Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.283
Filter
1.
Front Microbiol ; 15: 1473099, 2024.
Article in English | MEDLINE | ID: mdl-39376706

ABSTRACT

Introduction: The rhizosphere is the zone of soil surrounding plant roots that is directly influenced by root exudates released by the plant, which select soil microorganisms. The resulting rhizosphere microbiota plays a key role in plant health and development by enhancing its nutrition or immune response and protecting it from biotic or abiotic stresses. In particular, plant growth-promoting rhizobacteria (PGPR) are beneficial members of this microbiota that represent a great hope for agroecology, since they could be used as bioinoculants for sustainable crop production. Therefore, it is necessary to decipher the molecular dialog between roots and PGPR in order to promote the establishment of bioinoculants in the rhizosphere, which is required for their beneficial functions. Methods: Here, the ability of root exudates from rapeseed (Brassica napus), pea (Pisum sativum), and ryegrass (Lolium perenne) to attract and feed three PGPR (Bacillus subtilis, Pseudomonas fluorescens, and Azospirillum brasilense) was measured and compared, as these responses are directly involved in the establishment of the rhizosphere microbiota. Results: Our results showed that root exudates differentially attracted and fed the three PGPR. For all beneficial bacteria, rapeseed exudates were the most attractive and induced the fastest growth, while pea exudates allowed the highest biomass production. The performance of ryegrass exudates was generally lower, and variable responses were observed between bacteria. In addition, P. fluorescens and A. brasilense appeared to respond more efficiently to root exudates than B. subtilis. Finally, we proposed to evaluate the compatibility of each plant-PGPR couple by assigning them a "love match" score, which reflects the ability of root exudates to enhance bacterial rhizocompetence. Discussion: Taken together, our results provide new insights into the specific selection of PGPR by the plant through their root exudates and may help to select the most effective exudates to promote bioinoculant establishment in the rhizosphere.

2.
Braz J Microbiol ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39356408

ABSTRACT

With a growing focus on environmentally friendly solutions, biosurfactants derived from plants or microorganisms have gained attention for Enhanced Oil Recovery (EOR) applications. Biosurfactants offer several advantages over existing options, including biodegradability, low toxicity, availability of raw materials, resistance to harsh reservoir conditions, and improved water/oil interfacial tension reduction. Different organisms, such as bacteria, fungi, and plants, can produce these natural surfactants. Bacillus sp. and Pseudomonas sp. bacteria are extensively studied for their ability to produce biosurfactants using low-cost carbon and nitrogen sources, exhibiting excellent surface activity and low critical micellar concentration (CMC). Fungi, though less commonly used, can also produce biosurfactants, albeit with lower interfacial activity. Plant-derived natural surfactants find wide application in laboratory tests for EOR, despite having higher CMC. This review not only summarizes the current knowledge on biosurfactants but also offers a novel comparative analysis of those produced by bacteria, fungi, and plants, examining their CMC, surface tension, and interfacial tension properties. Additionally, it quantifies the number of publications on the use of biosurfactants for Microbial Enhanced Oil Recovery ex-situ (MEOR ex-situ) over the past 30 years and compares these with biosurfactants derived from plant sources. Our study is unique in its comparative approach and the quantification of literature on MEOR ex-situ. The findings reveal that biosurfactants produced by bacteria generally exhibit superior surface activity, even at lower concentrations, compared to those produced by plants or fungi. This new comparative perspective and thorough literature analysis highlight the distinctive contributions of this study. Overall, the use of biosurfactants for EOR represents a promising approach to cleaner energy production, with the potential to reduce environmental impact while improving oil recovery.

