Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 14(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38927030

ABSTRACT

Cow uterine infections pose a challenge in dairy farming, resulting in reproductive disorders. Uterine fluid extracellular vesicles (UF-EVs) play a key role in cell-to-cell communication in the uterus, potentially holding the signs of aetiology for endometritis. We used mass spectrometry-based quantitative shotgun proteomics to compare UF-EV proteomic profiles in healthy cows (H), cows with subclinical (SE) or clinical endometritis (CLE) sampled at 28-35 days postpartum. Functional analysis was performed on embryo cultures with the exposure to different EV types. A total of 248 UF-EV proteins exhibited differential enrichment between the groups. Interestingly, in SE, EV protein signature suggests a slight suppression of inflammatory response compared to CLE-UF-EVs, clustering closer with healthy cows' profile. Furthermore, CLE-UF-EVs proteomic profile highlighted pathways associated with cell apoptosis and active inflammation aimed at pathogen elimination. In SE-UF-EVs, the regulation of normal physiological status was aberrant, showing cell damage and endometrial repair at the same time. Serine peptidase HtrA1 (HTRA1) emerged as a potential biomarker for SE. Supplementation of CLE- and SE-derived UF-EVs reduced the embryo developmental rates and quality. Therefore, further research is warranted to elucidate the precise aetiology of SE in cattle, and HTRA1 should be further explored as a potential diagnostic biomarker.


Subject(s)
Biomarkers , Cattle Diseases , Endometritis , Extracellular Vesicles , Proteomics , Uterus , Cattle , Animals , Female , Endometritis/metabolism , Endometritis/veterinary , Endometritis/diagnosis , Endometritis/pathology , Extracellular Vesicles/metabolism , Proteomics/methods , Biomarkers/metabolism , Cattle Diseases/metabolism , Cattle Diseases/diagnosis , Uterus/metabolism , Proteome/metabolism
2.
Microbiol Res ; 285: 127774, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833829

ABSTRACT

Extended-spectrumß-lactam producing Escherichia coli (ESBL-EC) readily colonizes live poultry and serves as a major source of contamination in retail chicken meat, posing significant threats to public health. This study aims to investigate the impact of inappropriate antibiotic use on the dissemination and exacerbation of antibiotic resistance in ESBL-EC and explore the underlying molecular mechanisms. Through experimental analysis, we propose a hypothesis that inappropriate antibiotic use may exacerbate resistance by affecting vesicle formation and protein secretion. Experimental results demonstrate that under the influence of amoxicillin, the concentration of proteins secreted in outer membrane vehicles (OMVs) by ESBL-EC significantly increases, along with a significant upregulation in the expression of the CTX-M-55-type Extended-spectrum beta-lactamase (CTX-M-55). Proteomic analysis and differential gene knockout experiments identified the key protein YdcZ, associated with OMVs formation and protein transportation in ESBL-EC under amoxicillin treatment. Further investigations reveal direct interactions between YdcZ and other proteins (YdiH and BssR). Upon ydcz gene knockout, a significant decrease in protein concentration within OMVs is observed, accompanied by a noticeable reduction in protection against sensitive bacteria. These findings suggest a critical role of YdcZ in regulating the process of protein transportation to OMVs in ESBL-EC under the influence of amoxicillin. In summary, our research uncovers the significant role of inappropriate antibiotic use in promoting the secretion of OMVs by ESBL-EC, aiding the survival of antibiotic-sensitive bacteria in the vicinity of infection sites. These findings provide new insights into the mechanisms underlying antibiotic-induced bacterial resistance dissemination and offer novel avenues for exploring prevention and control strategies against bacterial resistance propagation.


Subject(s)
Amoxicillin , Anti-Bacterial Agents , Escherichia coli Proteins , Escherichia coli , Protein Transport , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , beta-Lactamases/metabolism , beta-Lactamases/genetics , Amoxicillin/pharmacology , Animals , Microbial Sensitivity Tests , Proteomics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Chickens/microbiology , Drug Resistance, Bacterial , Bacterial Outer Membrane/drug effects , Bacterial Outer Membrane/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL