Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 542
Filter
1.
Sci Rep ; 14(1): 15577, 2024 07 06.
Article in English | MEDLINE | ID: mdl-38971857

ABSTRACT

Alzheimer's disease is the most prevalent neurodegenerative disorder characterized by significant memory loss and cognitive impairments. Studies have shown that the expression level and activity of the butyrylcholinesterase enzyme increases significantly in the late stages of Alzheimer's disease, so butyrylcholinesterase can be considered as a promising therapeutic target for potential Alzheimer's treatments. In the present study, a novel series of 2,4-disubstituted quinazoline derivatives (6a-j) were synthesized and evaluated for their inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinestrase (BuChE) enzymes, as well as for their antioxidant activities. The biological evaluation revealed that compounds 6f, 6h, and 6j showed potent inhibitory activities against eqBuChE, with IC50 values of 0.52, 6.74, and 3.65 µM, respectively. These potent compounds showed high selectivity for eqBuChE over eelAChE. The kinetic study demonstrated a mixed-type inhibition pattern for both enzymes, which revealed that the potent compounds might be able to bind to both the catalytic active site and peripheral anionic site of eelAChE and eqBuChE. In addition, molecular docking studies and molecular dynamic simulations indicated that potent compounds have favorable interactions with the active sites of BuChE. The antioxidant screening showed that compounds 6b, 6c, and 6j displayed superior scavenging capabilities compared to the other compounds. The obtained results suggest that compounds 6f, 6h, and 6j are promising lead compounds for the further development of new potent and selective BuChE inhibitors.


Subject(s)
Antioxidants , Butyrylcholinesterase , Cholinesterase Inhibitors , Molecular Docking Simulation , Molecular Dynamics Simulation , Quinazolines , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Humans , Structure-Activity Relationship , Catalytic Domain , Animals , Kinetics , Electrophorus
2.
J Agric Food Chem ; 72(31): 17283-17294, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39074377

ABSTRACT

A series of new piperidine-4-carbohydrazide derivatives bearing a quinazolinyl moiety were prepared and evaluated for their fungicidal activities against agriculturally important fungi. Among these derivatives, the chemical structure of compound A45 was clearly verified by X-ray crystallographic analysis. The antifungal bioassays revealed that many compounds in this series possessed good to excellent inhibition effects toward the tested fungi. For example, compounds A13 and A41 had EC50 values of 0.83 and 0.88 µg/mL against Rhizoctonia solani in vitro, respectively, superior to those of positive controls Chlorothalonil and Boscalid (1.64 and 0.96 µg/mL, respectively). Additionally, the above two compounds also exhibited notable inhibitory activities against Verticillium dahliae (with EC50 values of 1.12 and 3.20 µg/mL, respectively), far better than the positive controls Carbendazim and Chlorothalonil (19.3 and 11.0 µg/mL, respectively). More importantly, compound A13 could potently inhibit the proliferation of R. solani in the potted rice plants, showing good in vivo curative and protective efficiencies of 76.9% and 76.6% at 200 µg/mL, respectively. Furthermore, compound A13 demonstrated an effective inhibition of succinate dehydrogenase (SDH) activity in vitro with an IC50 value of 6.07 µM. Finally, the molecular docking study revealed that this compound could be well embedded into the active pocket of SDH via multiple noncovalent interactions, involving residues like SER39, ARG43, and GLY46.


Subject(s)
Drug Design , Fungicides, Industrial , Hydrazines , Molecular Docking Simulation , Piperidines , Rhizoctonia , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Hydrazines/chemistry , Hydrazines/pharmacology , Structure-Activity Relationship , Rhizoctonia/drug effects , Piperidines/pharmacology , Piperidines/chemistry , Piperidines/chemical synthesis , Molecular Structure , Fungal Proteins/chemistry , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/metabolism , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/metabolism , Succinate Dehydrogenase/chemistry , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Microbial Sensitivity Tests
3.
Article in English | MEDLINE | ID: mdl-39012502

ABSTRACT

PURPOSE: Overexpression of Poly (ADP-ribose) polymerase (PARP) is associated with many diseases such as oncological diseases. Several PARP-targeting radiotracers have been developed to detect tumor in recent years. Two 18F labelled probes based on Olaparib and Rucaparib molecular scaffolds have been evaluated in clinical trials, but their slow hepatic clearance hinders their tumor imaging performance. Although a number of positron emission tomography (PET) probes with lower liver uptake have been designed, the tumor to background ratios remains to be low. Therefore, we designed a probe with low lipid-water partition coefficient to solve this problem. METHODS: A pyridine-containing quinazoline-2,4(1 H,3 H)-dione PARP-targeting group was rationally designed and used to conjugate with the chelator 2,2',2'',2'''-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) to prepare the lead compound named as SMIC-2001 for radiolabeling. In vitro experiments, the lipid-water partition coefficient, stability, binding affinity, and cellular uptake of [68Ga]Ga-SMIC-2001 were determined. In vivo experiments, the U87MG xenograft models were used to evaluate its tumor imaging properties. RESULTS: [68Ga]Ga-SMIC-2001 showed a low Log D7.4 (-3.82 ± 0.06) and high affinity for PARP-1 (48.13 nM). In vivo study revealed that it exhibited a high tumor-to-background contrast in the U87MG xenograft models and mainly renal clearance. And the ratios of tumor to main organs were high except for the kidney (e.g. tumor to liver ratio reached 2.20 ± 0.51) at 60 min p.i. CONCLUSION: In summary, pyridine-containing quinazoline-2,4(1 H,3 H)-dione is a novel PARP-targeting molecular scaffold for imaging probe development, and [68Ga]Ga-SMIC-2001 is a highly promising PET probe capable of imaging tumors with PARP overexpression.

4.
Arch Pharm (Weinheim) ; : e2300682, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995191

ABSTRACT

Two new sets of quinazoline-oxindole 8a-l and quinazoline-dioxoisoindoline 10a-d hybrids were designed as type II angiokinase inhibitors and anticancer agents. The design strategy was adjusted to account for the quinazoline scaffold's placement in the target kinases' hinge region, where it would form hydrogen bonding and hydrophobic interactions with the important amino acids to stabilize it, and the amide group's occupation in the gate region, which would direct the oxindole scaffold toward the hydrophobic back pocket. The two sets of quinazolines 8a-l and 10a-d displayed pronounced inhibitory activity on VEGFR-2 (IC50 = 0.46-2.20 µM). The quinazoline-oxindole hybrids 8d, 8f, and 8h displayed IC50 = 0.46, 0.49, and 0.49 µM, respectively. Compound 8f demonstrated potent multikinase activity with IC50 values of 0.95 and 0.67 µM against FGFR-1 and BRAF, respectively. Additionally, compound 8f showed significant anticancer activity against National Cancer Institute's cancer cell lines, with GI50 reaching 1.21 µM. Analysis of the impact of compound 8f on the MDA-MB-231 cell line's cell cycle and apoptosis revealed that 8f stalled the cell cycle at the G2/M phase and promoted its necrosis.

5.
Chempluschem ; : e202400397, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39021316

ABSTRACT

A facile C-H amination of quinazoline employing N-fluorobenzenesulfonimide (NFSI) as the amination source has been disclosed in the absence of any metal, oxidant or additive. The methodology shows a board range of quinazolines with different functional groups in moderate to good yields up to 87%. Furthermore, gram-scale reaction, desulfonylation to amine and synthesis of pharmaceutical intermediate were also investigated, which demonstrates potential applications in medicinal chemistry. A plausible amination mechanism is proposed via F+ transfer accompanied by the removal of one molecule of PhSO2F. DFT studies with experimental work suggest that the mechanism via F+ transfer is more favorable than the free radical one.

6.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999000

ABSTRACT

In this study, a new series of cis and trans 5-substituted-3-(dibenzyloxyphosphoryl)isoxazolidines 16a-g were synthesized by the 1,3-dipolar cycloaddition reaction of N-benzyl-C-(dibenzyloxyphosphoryl)nitrone and selected N1-allyl-N3-benzylquinazoline-2,4-diones. All the obtained trans-isoxazolidines 16a-g and the samples enriched in respective cis-isomers were evaluated for anticancer activity against three tumor cell lines. All the tested compounds exhibited high activity against the prostate cancer cell line (PC-3). Isoxazolidines trans-16a and trans-16b and diastereoisomeric mixtures of isoxazolidines enriched in cis-isomer using HPLC, namely cis-16a/trans-16a (97:3) and cis-16b/trans-16b (90:10), showed the highest antiproliferative properties towards the PC-3 cell line (IC50 = 9.84 ± 3.69-12.67 ± 3.45 µM). For the most active compounds, induction apoptosis tests and an evaluation of toxicity were conducted. Isoxazolidine trans-16b showed the highest induction of apoptosis. Moreover, the most active compounds turned out safe in vitro as none affected the cell viability in the HEK293, HepG2, and HSF cellular models at all the tested concentrations. The results indicated isoxazolidine trans-16b as a promising new lead structure in the search for effective anticancer drugs.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Structure-Activity Relationship , Isoxazoles/chemistry , Isoxazoles/pharmacology , PC-3 Cells , Drug Screening Assays, Antitumor , Quinazolinones/chemistry , Quinazolinones/pharmacology , Quinazolinones/chemical synthesis , Molecular Structure , Cell Survival/drug effects , Apoptosis/drug effects
7.
BMC Chem ; 18(1): 125, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965630

ABSTRACT

Based on unselectively, several side effects and drug resistance of available anticancer agents, the development and research for novel anticancer agents is necessary. In this study, a new series of quinazoline-4(3H)-one derivatives having a thiol group at position 2 of the quinazoline ring (8a-8 h) were designed and synthesized as potential anticancer agents. The Chemical structures of all compounds were characterized by 1H-NMR, 13C-NMR, and Mass spectroscopy. The antiproliferative activity of all derivatives were determined against two cancer cell lines (MCF-7 and SW480) and one normal cell lines (MRC-5) by the MTT method. Cisplatin, Erlotinib and Doxorubicin were used as positive controls. The results of in vitro screening showed that 8a with an aliphatic linker to SH group was the most potent compound with IC50 values of 15.85 ± 3.32 and 17.85 ± 0.92 µM against MCF-7 and SW480 cell lines, respectively. 8a indicated significantly better potency compared to Erlotinib in the MCF-7 cell line. The cytotoxic results obtained from testing compound 8a on the normal cell line, revealing an IC50 value of 84.20 ± 1.72 µM, provide compelling evidence of its selectivity in distinguishing between tumorigenic and non-tumorigenic cell lines. Structure-activity relationship indicated that the variation in the anticancer activities of quinazoline-4(3H)-one derivatives was affected by different substitutions on the SH position. Molecular docking and MD simulation were carried out for consideration of the binding affinity of compounds against EGFR and EGFR-mutated. The binding energy of compounds 8a and 8c were calculated at -6.7 and - 5.3 kcal.mol- 1, respectively. Compounds 8a and 8c were found to establish hydrogen bonds and some other important interactions with key residue. The DFT analysis was also performed at the B3LYP/6-31 + G(d, p) level for compounds 8a, 8c and Erlotinib. Compound 8a was thermodynamically more stable than 8c. Also, the calculated theoretical and experimental data for the IR spectrum were in agreement. The obtained results delineated that the 8a can be considered an appropriate pharmacophore to develop as an anti-proliferative agent.

8.
Chem Biol Drug Des ; 104(1): e14599, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39039616

ABSTRACT

In this study, we synthesized 15 novel quinazoline-morpholinobenzylideneamino hybrid compounds from methyl anthranilate and we assessed their cytotoxicity via in vitro assays against A549 and BEAS-2B cell lines. Molecular docking studies were conducted to evaluate the protein-ligand interactions and inhibition mechanisms on nine different molecular targets, while molecular dynamics (MD) simulations were carried out to assess the stability of the best docked ligand-protein complexes. Additionally, ADME prediction was carried out to determine physicochemical parameters and drug likeness. According to the cytotoxicity assays, compound 1 (IC50 = 2.83 µM) was found to be the most active inhibitor against A549 cells. While the selectivity index (SI) of compound 1 is 29, the SI of the reference drugs paclitaxel and sorafenib, used in this study, are 2.40 and 4.92, respectively. Among the hybrid compounds, 1 has the best docking scores against VEGFR1 (-11.744 kcal/mol), VEGFR2 (-12.407 kcal/mol) and EGFR (-10.359 kcal/mol). During MD simulations, compound 1 consistently exhibited strong hydrogen bond interactions with the active sites of VEGFR1 and 2, and these interactions were maintained for more than 90% of the simulation time. Additionally, the RMSD and RMSF values of the ligand-protein complexes exhibited high stability at their minimum levels around 1-2 Å. In conclusion, these findings suggest that compound 1 may be a potent and selective inhibitor candidate for lung cancer treatment and inhibition of VEGFR2, especially.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Molecular Docking Simulation , Molecular Dynamics Simulation , Morpholines , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Morpholines/chemistry , Morpholines/pharmacology , Cell Line, Tumor , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , A549 Cells , Quinazolinones/chemistry , Quinazolinones/pharmacology , Quinazolinones/metabolism , Quinazolinones/chemical synthesis , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Quinazolines/chemistry , Quinazolines/pharmacology , Quinazolines/chemical synthesis , Quinazolines/metabolism , Binding Sites , Drug Screening Assays, Antitumor , Hydrogen Bonding
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124734, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-38986255

ABSTRACT

A ninhydrin-based colorimetric chemosensor (LH) was synthesized using 3-hydroxy-2-naphthoic hydrazide and 11H-indeno[1,2-b]quinoxalin-11-one. It was characterized by spectroscopic and single crystal X-ray diffraction techniques. In a semi-aqueous (MeOH/HEPES) system, LH displayed a characteristic chromogenic change from colorless to yellow upon adding Cu2+ ion, with the appearance of a new peak at λmax = 460 nm. A 1:1 binding stoichiometry between LH and Cu2+ ion has been found, with LOD = 2.3 µM (145 ppb) and LOQ = 8 µM (504 ppb). Based on experimental results the formula of [Cu(L)Cl(H2O)2] (1) was assigned and this in-situ generated 1 was found to exhibit a discoloration of upon gradual addition of cysteine (LOD = 60 nM) as well as ATP (LOD = 130 nM) having 1:2 and 1:1 stoichiometry respectively. The LH was useful for recognition of Cu2+ ion in real water samples and on filter paper strips. A two-input-two-output logic gate circuitry was also constructed by employing 1 and cysteine. The DFT/TDDFT calculations performed on LH and 1 were consistent with experimental findings. The binding affinity of LH towards HSA and BSA were determined with HSA having greater affinity than BSA, which was also supported by theoretical calculations.


Subject(s)
Adenosine Triphosphate , Colorimetry , Copper , Cysteine , Ninhydrin , Copper/analysis , Colorimetry/methods , Ninhydrin/chemistry , Cysteine/analysis , Adenosine Triphosphate/analysis , Limit of Detection , Models, Molecular , Naphthalenes/chemistry
10.
Molecules ; 29(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38893295