3.
Front Microbiol ; 15: 1440090, 2024.
Article in English | MEDLINE | ID: mdl-39351305

ABSTRACT

This study aimed to investigate the effects of the cell-free supernatant of Lactiplantibacillus plantarum ATCC® 10241TM on the biofilm-forming capacity of Pseudomonas aeruginosa strains isolated from cystic fibrosis (CF) patients. In addition, the study evaluated the in vivo potential of the cell-free supernatant to modulate inflammation and reduce lung damage in mice infected with P. aeruginosa strains or co-challenged with P. aeruginosa and the Streptococcus milleri group (SMG). The results showed that CF-derived P. aeruginosa strains can infect the respiratory tract of adult mice, inducing local inflammation and lung damage. The severity of these infections was exacerbated when P. aeruginosa was co-administered with SMG. Notably, nebulization with the cell-free supernatant of L. plantarum produced beneficial effects, reducing respiratory infection severity and inflammatory responses induced by P. aeruginosa, both alone or in combination with SMG. Reduced bacterial loads and lung damage were observed in supernatant-treated mice compared to controls. Although further mechanistic studies are necessary, the results show that the cell-free supernatant of L. plantarum ATCC® 10241TM is an interesting adjuvant alternative to treat P. aeruginosa respiratory infections and superinfections in CF patients.

4.
Plants (Basel) ; 13(19)2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39409622

ABSTRACT

Fungal trunk disease (FTD) poses a significant threat to hazelnut (Corylus avellana L.) production worldwide. In Chile, the fungus Diplodia mutila, from the Botryosphaeriaceae family, has been frequently identified causing this disease in the Maule and Ñuble Regions. However, control measures for D. mutila remain limited. This research aimed to evaluate the effectiveness of chemical and biological fungicides against D. mutila under in vitro, controlled pot experiment, and field conditions. An in vitro screening of 30 fungicides was conducted. The effectiveness was assessed by measuring the length of vascular lesions in hazelnut branches inoculated with D. mutila mycelium disks under controlled and field conditions. Field trials were conducted in a hazelnut orchard in Ñiquén, Ñuble Region, Chile. The results showed that three biological and five chemical fungicides were selected in vitro with >31% inhibition after 14 days. In pot experiments, all fungicides reduced necrotic lesions on branches by 32% to 61%. In field experiments, the most effective systemic fungicides were fluopyram/tebuconazole, fluxapyroxad/pyraclostrobin, and tebuconazole, while the effectiveness of antagonists Pseudomonas protegens ChC7 and Bacillus subtilis QST713 varied with seasonal temperatures. Effective conventional and biological fungicides against D. mutila could be integrated into disease management programs to protect hazelnut wounds from infections.

5.
J Agric Food Chem ; 72(40): 22385-22397, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39324627

ABSTRACT

Peanut production could be increased through plant growth-promoting rhizobacteria (PGPR). In this regard, the present field research aimed at elucidating the impact of PGPR on peanut yield, soil enzyme activity, microbial diversity, and structure. Three PGPR strains (Bacillus velezensis, RI3; Bacillus velezensis, SC6; Pseudomonas psychrophila, P10) were evaluated, along with Bradyrhizobium japonicum (BJ), taken as a control. PGPR increased seed yield by 8%, improving the radiation use efficiency (4-14%). PGPR modified soil enzymes (fluorescein diacetate activity by 17% and dehydrogenase activity by 28%) and microbial abundance (12%). However, PGPR did not significantly alter microbial diversity; nonetheless, it modified the relative abundance of key phyla (Actinobacteria > Proteobacteria > Firmicutes) and genera (Bacillus > Arthrobacter > Pseudomonas). PGPRs modified the relative abundance of genes associated with N-fixation and nitrification while increasing genes related to N-assimilation and N-availability. PGPR improved agronomic traits without altering rhizosphere diversity.


