined the brains of gonad-intact (control) and castrated animals, as well as castrated males (GDX) and ovariectomized females (OVX) that received testosterone (T) and estradiol (E2) replacement, respectively, during recrudescence. In GDX males, low expression of kiss1 mRNA is observed by in situ hybridization in the caudal hypothalamus (CH) and the mediobasal hypothalamus (MBH), although hypothalamic changes in kiss1 mRNA levels were not statistically different among the groups, as revealed by real-time PCR. However, T strongly decreased kiss2 expression levels in the hypothalamus, which was documented in the MBH and the nucleus of the lateral recess (NRLd) in GDX T-treated sea bass males. Conversely, it appears that E2 evokes low kiss1 mRNA in the CH, while there were cells expressing kiss2 in the MBH and NRLd in these OVX females. These results demonstrate that kisspeptin neurons are presumably sensitive to the feedback actions of sex steroids in the sea bass, suggesting that the MBH represents a major site for sex steroid actions on kisspeptins in this species. Also, recent data provide evidence that both positive and negative actions occur in key factors involved in sea bass reproductive function, including changes in the expression of gnrh-1/gonadotropin, cyp19b, er and ar genes and sex steroid and gonadotropin plasma levels in this teleost fish.


Subject(s)
Bass/genetics , Brain/metabolism , Gene Expression Regulation/drug effects , Gonadal Steroid Hormones/pharmacology , Kisspeptins/genetics , Reproduction/genetics , Animals , Bass/blood , Brain/drug effects , Castration , Estradiol/metabolism , Female , Gonadal Steroid Hormones/blood , In Situ Hybridization , Kisspeptins/metabolism , Male , Ovariectomy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Reproduction/drug effects , Testosterone/metabolism , Time Factors
6.
Gen Comp Endocrinol ; 213: 16-23, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25708429

ABSTRACT

Primordial germ cells (PGCs) are progenitors of the germ cell lineage, giving rise to either spermatogonia or oogonia after the completion of gonadal differentiation. Currently, there is little information on the mechanism of PGCs migration leading to the formation of the primordial gonad in perciform fish. Yellowtail kingfish (Seriola lalandi) (YTK) (order Perciforms) inhabit tropical and temperate waters in the southern hemisphere. Fundamental details into the molecular basis of larval development in this species can be easily studied in Australia, as they are commercially cultured and readily available. In this study, histological analysis of YTK larvae revealed critical time points for the migration of PGCs to the genital ridge, resulting in the subsequent development of the primordial gonad. In YTK larvae at 3, 5, 7 and 10 days post hatch (DPH), PGCs were not yet enclosed by somatic cells, indicating the primordial gonad had not yet started to form. While at 15, 18 and 20 DPH PGCs had already settled at the genital ridge and started to become enclosed by somatic cells indicating the primordial gonad had started to develop. A higher number of PGCs were observed in the larvae at 15 and 18 DPH indicating PGCs proliferation, which corresponds with them becoming enclosed by the somatic cells. Directional migration of PGCs toward the genital ridge is a critical event in the subsequent development of a gonad. In zebrafish, mouse and chicken, stromal-cell derived factor (SDF1) signalling is one of the key molecules for PGC migration. We subsequently isolated from YTK the SDF1 (Slal-SDF1) gene, which encodes for a 98-residue precursor protein with a signal peptide at the N-terminus. There is spatial conservation between fish species of four cysteine residues at positions C9, C11, C34 and C49, expected to form disulphide bonds and stabilize the SDF structure. In YTK, Slal-SDF1 gene expression analyses shows that this gene is expressed in larvae from 1 to 22 DPH and demonstrates distinct spatial localisation in the larvae at 7 DPH. These results provide a platform for further studies into the molecular machinery of PGC migration in yellowtail kingfish, as well as other perciform fish species.


Subject(s)
Cell Movement/physiology , Chemokine CXCL12/metabolism , Gene Expression Regulation, Developmental , Germ Cells/physiology , Perciformes/physiology , Amino Acid Sequence , Animals , Biomarkers/metabolism , Blotting, Western , Cell Differentiation , Cells, Cultured , Chemokine CXCL12/genetics , Cloning, Molecular , Fluorescent Antibody Technique , Gene Expression Profiling , Germ Cells/cytology , Humans , Larva/cytology , Larva/physiology , Mice , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid
7.
Gen Comp Endocrinol ; 191: 155-67, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23791759

ABSTRACT

Puberty represents the transition from an immature to a mature reproductive stage. The mechanisms underlying the onset of normal or precocious puberty have not yet been elucidated. With the goal of gaining an understanding of early events that occur in the testes of precocious animals during this process, a hemigonadectomy was performed on male juvenile sea bass and expression levels of candidate mRNAs were determined through quantitative real-time RT-PCR. For this purpose, the gonadal soma-derived factors gsdf1 and gsdf2, the nuclear receptor 5 subfamily members nr5a1a (ff1b), nr5a1b (ff1d), nr5a2 (ff1a) and nr5a5 (ff1c) and the proliferating cell nuclear antigen or pcna, genes with a putative role in the beginning of spermatogenesis, were isolated and cloned. Hemigonadectomy proved to be a suitable strategy for the study of gonadal stages prior to the appearance of histological differences between precocious and non-precocious fish, as it allowed the subsequent classification of these gonads. The upregulation of the gene encoding the steroidogenic acute regulatory protein (Star) in precocious testes indicates that sex steroids could play a role in the onset of spermatogenesis in sea bass. In contrast, the downregulation observed in ff1b expression indicates that this initial surge in star expression is not the result of Ff1b transactivation, suggesting an alternative pathway for this transcriptional activation. Finally, a decrease in gsdf1 expression in precocious animals suggests that this gene may play a role in the onset of puberty, while its correlation with ff1b expression points to gsdf1 as a putative target for Ff1b-mediated transactivation.


Subject(s)
Perciformes/metabolism , Puberty, Precocious/metabolism , Testis/metabolism , Animals , Male , Nuclear Reactors , Phosphoproteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL