Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
1.
Am J Physiol Cell Physiol ; 327(3): C557-C570, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38985989

ABSTRACT

The exchange protein directly activated by cAMP (EPAC) has been implicated in cardiac proarrhythmic signaling pathways including spontaneous diastolic Ca2+ leak from sarcoplasmic reticulum and increased action potential duration (APD) in isolated ventricular cardiomyocytes. The action potential (AP) lengthening following acute EPAC activation is mainly due to a decrease of repolarizing steady-state K+ current (IKSS) but the mechanisms involved remain unknown. This study aimed to assess the role of EPAC1 and EPAC2 in the decrease of IKSS and to investigate the underlying signaling pathways. AP and K+ currents were recorded with the whole cell configuration of the patch-clamp technique in freshly isolated rat ventricular myocytes. EPAC1 and EPAC2 were pharmacologically activated with 8-(4-chlorophenylthio)-2'-O-methyl-cAMP acetoxymethyl ester (8-CPTAM, 10 µmol/L) and inhibited with R-Ce3F4 and ESI-05, respectively. Inhibition of EPAC1 and EPAC2 significantly decreased the effect of 8-CPTAM on APD and IKSS showing that both EPAC isoforms are involved in these effects. Unexpectedly, calmodulin-dependent protein kinase II (CaMKII) inhibition by AIP or KN-93, and Ca2+ chelation by intracellular BAPTA, did not impact the response to 8-CPTAM. However, inhibition of PLC/PKC and nitric oxide synthase (NOS)/PKG pathways partially prevents the 8-CPTAM-dependent decrease of IKSS. Finally, the cumulative inhibition of PKC and PKG blocked the 8-CPTAM effect, suggesting that these two actors work along parallel pathways to regulate IKSS upon EPAC activation. On the basis of such findings, we propose that EPAC1 and EPAC2 are involved in APD lengthening by inhibiting a K+ current via both PLC/PKC and NOS/PKG pathways. This may have pathological implications since EPAC is upregulated in diseases such as cardiac hypertrophy.NEW & NOTEWORHTY Exchange protein directly activated by cAMP (EPAC) proteins modulate ventricular electrophysiology at the cellular level. Both EPAC1 and EPAC2 isoforms participate in this effect. Mechanistically, PLC/PKC and nitric oxide synthase (NO)/PKG pathways are involved in regulating K+ repolarizing current whereas the well-known downstream effector of EPAC, calmodulin-dependent protein kinase II (CaMKII), does not participate. This may have pathological implications since EPAC is upregulated in diseases such as cardiac hypertrophy. Thus, EPAC inhibition may be a new approach to prevent arrhythmias under pathological conditions.


Subject(s)
Action Potentials , Guanine Nucleotide Exchange Factors , Heart Ventricles , Myocytes, Cardiac , Protein Kinase C , Signal Transduction , Animals , Guanine Nucleotide Exchange Factors/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Protein Kinase C/metabolism , Rats , Action Potentials/drug effects , Heart Ventricles/metabolism , Heart Ventricles/cytology , Cyclic GMP-Dependent Protein Kinases/metabolism , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Type C Phospholipases/metabolism , Type C Phospholipases/antagonists & inhibitors , Male , Rats, Wistar , Potassium/metabolism , Cyclic AMP/metabolism
2.
Acta Pharmacol Sin ; 45(9): 1832-1847, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38702500

ABSTRACT

It has been shown that prostaglandin (PG) E2 synthesized in the lateral parabrachial nucleus (LPBN) is involved in lipopolysaccharide-induced fever. But the neural mechanisms of how intra-LPBN PGE2 induces fever remain unclear. In this study, we investigated whether the LPBN-preoptic area (POA) pathway, the thermoafferent pathway for feed-forward thermoregulatory responses, mediates fever induced by intra-LPBN PGE2 in male rats. The core temperature (Tcore) was monitored using a temperature radiotelemetry transponder implanted in rat abdomen. We showed that microinjection of PGE2 (0.28 nmol) into the LPBN significantly enhanced the density of c-Fos-positive neurons in the median preoptic area (MnPO). The chemical lesioning of MnPO with ibotenate or selective genetic lesioning or inhibition of the LPBN-MnPO pathway significantly attenuated fever induced by intra-LPBN injection of PGE2. We demonstrated that EP3 receptor was a pivotal receptor for PGE2-induced fever, since microinjection of EP3 receptor agonist sulprostone (0.2 nmol) or EP3 receptor antagonist L-798106 (2 nmol) into the LPBN mimicked or weakened the pyrogenic action of LPBN PGE2, respectively, but this was not the case for EP4 and EP1 receptors. Whole-cell recording from acute LPBN slices revealed that the majority of MnPO-projecting neurons originating from the external lateral (el) and dorsal (d) LPBN were excited and inhibited, respectively, by PGE2 perfusion, initiating heat-gain and heat-loss mechanisms. The amplitude but not the frequency of spontaneous and miniature glutamatergic excitatory postsynaptic currents (sEPSCs and mEPSCs) in MnPO-projecting LPBel neurons increased after perfusion with PGE2; whereas the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) and the A-type potassium (IA) current density did not change. In MnPO-projecting LPBd neurons, neither sEPSCs nor sIPSCs responded to PGE2; however, the IA current density was significantly increased by PGE2 perfusion. These electrophysiological responses and the thermoeffector reactions to intra-LPBN PGE2 injection, including increased brown adipose tissue thermogenesis, shivering, and decreased heat dissipation, were all abolished by L-798106, and mimicked by sulprostone. These results suggest that the pyrogenic effects of intra-LPBN PGE2 are mediated by both the inhibition of the LPBd-POA pathway through the EP3 receptor-mediated activation of IA currents and the activation of the LPBel-POA pathway through the selective enhancement of glutamatergic synaptic transmission via EP3 receptors.


Subject(s)
Body Temperature Regulation , Dinoprostone , Fever , Parabrachial Nucleus , Preoptic Area , Receptors, Prostaglandin E, EP3 Subtype , Animals , Male , Rats , Body Temperature Regulation/drug effects , Dinoprostone/pharmacology , Fever/chemically induced , Fever/metabolism , Neurons/drug effects , Neurons/metabolism , Parabrachial Nucleus/drug effects , Parabrachial Nucleus/physiology , Preoptic Area/drug effects , Preoptic Area/metabolism , Rats, Sprague-Dawley , Receptors, Prostaglandin E, EP3 Subtype/metabolism
3.
Eur J Pharmacol ; 976: 176674, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38810715

ABSTRACT

Antipsychotic drugs often lead to adverse effects, including those related to the cardiovascular system. Of these, quetiapine is known to cause significant changes in the QT interval although the underlying mechanism remains mysterious, prompting us to examine its effects on cardiac electrophysiological properties. Therefore, we investigated the effect of quetiapine on contraction, action potential (AP), and the associated membrane currents such as L-type Ca2+ and K+ using the whole-cell patch clamp method to examine its impacts on isolated rat ventricular myocytes. Our results showed that (1) quetiapine reduces cell contractility in a concentration-dependent manner and (2) leads to a significant prolongation in the duration of AP in isolated ventricular myocytes. This effect was both concentration and frequency-dependent; (3) quetiapine significantly decreased the Ca2+, transient outward K+, and steady-state K+ currents. However, only high concentration of quetiapine (100 µM) could significantly change the activation and reactivation kinetics of L-type Ca2+ channels. This study demonstrates that QT extension induced by quetiapine is mainly associated with the prolongation of AP. Moreover, quetiapine caused a significant decrease in contractile force and excitability of ventricular myocytes by suppressing Ca2+ and K+ currents.


Subject(s)
Action Potentials , Calcium Channels, L-Type , Heart Ventricles , Myocardial Contraction , Myocytes, Cardiac , Quetiapine Fumarate , Animals , Quetiapine Fumarate/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Heart Ventricles/drug effects , Heart Ventricles/cytology , Rats , Action Potentials/drug effects , Male , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/drug effects , Myocardial Contraction/drug effects , Rats, Sprague-Dawley , Antipsychotic Agents/pharmacology , Dose-Response Relationship, Drug , Calcium/metabolism
4.
Front Pharmacol ; 15: 1372973, 2024.
Article in English | MEDLINE | ID: mdl-38606176

ABSTRACT

Objective: Aloperine (ALO) is an effective quinolizidine alkaloid. Previous research has demonstrated its antiarrhythmic effect by inhibiting voltage-gated sodium currents in rat ventricular myocytes. This study explored its effect on transient outward potassium currents (Ito) in rat atrial myocytes to identify potential targets in the context of ion channel currents. Methods: The Ito characteristics in rat atrial myocytes were recorded using a whole-cell patch-clamp technique. Molecular docking was performed to validate ligand-protein binding interactions. Results: ALO at concentrations of 3 and 10 µM significantly reduced Ito current densities. Gating kinetics analysis revealed ALO's ability to slow Ito activation, hasten inactivation, and prolong transition from inactive to resting state. Molecular docking revealed that ALO could stably bind to KCND2. Conclusion: ALO may inhibit Ito by slowing the activation process, accelerating inactivation, and delaying the recovery time after inactivation, potentially preventing acetylcholine-induced AF.

5.
Zhen Ci Yan Jiu ; 49(2): 155-163, 2024 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-38413036

ABSTRACT

OBJECTIVES: To investigate the mechanism of electroacupuncture (EA) at "Neiguan" (PC6) in impro-ving myocardial electrical remodeling in rats with acute myocardial infarction (AMI) by enhancing transient outward potassium current. METHODS: A total of 30 male SD rats were randomly divided into control, model and EA groups, with 10 rats in each group. The AMI model was established by subcutaneous injection with isoprenaline (ISO, 85 mg/kg). EA was applied to left PC6 for 20 min, once daily for 5 days. Electrocardiogram (ECG) was recorded after treatment. TTC staining was used to observe myocardial necrosis. HE staining was used to observe the pathological morphology of myocardial tissue and measure the cross-sectional area of myocardium. Potassium ion-related genes in myocardial tissue were detected by RNA sequencing. The mRNA and protein expressions of Kchip2 and Kv4.2 in myocardial tissue were detected by real-time fluorescence quantitative PCR and Western blot, respectively. RESULTS: Compared with the control group, cardiomyocyte cross-sectional area in the model group was significantly increased (P<0.01), the ST segment was significantly elevated (P<0.01), and QT, QTc, QTd and QTcd were all significantly increased (P<0.05, P<0.01). After EA treatment, cardiomyocyte cross-sectional area was significantly decreased (P<0.01), the ST segment was significantly reduced (P<0.01), and the QT, QTc, QTcd and QTd were significantly decreased (P<0.01, P<0.05). RNA sequencing results showed that a total of 20 potassium ion-related genes co-expressed by the 3 groups were identified. Among them, Kchip2 expression was up-regulated most notablely in the EA group. Compared with the control group, the mRNA and protein expressions of Kchip2 and Kv4.2 in the myocardial tissue of the model group were significantly decreased (P<0.01, P<0.05), while those were increased in the EA group (P<0.01, P<0.05). CONCLUSIONS: EA may improve myocardial electrical remodeling in rats with myocardial infarction, which may be related to its functions in up-regulating the expressions of Kchip2 and Kv4.2.


Subject(s)
Atrial Remodeling , Electroacupuncture , Myocardial Infarction , Myocardial Ischemia , Rats , Male , Animals , Myocardial Ischemia/therapy , Rats, Sprague-Dawley , Acupuncture Points , Myocardium/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Potassium/metabolism , RNA, Messenger/metabolism
6.
Heart Rhythm ; 21(5): 622-629, 2024 May.
Article in English | MEDLINE | ID: mdl-38280622

ABSTRACT

BACKGROUND: More than 50% of patients with atrial fibrillation (AF) suffer from sleep disordered breathing (SDB). Obstructive respiratory events contribute to a transient, vagally mediated atrial arrhythmogenic substrate, which is resistant to most available antiarrhythmic drugs. OBJECTIVE: The purpose of this study was to investigate the effect of pharmacologic inhibition of the G-protein-gated acetylcholine-regulated potassium current (IK,ACh) with and without acute autonomic nervous system activation by nicotine in a pig model for obstructive respiratory events. METHODS: In 21 pigs, SDB was simulated by applying an intermittent negative upper airway pressure (INAP). AF inducibility and atrial effective refractory periods (aERPs) were determined before and during INAP by an S1S2 atrial pacing-protocol. Pigs were randomized into 3 groups-group 1: vehicle (n = 4); group 2: XAF-1407 (IK,ACh inhibitor) (n = 7); and group 3: nicotine followed by XAF-1407 (n = 10). RESULTS: In group 1, INAP shortened aERP (ΔaERP -42.6 ms; P = .004) and transiently increased AF inducibility from 0% to 31%. In group 2, XAF-1407 prolonged aERP by 25.2 ms (P = .005) during normal breathing and prevented INAP-induced aERP shortening (ΔaERP -3.6 ms; P = .3) and AF inducibility. In group 3, INAP transiently shortened aERP during nicotine perfusion (ΔaERP -33.6 ms; P = .004) and increased AF inducibility up to 61%, which both were prevented by XAF-1407. CONCLUSION: Simulated obstructive respiratory events transiently shorten aERP and increase AF inducibility, which can be prevented by the IK,ACh-inhibitor XAF-1407. XAF-1407 also prevents these arrhythmogenic changes induced by obstructive respiratory events during nicotine perfusion. Whether IK,ACh channels represent a target for SDB-related AF in humans warrants further study.


Subject(s)
Atrial Fibrillation , Disease Models, Animal , Animals , Swine , Atrial Fibrillation/physiopathology , Atrial Fibrillation/etiology , Atrial Fibrillation/prevention & control , Heart Atria/physiopathology , Heart Atria/drug effects , Heart Atria/metabolism , Acetylcholine/pharmacology , Nicotine/pharmacology , Sleep Apnea Syndromes/physiopathology , Sleep Apnea Syndromes/complications
7.
J Mol Cell Cardiol ; 186: 71-80, 2024 01.
Article in English | MEDLINE | ID: mdl-37956903

ABSTRACT

Gap junction and ion channel remodeling occur early in Arrhythmogenic Cardiomyopathy (ACM), but their pathogenic consequences have not been elucidated. Here, we identified the arrhythmogenic substrate, consisting of propagation slowing and conduction block, in ACM models expressing two different desmosomal gene variants. Neonatal rat ventricular myocytes were transduced to express variants in genes encoding desmosomal proteins plakoglobin or plakophilin-2. Studies were performed in engineered cells and anisotropic tissues to quantify changes in conduction velocity, formation of unidirectional propagation, cell-cell electrical coupling, and ion currents. Conduction velocity decreased by 71% and 63% in the two ACM models. SB216763, an inhibitor of glycogen synthase kinase-3 beta, restored conduction velocity to near normal levels. Compared to control, both ACM models showed greater propensity for unidirectional conduction block, which increased further at greater stimulation frequencies. Cell-cell electrical conductance measured in cell pairs was reduced by 86% and 87% in the two ACM models. Computer modeling showed close correspondence between simulated and experimentally determined changes in conduction velocity. The simulation identified that reduced cell-cell electrical coupling was the dominant factor leading to slow conduction, while the combination of reduced cell-cell electrical coupling, reduced sodium current and inward rectifier potassium current explained the development of unidirectional block. Expression of two different ACM variants markedly reduced cell-cell electrical coupling and conduction velocity, and greatly increased the likelihood of developing unidirectional block - both key features of arrhythmogenesis. This study provides the first quantitative analysis of cellular electrophysiological changes leading to the substrate of reentrant arrhythmias in early stage ACM.


Subject(s)
Cardiomyopathies , Myocytes, Cardiac , Rats , Animals , Myocytes, Cardiac/metabolism , Arrhythmias, Cardiac/metabolism , Gap Junctions/metabolism , Ion Channels/metabolism , Cardiomyopathies/metabolism
8.
Front Physiol ; 14: 1326160, 2023.
Article in English | MEDLINE | ID: mdl-38152247

ABSTRACT

Human-induced stem cell-derived cardiomyocytes (hiPSC-CMs) are a valuable tool for studying development, pharmacology, and (inherited) arrhythmias. Unfortunately, hiPSC-CMs are depolarized and spontaneously active, even the working cardiomyocyte subtypes such as atrial- and ventricular-like hiPSC-CMs, in contrast to the situation in the atria and ventricles of adult human hearts. Great efforts have been made, using many different strategies, to generate more mature, quiescent hiPSC-CMs with more close-to-physiological resting membrane potentials, but despite promising results, it is still difficult to obtain hiPSC-CMs with such properties. The dynamic clamp technique allows to inject a current with characteristics of the inward rectifier potassium current (IK1), computed in real time according to the actual membrane potential, into patch-clamped hiPSC-CMs during action potential measurements. This results in quiescent hiPSC-CMs with a close-to-physiological resting membrane potential. As a result, action potential measurements can be performed with normal ion channel availability, which is particularly important for the physiological functioning of the cardiac SCN5A-encoded fast sodium current (INa). We performed in vitro and in silico experiments to assess the beneficial effects of the dynamic clamp technique in dissecting the functional consequences of the SCN5A-1795insD+/- mutation. In two separate sets of patch-clamp experiments on control hiPSC-CMs and on hiPSC-CMs with mutations in ACADVL and GNB5, we assessed the value of dynamic clamp in detecting delayed afterdepolarizations and in investigating factors that modulate the resting membrane potential. We conclude that the dynamic clamp technique has highly beneficial effects in all of the aforementioned settings and should be widely used in patch-clamp studies on hiPSC-CMs while waiting for the ultimate fully mature hiPSC-CMs.

9.
eNeuro ; 10(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-37989589

ABSTRACT

The ventromedial motor thalamus (VM) is implicated in multiple motor functions and occupies a central position in the cortico-basal ganglia-thalamocortical loop. It integrates glutamatergic inputs from motor cortex (MC) and motor-related subcortical areas, and it is a major recipient of inhibition from basal ganglia. Previous in vitro experiments performed in mice showed that dopamine depletion enhances the excitability of thalamocortical (TC) neurons in VM due to reduced M-type potassium currents. To understand how these excitability changes impact synaptic integration in vivo, we constructed biophysically detailed mouse VM TC model neurons fit to normal and dopamine-depleted conditions, using the NEURON simulator. These models allowed us to assess the influence of excitability changes with dopamine depletion on the integration of synaptic inputs expected in vivo We found that VM neuron models in the dopamine-depleted state showed increased firing rates with the same synaptic inputs. Synchronous bursting in inhibitory input from the substantia nigra pars reticulata (SNR), as observed in parkinsonian conditions, evoked a postinhibitory firing rate increase with a longer duration in dopamine-depleted than control conditions, due to different M-type potassium channel densities. With ß oscillations in the inhibitory inputs from SNR and the excitatory inputs from cortex, we observed spike-phase locking in the activity of the models in normal and dopamine-depleted states, which relayed and amplified the oscillations of the inputs, suggesting that the increased ß oscillations observed in VM of parkinsonian animals are predominantly a consequence of changes in the presynaptic activity rather than changes in intrinsic properties.


Subject(s)
Dopamine , Parkinsonian Disorders , Mice , Animals , Basal Ganglia/physiology , Motor Neurons , Thalamus
10.
Int J Mol Sci ; 24(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37569306

ABSTRACT

Melatonin has been reported to cause myocardial electrophysiological changes and prevent ventricular tachycardia or fibrillation (VT/VF) in ischemia and reperfusion. We sought to identify electrophysiological targets responsible for the melatonin antiarrhythmic action and to explore whether melatonin receptor-dependent pathways or its antioxidative properties are essential for these effects. Ischemia was induced in anesthetized rats given a placebo, melatonin, and/or luzindole (MT1/MT2 melatonin receptor blocker), and epicardial mapping with reperfusion VT/VFs assessment was performed. The oxidative stress assessment and Western blotting analysis were performed in the explanted hearts. Transmembrane potentials and ionic currents were recorded in cardiomyocytes with melatonin and/or luzindole application. Melatonin reduced reperfusion VT/VF incidence associated with local activation time in logistic regression analysis. Melatonin prevented ischemia-related conduction slowing and did not change the total connexin43 (Cx43) level or oxidative stress markers, but it increased the content of a phosphorylated Cx43 variant (P-Cx43368). Luzindole abolished the melatonin antiarrhythmic effect, slowed conduction, decreased total Cx43, protein kinase Cε and P-Cx43368 levels, and the IK1 current, and caused resting membrane potential (RMP) depolarization. Neither melatonin nor luzindole modified INa current. Thus, the antiarrhythmic effect of melatonin was mediated by the receptor-dependent enhancement of impulse conduction, which was associated with Cx43 phosphorylation and maintaining the RMP level.


Subject(s)
Connexin 43 , Melatonin , Rats , Animals , Connexin 43/metabolism , Receptors, Melatonin/metabolism , Melatonin/pharmacology , Melatonin/therapeutic use , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/prevention & control , Myocytes, Cardiac/metabolism
11.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3565-3575, 2023 Jul.
Article in Chinese | MEDLINE | ID: mdl-37474990

ABSTRACT

This study aimed to investigate the underlying mechanism of Zhenwu Decoction in the treatment of heart failure by regulating electrical remodeling through the transient outward potassium current(I_(to))/voltage-gated potassium(Kv) channels. Five normal SD rats were intragastrically administered with Zhenwu Decoction granules to prepare drug-containing serum, and another seven normal SD rats received an equal amount of distilled water to prepare blank serum. H9c2 cardiomyocytes underwent conventional passage and were treated with angiotensin Ⅱ(AngⅡ) for 24 h. Subsequently, 2%, 4%, and 8% drug-containing serum, simvastatin(SIM), and BaCl_2 were used to interfere in H9c2 cardiomyocytes for 24 h. The cells were divided into a control group [N, 10% blank serum + 90% high-glucose DMEM(DMEM-H)], a model group(M, AngⅡ + 10% blank serum + 90% DMEM-H), a low-dose Zhenwu Decoction-containing serum group(Z1, AngⅡ + 2% drug-containing serum of Zhenwu Decoction + 8% blank serum + 90% DMEM-H), a medium-dose Zhenwu Decoction-containing serum group(Z2, AngⅡ + 4% drug-containing serum of Zhenwu Decoc-tion + 6% blank serum + 90% DMEM-H), a high-dose Zhenwu Decoction-containing serum group(Z3, AngⅡ + 8% drug-containing serum of Zhenwu Decoction + 2% blank serum + 90% DMEM-H), an inducer group(YD, AngⅡ + SIM + 10% blank serum + 90% DMEM-H), and an inhibitor group(YZ, AngⅡ + BaCl_2 + 10% blank serum + 90% DMEM-H). The content of ANP in cell extracts of each group was detected by ELISA. The relative mRNA expression levels of ANP, Kv1.4, Kv4.2, Kv4.3, DPP6, and KChIP2 were detected by real-time quantitative PCR. The protein expression of Kv1.4, Kv4.2, Kv4.3, DPP6, and KChIP2 was detected by Western blot. I_(to) was detected by the whole cell patch-clamp technique. The results showed that Zhenwu Decoction at low, medium, and high doses could effectively reduce the surface area of cardiomyocytes. Compared with the M group, the Z1, Z2, Z3, and YD groups showed decreased ANP content and mRNA level, increased protein and mRNA expression of Kv4.2, Kv4.3, DPP6, and KChIP2, and decreased protein and mRNA expression of Kv1.4, and the aforementioned changes were the most notable in the Z3 group. Compared with the N group, the Z1, Z2, and Z3 groups showed significantly increased peak current and current density of I_(to). The results indicate that Zhenwu Decoction can regulate myocardial remodeling and electrical remodeling by improving the expression trend of Kv1.4, Kv4.2, Kv4.3, KChIP2, and DPP6 proteins and inducing I_(to) to regulate Kv channels, which may be one of the mechanisms of Zhenwu Decoction in treating heart failure and related arrhythmias.