Subject(s)
Arachis , Bacillus , Bradyrhizobium , Metagenomics , Pseudomonas , Rhizosphere , Soil Microbiology , Soil , Arachis/microbiology , Arachis/growth & development , Arachis/metabolism , Arachis/genetics , Bacillus/genetics , Bacillus/metabolism , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Bradyrhizobium/growth & development , Bradyrhizobium/physiology , Pseudomonas/genetics , Pseudomonas/physiology , Pseudomonas/growth & development , Soil/chemistry , Crop Production/methods , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/enzymology , Bacteria/isolation & purification , Biodiversity , Nitrogen Fixation , Plant Roots/microbiology , Plant Roots/growth & development , Plant Roots/metabolism
6.
Int J Mol Sci ; 25(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39273455

ABSTRACT

The relationships between plants and bacteria are essential in agroecosystems and bioinoculant development. The leaf endophytic Pseudomonas protegens E1BL2 was previously isolated from giant Jala maize, which is a native Zea mays landrace of Nayarit, Mexico. Using different Mexican maize landraces, this work evaluated the strain's plant growth promotion and biocontrol against eight phytopathogenic fungi in vitro and greenhouse conditions. Also, a plant field trial was conducted on irrigated fields using the hybrid maize Supremo. The grain productivity in this assay increased compared with the control treatment. The genome analysis of P. protegens E1BL2 showed putative genes involved in metabolite synthesis that facilitated its beneficial roles in plant health and environmental adaptation (bdhA, acoR, trpE, speE, potA); siderophores (ptaA, pchC); and extracellular enzymes relevant for PGPB mechanisms (cel3, chi14), protection against oxidative stress (hscA, htpG), nitrogen metabolism (nirD, nit1, hmpA), inductors of plant-induced systemic resistance (ISR) (flaA, flaG, rffA, rfaP), fungal biocontrol (phlD, prtD, prnD, hcnA-1), pest control (vgrG-1, higB-2, aprE, pslA, ppkA), and the establishment of plant-bacteria symbiosis (pgaA, pgaB, pgaC, exbD). Our findings suggest that P. protegens E1BL2 significantly promotes maize growth and offers biocontrol benefits, which highlights its potential as a bioinoculant.


Subject(s)
Plant Diseases , Pseudomonas , Zea mays , Zea mays/microbiology , Zea mays/genetics , Pseudomonas/genetics , Pseudomonas/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Fungi/genetics , Agriculture/methods , Genomics/methods , Genome, Bacterial
7.
FASEB J ; 38(18): e70051, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39269436

ABSTRACT

Pseudomonas aeruginosa is a frequent cause of antimicrobial-resistant hospital-acquired pneumonia, especially in critically ill patients. Inflammation triggered by P. aeruginosa infection is necessary for bacterial clearance but must be spatially and temporally regulated to prevent further tissue damage and bacterial dissemination. Emerging data have shed light on the pro-resolving actions of angiotensin-(1-7) [Ang-(1-7)] signaling through the G protein-coupled receptor Mas (MasR) during infections. Herein, we investigated the role of the Ang-(1-7)/Mas axis in pneumonia caused by P. aeruginosa by using genetic and pharmacological approach and found that Mas receptor-deficient animals developed a more severe form of pneumonia showing higher neutrophilic infiltration into the airways, bacterial load, cytokines, and chemokines production and more severe pulmonary damage. Conversely, treatment of pseudomonas-infected mice with Ang-(1-7) was able to decrease neutrophilic infiltration in airways and lungs, local and systemic levels of pro-inflammatory cytokines and chemokines, and increase the efferocytosis rates, mitigating lung damage/dysfunction caused by infection. Notably, the therapeutic association of Ang-(1-7) with antibiotics improved the survival rates of mice subjected to lethal inoculum of P. aeruginosa, extending the therapeutic window for imipenem. Mechanistically, Ang-(1-7) increased phagocytosis of bacteria by neutrophils and macrophages to accelerate pathogen clearance. Altogether, harnessing the Ang-(1-7) pathway during infection is a potential strategy for the development of host-directed therapies to promote mechanisms of resistance and resilience to pneumonia.


Subject(s)
Angiotensin I , Anti-Bacterial Agents , Mice, Inbred C57BL , Peptide Fragments , Proto-Oncogene Mas , Pseudomonas Infections , Pseudomonas aeruginosa , Receptors, G-Protein-Coupled , Animals , Angiotensin I/metabolism , Pseudomonas aeruginosa/drug effects , Mice , Pseudomonas Infections/drug therapy , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Receptors, G-Protein-Coupled/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/pathology , Pneumonia, Bacterial/metabolism , Cytokines/metabolism , Mice, Knockout , Pneumonia/drug therapy , Pneumonia/metabolism , Pneumonia/microbiology , Male , Lung/microbiology , Lung/metabolism , Lung/pathology , Signal Transduction/drug effects , Neutrophil Infiltration/drug effects
8.
Biotechnol Lett ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225887

ABSTRACT

To construct a derivative of the avirulent Pseudomonas aeruginosa ATCC 9027 that produces high levels of di-rhamnolipid, that has better physico-chemical characteristics for biotechnological applications than mono-rhamnolipid, which is the sole type produced by ATCC 9027. We used plasmids expressing the rhlC gene, which encodes for rhamnosyl transferase II that transforms mono- to di-rhamnolipids under different promoters and in combination with the gene coding for the RhlR quorum sensing regulator, or the mono-rhamnolipid biosynthetic rhlAB operon. The plasmids tested carrying the rhlC gene under the lac promoter were plasmid prhlC and prhlRC, while prhlAB-R-C expressed this gene from the rhlA promoter, forming part of the artificially constructed rhlAB-R-C operon. We measured rhamnolipds concentrations using the orcinol method and determined the proportion of mono-rhamnolipids and di-rhamnolipids by UPLC/MS/MS. We found that the expression of rhlC in P. aeruginosa ATCC 9027 caused the production of di-rhamnolipids and that the derivative carrying plasmid prhlAB-R-C gives the best results considering total rhamnolipids and a higher proportion of di-rhamnolipids. A P. aeruginosa ATCC 9027 derivative with increased di-rhamnolipids production was developed by expressing plasmid prhlAB-R-C, that produces similar rhamnolipids levels as PAO1 type-strain and presented a higher proportion of di-rhamnolipids than this type-strain.

9.
Front Microbiol ; 15: 1451514, 2024.
Article in English | MEDLINE | ID: mdl-39252838

ABSTRACT

Introduction: Plant growth-promoting bacteria (PGPB) have been primarily studied for atmospheric nitrogen (N) fixation but they also have the capacity to improve nutrition and yield of crop plants. Methods: Therefore, the objective of this research was to investigate the effects of inoculation with PGPB in association with different N rates on N uptake, grain yield, and oil concentration of dwarf castor beans in succession to legumes and grasses in Ilha Solteira, Brazil. The treatments consisted of N rates (0 to 180 kg ha-1 of N) and inoculation with three plant growth-promoting bacteria (Azospirillum brasiliense, Bacillus subtilis, and Pseudomonas fluorescens, applied by leaf) and a control with no-inoculation. Results: The grain and oil yields of castor beans were increased by 20 and 40% at a rate of 103 kg ha-1 of N in succession to grasses as compared to without N application. In addition, the grain yield of castor bean after legumes was increased by 28, 64, and 40% with estimated rates of 97, 113, and 92 kg ha-1 of N in combination with inoculations of A. brasilense, B. subtilis, and P. fluorescens as compared to without N application, respectively. Shoot, grain, and total N uptake were improved with foliar inoculation of A. brasilense, B. subtilis, and P. fluorescens at the N rates of 45, 90, and 135 kg ha-1, respectively. Discussion and conclusions: Topdressing of N at the rate of 103 kg ha-1 and foliar inoculation in succession to grasses and 180 kg ha-1 of N without the effect of foliar inoculation in succession to legumes are recommended for higher grain and oil yield of castor beans. Foliar inoculations with A. brasilense, B. subtilis, and P. fluorescens increased grain yield under reduced use of N fertilizer by 44, 37, and 49% in dwarf castor cultivation in succession to legumes, potentially contributing to sustainable agriculture.

10.
Chem Biodivers ; : e202402156, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39312700

ABSTRACT

Marine sponges are sources of bioactive compounds, sparking pharmacological interest. This study aimed to evaluate the chemical profile, antioxidant, and antibacterial activities of the species Desmapsamma anchorata, Dysidea etheria, and Echinodictyum dendroides. The chemical profile was characterized by the identification and quantification of polyphenols. Antioxidant activity was assessed using different methods. Antibacterial and modulatory activities were evaluated through microdilution against pathogenic strains. The polyphenols were found in low abundance in the extracts. In the antioxidant assays, the EACDa and EMDa extracts exhibited better inhibitory results. In the antibacterial evaluation, extracts presented MIC ≥ 1024 µg mL-1. The modulation of the extracts in combination with antibiotics showed significant effects against the multiresistant bacterium Pseudomonas aeruginosa. This study contributes to the deepening of chemical and biological knowledge of sponge species, indicating that their extracts can act as good modulators of bacterial resistance to aminoglycoside antibiotics, warranting further investigation into their mechanisms of action.

11.
Viruses ; 16(9)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39339906

ABSTRACT

Bacteriophages have been proposed as biological controllers to protect plants against different bacterial pathogens. In this scenario, one of the main challenges is the low viability of phages in plants and under adverse environmental conditions. This work explores the use of 12 compounds and 14 different formulations to increase the viability of a phage mixture that demonstrated biocontrol capacity against Pseudomonas syringae pv. actinidiae (Psa) in kiwi plants. The results showed that the viability of the phage mixture decreases at 44 °C, at a pH lower than 4, and under UV radiation. However, using excipients such as skim milk, casein, and glutamic acid can prevent the viability loss of the phages under these conditions. Likewise, it was demonstrated that the use of these compounds prolongs the presence of phages in kiwi plants from 48 h to at least 96 h. In addition, it was observed that phages remained stable for seven weeks when stored in powder with skim milk, casein, or sucrose after lyophilization and at 4 °C. Finally, the phages with glutamic acid, sucrose, or skim milk maintained their antimicrobial activity against Psa on kiwi leaves and persisted within kiwi plants when added through roots. This study contributes to overcoming the challenges associated with the use of phages as biological controllers in agriculture.


Subject(s)
Plant Diseases , Pseudomonas syringae , Pseudomonas syringae/virology , Pseudomonas syringae/drug effects , Plant Diseases/virology , Plant Diseases/prevention & control , Plant Diseases/microbiology , Agriculture/methods , Actinidia/chemistry , Bacteriophages/physiology , Microbial Viability/drug effects , Hydrogen-Ion Concentration , Biological Control Agents/pharmacology , Excipients/chemistry , Excipients/pharmacology , Plant Leaves/virology , Plant Leaves/chemistry
12.
Antibiotics (Basel) ; 13(9)2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39335049

ABSTRACT

Acinetobacter baumannii emerged as one of the most important pathogens for the development of new antimicrobials due to the worldwide detection of isolates resistant to all commercial antibiotics, especially in nosocomial infections. Biofilm formation enhances A. baumannii survival by impairing antimicrobial action, being an important target for new antimicrobials. Fluopsin C (FlpC) is an organocupric secondary metabolite with broad-spectrum antimicrobial activity. This study aimed to evaluate the antibiofilm activity of FlpC in established biofilms of extensively drug-resistant A. baumannii (XDRAb) and the effects of its combination with polymyxin B (PolB) on planktonic cells. XDRAb susceptibility profiles were determined by Vitek 2 Compact, disk diffusion, and broth microdilution. FlpC and PolB interaction was assessed using the microdilution checkerboard method and time-kill kinetics. Biofilms of XDRAb characterization and removal by FlpC exposure were assessed by biomass staining with crystal violet. Confocal Laser Scanning Microscopy was used to determine the temporal removal of the biofilms using DAPI, and cell viability using live/dead staining. The minimum inhibitory concentration (MIC) of FlpC on XDRAb was 3.5 µg mL-1. Combining FlpC + PolB culminated in an additive effect, increasing bacterial susceptibility to both antibiotics. FlpC-treated 24 h biofilms reached a major biomass removal of 92.40 ± 3.38% (isolate 230) using 7.0 µg mL-1 FlpC. Biomass removal occurred significantly over time through the dispersion of the extracellular matrix and decreasing cell number and viability. This is the first report of FlpC's activity on XDRAb and the compound showed a promissory response on planktonic and sessile cells, making it a candidate for the development of a new antimicrobial product.

13.
Curr Issues Mol Biol ; 46(9): 10112-10129, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39329955

ABSTRACT

p-Coumaric acid (p-CA) is a valuable compound with applications in food additives, cosmetics, and pharmaceuticals. However, traditional production methods are often inefficient and unsustainable. This study focuses on enhancing p-CA production efficiency through the heterologous expression of tyrosine ammonia-lyase (TAL) from Rhodobacter sphaeroides in Pseudomonas putida KT2440. TAL catalyzes the conversion of L-tyrosine into p-CA and ammonia. We engineered P. putida KT2440 to express TAL in a fed-batch fermentation system. Our results demonstrate the following: (i) successful integration of the TAL gene into P. putida KT2440 and (ii) efficient bioconversion of L-tyrosine into p-CA (1381 mg/L) by implementing a pH shift from 7.0 to 8.5 during fed-batch fermentation. This approach highlights the viability of P. putida KT2440 as a host for TAL expression and the successful coupling of fermentation with the pH-shift-mediated bioconversion of L-tyrosine. Our findings underscore the potential of genetically modified P. putida for sustainable p-CA production and encourage further research to optimize bioconversion steps and fermentation conditions.

14.
Biotechnol Rep (Amst) ; 44: e00857, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39328926

ABSTRACT

Characterization of the temperature effects on the abundance and richness of the microbiota of Lutzomyia longipalpis, insect vector of Leishmania infantum in America, is an aspect of pivotal importance to understand the interactions between temperature, bacteria, and Leishmania infection. We developed and used a customized device with a temperature gradient (21-34 °C) to assess the temperature preferences of wild females of Lu. longipalpis collected in a rural area (Ricaurte, Cundinamarca, Colombia). Each replicate consisted of 50 females exposed to the gradient for an hour. At the end of the exposure time, insects were collected and separated by the temperature ranges selected varying from 21 °C to 34 °C. They were organized in 17 pools from which total DNA extracts were obtained, and samples were subjected to 16S rRNA amplicon sequencing analyzes. The most abundant phyla across the different temperature ranges were Proteobacteria (17.22-90.73 %), Firmicutes (5.99-77.21 %) and Actinobacteria (1.56-59.85 %). Results also showed an abundance (30 % to 57.36 %) of Pseudomonas (mainly at temperatures of 21-29 °C and 34 °C) that decreased to 6.55 %-13.20 % at temperatures of 31-33 °C, while Bacillus increase its abundance to 67.24 % at 29-33 °C. Serratia also had a greater representation (49.79 %), specifically in sand flies recovered at 25-27 °C. No significant differences were found at α-diversity level when comparing richness using the Shannon-Wiener, Simpson, and Chao1 indices, while ß-diversity differences were found using the Bray-Curtis index (F-value of 3.5073, p-value < 0.013, R-squared of 0,4889), especially in the groups of Lu. longipalpis associated at higher temperatures (29-33 °C). It was also possible to detect the presence of endosymbionts such as Spiroplasma and Arsenophonus in the range of 29-33 °C. Rickettsia was only detected in Lu. longipalpis sand flies recovered between 25-27 °C. It was possible to characterize Lu. longipalpis microbiota in response to intraspecific temperature preferences and observe changes in bacterial communities and endosymbionts at different ranges of said environmental variable, which may be important in its vector competence and environmental plasticity to adapt to new climate change scenarios.

15.
World J Microbiol Biotechnol ; 40(10): 311, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39198273

ABSTRACT

Bacteria can solubilize phosphorus (P) through the secretion of low-molecular-weight organic acids and acidification. However, the genes involved in the production of these organic acids are poorly understood. The objectives of this study were to verify the calcium phosphate solubilization and the production of low-molecular-weight organic acids by diverse genera of phosphate solubilizing bacterial strains (PSBS); to identify the genes related to the synthesis of the organic acids in the genomes of these strains and; to evaluate growth and nutrient accumulation of maize plants inoculated with PSBS and fertilized with Bayóvar rock phosphate. Genomic DNA was extracted for strain identification and annotation of genes related to the organic acids production. A greenhouse experiment was performed with five strains plus 150 mg dm- 3 P2O5 as Bayóvar rock phosphate (BRP) to assess phosphate solubilization contribution to maize growth and nutrition. Paraburkholderia fungorum UFLA 04-21 and Pseudomonas anuradhapurensis UFPI B5-8A solubilized over 60% of Ca phosphate and produced high amounts of citric/maleic and gluconic acids in vitro, respectively. Eleven organic acids were identified in total, although not all strains produced all acids. Besides, enzymes related to the organic acids production were found in all bacterial genomes. Plants inoculated with strains UFPI B5-6 (Enterobacter bugandensis), UFPI B5-8A, and UFLA 03-10 (Paenibacillus peoriae) accumulated more biomass than the plants fertilized with BRP only. Strains UFLA 03-10 and UFPI B5-8A increased the accumulation of most macronutrients, including P. Collectively, the results show that PSBS can increase maize growth and nutrient accumulation based on Bayóvar rock phosphate fertilization.


Subject(s)
Bacteria , Phosphates , Zea mays , Zea mays/growth & development , Zea mays/microbiology , Zea mays/metabolism , Phosphates/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Calcium Phosphates/metabolism , Soil Microbiology , Genome, Bacterial , Plant Development , Solubility , Gluconates/metabolism , Genomics , Phosphorus/metabolism , Phylogeny
16.
Microorganisms ; 12(8)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39203355

ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) are a group of bacteria that associate with the rhizosphere of plants; one of the most abundant bacterial genera in this ecological niche is Pseudomonas, which is constantly expanding due to the emergence of new species such as Pseudomonas atacamensis, whose discovery in 2019 has led to the characterization of several strains from different environments but taxonomically related. The objective of this work was to phenotypically and molecularly characterize P. atacamensis strain EMP42, isolated from the rhizosphere of Echinocactus platyacanthus. The strain EMP42 is able to use different substrates and reduce oxidative stress in plants. It is capable of improving growth parameters such as the number of inflorescences and the height of the aerial body of Arabidopsis thaliana, as well as the germination and seedling survival of the cacti Echinocactus platyacanthus and Astrophytum capricorne. The genetic structure of P. atacamensis EMP42 consists of a closed chromosome of 6.14 Mbp, and 61.1% GC content. It has 5572 genes, including those associated with PGPR activities, such as the trpABCDE, SAP, phoABPRU and acsABC genes, among others, and three ncRNA loci, nine regulatory regions, five complete rRNA operons and three CRISPR-Cas loci, showing phylogenomic similarities with the reference strain P. atacamensis B21-026. Therefore, this study contributes to the understanding of genomic diversity within P. atacamensis and, particularly, highlights the potential application of strain EMP42 as a PGPR.

17.
Plants (Basel) ; 13(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39124180

ABSTRACT

This study aimed to isolate and characterize Pseudomonas native strains from the rhizospheric soil of Minthostachys verticillata plants to evaluate their potential as plant growth-promoting rhizobacteria (PGPR). A total of 22 bacterial isolates were obtained and subjected to various biochemical tests, as well as assessments of plant growth-promoting traits such as phosphate solubilization, hydrogen cyanide production, biocontrol properties through antibiosis, and indole acetic production. Genotypic analysis via 16S rRNA gene sequencing and phylogenetic tree construction identified the strains, with one particular strain named SM 33 showing significant growth-promoting effects on M. verticillata seedlings. This strain, SM 33, showed high similarity to Stutzerimonas stutzeri based on 16S rRNA gene sequencing and notably increased both shoot fresh weight and root dry weight of the plants. These findings underscore the potential application of native Pseudomonas strains in enhancing plant growth and health, offering promising avenues for sustainable agricultural practices.

18.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125594

ABSTRACT

Pseudomonas aeruginosa (P. aeruginosa) poses a significant threat as a nosocomial pathogen due to its robust resistance mechanisms and virulence factors. This study integrates subtractive proteomics and ensemble docking to identify and characterize essential proteins in P. aeruginosa, aiming to discover therapeutic targets and repurpose commercial existing drugs. Using subtractive proteomics, we refined the dataset to discard redundant proteins and minimize potential cross-interactions with human proteins and the microbiome proteins. We identified 12 key proteins, including a histidine kinase and members of the RND efflux pump family, known for their roles in antibiotic resistance, virulence, and antigenicity. Predictive modeling of the three-dimensional structures of these RND proteins and subsequent molecular ensemble-docking simulations led to the identification of MK-3207, R-428, and Suramin as promising inhibitor candidates. These compounds demonstrated high binding affinities and effective inhibition across multiple metrics. Further refinement using non-covalent interaction index methods provided deeper insights into the electronic effects in protein-ligand interactions, with Suramin exhibiting superior binding energies, suggesting its broad-spectrum inhibitory potential. Our findings confirm the critical role of RND efflux pumps in antibiotic resistance and suggest that MK-3207, R-428, and Suramin could be effectively repurposed to target these proteins. This approach highlights the potential of drug repurposing as a viable strategy to combat P. aeruginosa infections.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Drug Repositioning , Molecular Docking Simulation , Proteome , Proteomics , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/antagonists & inhibitors , Proteomics/methods , Proteome/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Suramin/pharmacology , Suramin/chemistry , Humans
19.
FEBS Lett ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152523

ABSTRACT

Pyomelanin, a polymeric pigment in Pseudomonas, arises mainly from alterations in tyrosine degradation. The chemical structure of pyomelanin remains elusive due to its heterogeneous nature. Here, we report strain-specific differences in pyomelanin structural features across Pseudomonas using PAO1 and PA14 reference strains carrying mutations in hmgA (a gene involved in pyomelanin synthesis), a melanogenic P. aeruginosa clinical isolate (PAM), and a melanogenic P. extremaustralis (PexM). UV spectra showed dual peaks for PAO1 and PA14 mutants and single peaks for PAM and PexM. FTIR phenol : alcohol ratio changes and complex NMR spectra indicated non-linear polymers. UVC radiation survival increased with pyomelanin addition, correlating with pigment absorption attenuation. P. extremaustralis UVC survival varied with melanin source, with PAO1 pyomelanin being the most protective. These findings delineate structure-based pyomelanin subgroups, having distinct physiological effects.

20.
Article in English | MEDLINE | ID: mdl-39088028

ABSTRACT

It is of fundamental interest to research and develop innovative biotechnologies, as well as bioproducts that replace or are alternatives to those of non-renewable origin, such as biosurfactants in relation to traditional surfactants used in various sectors. Consequently, there are a large number of experimental studies addressing different subjects, especially with the use of bacteria of the genus Pseudomonas; however, there is a lack of work that demonstrates the evaluation of this science produced to date. Therefore, this article discusses the production of biosurfactants by Pseudomonas with the aim of surveying and analyzing experimental articles on this topic. To realize this, a systematic search was carried out with well-defined temporal space, databases, and inclusion and exclusion criteria, based on metric studies that guided what information would be collected and the method of evaluation. Therefore, a large number of articles were selected, which demonstrated Pseudomonas aeruginosa as the bioagent mostly used in the tests, which aimed to improve the process in the area. Furthermore, interest in this field has increased over the years, predominantly in emerging market countries, where the most prominent authors on the topic are found. Therefore, it is necessary that there is an expansion of interest in the area to make the production of biosurfactants cheaper in areas that currently have greater development deficiencies, such as means of purifying the bioprocess and reducing foam formation in the bioprocess.

SELECTION OF CITATIONS
SEARCH DETAIL