Subject(s)
Atrial Remodeling , Heart Failure , Rats , Animals , Myocytes, Cardiac , Rats, Sprague-Dawley , Heart Failure/drug therapy , Heart Failure/metabolism , RNA, Messenger/metabolism , Potassium
12.
Physiol Rep ; 11(11): e15670, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37291479

ABSTRACT

Ventricular repolarization shows notable sex-specificity, with female sex being associated with longer QT-intervals in electrocardiography irrespective of the species studied. From a clinical point of view, women are at a greater risk for drug-induced torsade de pointes and symptomatic long-QT syndrome. Here, we present an optical mapping (OM) approach to reveal sex-specific action potential (AP) heterogeneity in a slice preparation of mouse hearts. Left ventricular epicardial repolarization in female versus male mice shows longer and, interindividually, more variable AP duration (APD), yielding a less prominent transmural APD gradient. By combining OM with mathematical modeling, we suggest a significant role of IKto,f and IKur in AP broadening in females. Other transmembrane currents, including INaL , only marginally affect basal APD. As in many cardiac pathophysiologies, increasing [Ca2+ ]i poses a risk for arrhythmia, the response of AP morphology to enhanced activation of L-type calcium channels (LTCC) was assessed in a sex-selective manner. Both APD and its variation increased significantly more in female versus male mice after pharmacological LTCC activation, which we hypothesize to be due to sex-specific INaL expression based on mathematical modeling. Altogether, we demonstrate a more delayed repolarization of LV epicardium, a leveled LV transmural APD gradient, and a more pronounced epicardial APD response to Ca2+ influx in females versus males. Mathematical modeling quantifies the relative contributions of selected ionic currents to sex-specific AP morphology under normal and pathophysiological conditions.


Subject(s)
Electrocardiography , Heart Ventricles , Female , Male , Animals , Mice , Heart Ventricles/metabolism , Arrhythmias, Cardiac/metabolism , Pericardium , Action Potentials
13.
PNAS Nexus ; 2(5): pgad156, 2023 May.
Article in English | MEDLINE | ID: mdl-37234204

ABSTRACT

Cardiovascular disease is thought to account for nearly a third of deaths worldwide, with ischemic heart disease, including acute coronary syndromes such as myocardial infarction, accounting for 1.7 million deaths per year. There is a clear need for interventions to impart cardioprotection against ischemia. Here, we show that the slowly activating voltage-gated potassium current (IKs) potentiator ML277 imparts cardioprotection against ischemia in cellular and whole-heart models by modulating the action potential duration. In three different metabolic inhibition and reperfusion models, an increased contractile recovery and cell survival was observed with ML277, indicative of protection. Finally, ML277 reduced infarct size in an ex vivo Langendorff coronary ligation model, including if only applied on reperfusion. In conclusion, potentiation of the IKs with ML277 imparted a cardioprotection that was equivalent to the protection reported previously by ischemic preconditioning. These data suggest that IKs potentiation may be therapeutically useful in acute coronary syndromes.

14.
J Membr Biol ; 256(3): 287-297, 2023 06.
Article in English | MEDLINE | ID: mdl-37166559

ABSTRACT

Heart diseases such as arrhythmia are the main causes of sudden death. Arrhythmias are typically caused by mutations in specific genes, damage in the cardiac tissue, or due to some chemical exposure. Arrhythmias caused due to mutation is called inherited arrhythmia. Induced arrhythmias are caused due to tissue damage or chemical exposure. Mutations in genes that encode ion channels of the cardiac cells usually result in (dysfunction) improper functioning of the channel. Improper functioning of the ion channel may lead to major changes in the action potential (AP) of the cardiac cells. This further leads to distorted electrical activity of the heart. Distorted electrical activity will affect the ECG that results in arrhythmia. KCNQ1 P535T mutation is one such gene mutation that encodes the potassium ion channel (KV7.1) of the cardiac ventricular tissue. Its clinical significance is not known. This study aims to perform a simulation study on P535T mutation in the KCNQ1 gene that encodes the potassium ion channel KV7.1 in the ventricular tissue grid. The effect of P535T mutation on transmural tissue grids for three genotypes (wild type, heterozygous, and homozygous) of cells are studied and the generated pseudo-ECGs are compared. Results show the delayed repolarization in the cells of ventricular tissue grid. Slower propagation of action potential in the transmural tissue grid is observed in the mutated (heterozygous and homozygous) genotypes. Longer QT interval is also observed in the pseudo-ECG of heterozygous and homozygous genotype tissue grids. From the pseudo-ECGs, it is observed that KCNQ1 P535T mutation leads to Long QT Syndrome (LQTS) which may result in life-threatening arrhythmias, such as Torsade de Pointes (TdP), Jervell and Lange-Nielsen syndrome (JLNS), and Romano-Ward syndrome (RWS).


Subject(s)
Jervell-Lange Nielsen Syndrome , Long QT Syndrome , Romano-Ward Syndrome , Humans , KCNQ1 Potassium Channel/genetics , Jervell-Lange Nielsen Syndrome/genetics , Long QT Syndrome/genetics , Romano-Ward Syndrome/genetics , Mutation , Potassium Channels , KCNQ Potassium Channels/genetics
15.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108427

ABSTRACT

The pacemaker activity of the sinoatrial node (SAN) has been studied extensively in animal species but is virtually unexplored in humans. Here we assess the role of the slowly activating component of the delayed rectifier K+ current (IKs) in human SAN pacemaker activity and its dependence on heart rate and ß-adrenergic stimulation. HEK-293 cells were transiently transfected with wild-type KCNQ1 and KCNE1 cDNA, encoding the α- and ß-subunits of the IKs channel, respectively. KCNQ1/KCNE1 currents were recorded both during a traditional voltage clamp and during an action potential (AP) clamp with human SAN-like APs. Forskolin (10 µmol/L) was used to increase the intracellular cAMP level, thus mimicking ß-adrenergic stimulation. The experimentally observed effects were evaluated in the Fabbri-Severi computer model of an isolated human SAN cell. Transfected HEK-293 cells displayed large IKs-like outward currents in response to depolarizing voltage clamp steps. Forskolin significantly increased the current density and significantly shifted the half-maximal activation voltage towards more negative potentials. Furthermore, forskolin significantly accelerated activation without affecting the rate of deactivation. During an AP clamp, the KCNQ1/KCNE1 current was substantial during the AP phase, but relatively small during diastolic depolarization. In the presence of forskolin, the KCNQ1/KCNE1 current during both the AP phase and diastolic depolarization increased, resulting in a clearly active KCNQ1/KCNE1 current during diastolic depolarization, particularly at shorter cycle lengths. Computer simulations demonstrated that IKs reduces the intrinsic beating rate through its slowing effect on diastolic depolarization at all levels of autonomic tone and that gain-of-function mutations in KCNQ1 may exert a marked bradycardic effect during vagal tone. In conclusion, IKs is active during human SAN pacemaker activity and has a strong dependence on heart rate and cAMP level, with a prominent role at all levels of autonomic tone.


Subject(s)
KCNQ1 Potassium Channel , Sinoatrial Node , Animals , Humans , Sinoatrial Node/metabolism , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , Colforsin/pharmacology , HEK293 Cells , Adrenergic Agents , Action Potentials/physiology
16.
Bull Exp Biol Med ; 174(5): 610-615, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37040036

ABSTRACT

We studied the frequency dependence of the effects of the novel Russian class III antiarrhythmic drug refralon on the duration of action potentials (AP) in rabbit ventricular myocardium. The absence of an inverse frequency dependence of AP prolongation was demonstrated: the effects of refralon at stimulation frequency of 1 Hz were stronger than at 0.1 Hz. The patch-clamp experiments with recording of rapid delayed rectifier potassium current IKr in a heterologous expression system showed that the blocking effect of refralon developed significantly faster at 2 Hz depolarization frequency than at 0.2 Hz. This feature of refralon distinguishes it among the majority of other class III drugs (sotalol, dofetilide, E-4031) and explains the relatively high safety of this drug together with its high efficacy.


Subject(s)
Anti-Arrhythmia Agents , Potassium Channels , Animals , Rabbits , Anti-Arrhythmia Agents/pharmacology , Potassium Channels/metabolism , Myocardium/metabolism , Sotalol/metabolism , Sotalol/pharmacology , Heart Ventricles , Action Potentials
17.
Life Sci ; 325: 121738, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37121541

ABSTRACT

AIMS: Nerve growth factor (NGF) has been implicated as a key molecule of pathology-induced changes in C-fiber afferent nerve excitability, which contributes to the emergence of neurogenic detrusor overactivity due to spinal cord injury (SCI). It is also known that the second messenger signaling pathways activated by NGF utilize p38 Mitogen-Activated Protein Kinase (MAPK). We examined the roles of p38 MAPK on electrophysiological properties of capsaicin sensitive bladder afferent neurons with SCI mice. MAIN METHODS: We used female C57BL/6 mice and transected their spinal cord at the Th8/9 level. Two weeks later, continuous administration of p38 MAPK inhibitor (0.51 µg/h, i.t. for two weeks) was started. Bladder afferent neurons were labelled with a fluorescent retrograde tracer, Fast-Blue (FB), injected into the bladder wall three weeks after SCI. Four weeks after SCI, freshly dissociated L6-S1 dorsal root ganglion neurons were prepared and whole cell patch clamp recordings were performed in FB-labelled neurons. After recording action potentials or voltage-gated K+ currents, the sensitivity of each neuron to capsaicin was evaluated. KEY FINDINGS: In capsaicin-sensitive FB-labelled neurons, SCI significantly reduced the spike threshold and increased the number of action potentials during 800 ms membrane depolarization. Densities of slow-decaying A-type K+ (KA) and sustained delayed rectifier-type K+ (KDR) currents were significantly reduced by SCI. The reduction of KA, but not KDR, current density was reversed by the treatment with p38 MAPK inhibitor. SIGNIFICANCE: P38 MAPK plays an important role in hyperexcitability of capsaicin-sensitive bladder afferent neurons due to the reduction in KA channel activity in SCI mice.


Subject(s)
Spinal Cord Injuries , Urinary Bladder , Mice , Female , Animals , Urinary Bladder/metabolism , Capsaicin/pharmacology , Capsaicin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Nerve Growth Factor/metabolism , Mice, Inbred C57BL , Neurons, Afferent , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Ganglia, Spinal
18.
J Alzheimers Dis ; 92(4): 1241-1256, 2023.
Article in English | MEDLINE | ID: mdl-36872774

ABSTRACT

BACKGROUND: Amyloid-ß protein precursor (AßPP) is enriched in neurons. However, the mechanism underlying AßPP regulation of neuronal activity is poorly understood. Potassium channels are critically involved in neuronal excitability. In hippocampus, A-type potassium channels are highly expressed and involved in determining neuronal spiking. OBJECTIVE: We explored hippocampal local field potential (LFP) and spiking in the presence and absence of AßPP, and the potential involvement of an A-type potassium channel. METHODS: We used in vivo extracellular recording and whole-cell patch-clamp recording to determine neuronal activity, current density of A-type potassium currents, and western blot to detect changes in related protein levels. RESULTS: Abnormal LFP was observed in AßPP-/- mice, including reduced beta and gamma power, and increased epsilon and ripple power. The firing rate of glutamatergic neurons reduced significantly, in line with an increased action potential rheobase. Given that A-type potassium channels regulate neuronal firing, we measured the protein levels and function of two major A-type potassium channels and found that the post-transcriptional level of Kv1.4, but not Kv4.2, was significantly increased in the AßPP-/- mice. This resulted in a marked increase in the peak time of A-type transient outward potassium currents in both glutamatergic and gamma-aminobutyric acid-ergic (GABAergic) neurons. Furthermore, a mechanistic experiment using human embryonic kidney 293 (HEK293) cells revealed that the AßPP deficiency-induced increase in Kv1.4 may not involve protein-protein interaction between AßPP and Kv1.4. CONCLUSION: This study suggests that AßPP modulates neuronal firing and oscillatory activity in the hippocampus, and Kv1.4 may be involved in mediating the modulation.


Subject(s)
Amyloid beta-Protein Precursor , Kv1.4 Potassium Channel , Potassium Channels , Animals , Humans , Mice , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , HEK293 Cells , Hippocampus/metabolism , Potassium , Potassium Channels/metabolism , Kv1.4 Potassium Channel/genetics , Kv1.4 Potassium Channel/metabolism
19.
J Physiol ; 601(13): 2541-2542, 2023 07.
Article in English | MEDLINE | ID: mdl-36916495
20.
Biochem Biophys Rep ; 33: 101407, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36593870

ABSTRACT

Traditional Chinese medicine injection (TCMI) refers to the use of modern technology to make Chinese patent medicines in injectable forms, which shorten the onset time of the traditional Chinese medicine (TCM). Although there have been clinical cases in which Shenmai injection (SMI) was used to treat cardiovascular diseases (CVDs), there are no pharmacological experiments that investigate the efficacy of the drug in vitro or the underlying mechanisms. Aim of the study: We aimed to systemically evaluate the efficacy and investigate the mechanisms of SMI in modulating electrophysiology and calcium (Ca2+) signaling using a microelectrode array (MEA) and a genetically encoded Ca2+ indicator, GCaMP6s, respectively, in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Materials and methods: A MEA system was employed to record field potentials (FPs) in hiPSC-CMs. The QT interval is corrected by the RR interval, the reciprocal of the beating rate. GCaMP6s was used to measure Ca2+ signaling in hiPSC-CMs. Meanwhile, the transcriptome changes in hiPSC-CMs treated with 2% SMI were examined using RNAseq. In addition, the ingredients of SMI were investigated using liquid chromatography-mass spectrometry (LC-MS). Results: It was found that 0.5%, 1%, and 2% (v/v) SMIs could increase corrected QT (QTc) but did not change other FP parameters. GCaMP6s was successfully applied to measure the chronic function of SMI. The full width at half maximum (FWHM), rise time, and decay time significantly decreased after treatment with SMI for 1 h and 24 h, whereas an increased Ca2+ transient frequency was observed. Conclusions: We first used the Ca2+ indicator to measure the chronic effects of TCM. We found that SMI treatment can modulate electrophysiology and calcium signaling and regulate oxidative phosphorylation, cardiac muscle contraction, and the cell cycle pathway in hiPSC-CMs.

SELECTION OF CITATIONS
SEARCH DETAIL