ABSTRACT

Chronic inflammation contributes to a number of diseases. Therefore, control of the inflammatory response is an important therapeutic goal. To identify novel anti-inflammatory compounds, we synthesized and screened a library of 80 pyrazolo[1,5-a]quinazoline compounds and related derivatives. Screening of these compounds for their ability to inhibit lipopolysaccharide (LPS)-induced nuclear factor κB (NF-κB) transcriptional activity in human THP-1Blue monocytic cells identified 13 compounds with anti-inflammatory activity (IC50 < 50 µM) in a cell-based test system, with two of the most potent being compounds 13i (5-[(4-sulfamoylbenzyl)oxy]pyrazolo[1,5-a]quinazoline-3-carboxamide) and 16 (5-[(4-(methylsulfinyl)benzyloxy]pyrazolo[1,5-a]quinazoline-3-carboxamide). Pharmacophore mapping of potential targets predicted that 13i and 16 may be ligands for three mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase 2 (ERK2), p38α, and c-Jun N-terminal kinase 3 (JNK3). Indeed, molecular modeling supported that these compounds could effectively bind to ERK2, p38α, and JNK3, with the highest complementarity to JNK3. The key residues of JNK3 important for this binding were identified. Moreover, compounds 13i and 16 exhibited micromolar binding affinities for JNK1, JNK2, and JNK3. Thus, our results demonstrate the potential for developing lead anti-inflammatory drugs based on the pyrazolo[1,5-a]quinazoline and related scaffolds that are targeted toward MAPKs.


Subject(s)
Anti-Inflammatory Agents , Quinazolines , Humans , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Structure-Activity Relationship , THP-1 Cells
11.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893371

ABSTRACT

Two series of novel [1,2,4]triazolo[4,3-c]- and [1,2,4]triazolo[1,5-c]quinazoline fluorophores with 4'-amino[1,1']-biphenyl residue at position 5 have been prepared via Pd-catalyzed cross-coupling Suzuki-Miyaura reactions. The treatment of 2-(4-bromophenyl)-4-hydrazinoquinazoline with orthoesters in solvent-free conditions or in absolute ethanol leads to the formation of [4,3-c]-annulated triazoloquinazolines, whereas [1,5-c] isomers are formed in acidic media as a result of Dimroth rearrangement. A 1D-NMR and 2D-NMR spectroscopy, as well as a single-crystal X-ray diffraction analysis, unambiguously confirmed the annelation type and determined the molecular structure of p-bromophenyl intermediates and target products. Photophysical properties of the target compounds were investigated in two solvents and in the solid state and compared with those of related 3-aryl-substituted [1,2,4]triazolo[4,3-c]quinazolines. The exclusion of the aryl fragment from the triazole ring has been revealed to improve fluorescence quantum yield in solution. Most of the synthesized structures show moderate to high quantum yields in solution. Additionally, the effect of solvent polarity on the absorption and emission spectra of fluorophores has been studied, and considerable fluorosolvatochromism has been stated. Moreover, electrochemical investigation and DFT calculations have been performed; their results are consistent with the experimental observation.

12.
Mini Rev Med Chem ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38859778

ABSTRACT

Cancer remains a primary cause of death globally, and effective treatments are still limited. While chemotherapy has notably enhanced survival rates, it brings about numerous side effects. Consequently, the ongoing challenge persists in developing potent anti-cancer agents with minimal toxicity. The versatile nature of the quinazoline moiety has positioned it as a pivotal component in the development of various antitumor agents, showcasing its promising role in innovative cancer therapeutics. This concise review aims to reveal the potential of quinazolines in creating anticancer medications that target histone deacetylases (HDACs).

13.
Chemistry ; 30(42): e202400668, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38822692

ABSTRACT

Quinazoline (Qz)-linked covalent organic frameworks (COFs) have been constructed via a three-component reaction of ortho-acylanilines, benzaldehydes and NH4OAc. The structure of Qz-COFs has been confirmed by solid-state nuclear magnetic resonance spectroscopy, Fourier transform infrared and powder X-ray diffraction patterns. The Qz-COFs possess high chemical stability, showing good endurance to strong acid, strong base, oxidant, reductant and other conditions. Particularly, Qz-COF-3 can catalyze the aerobic photooxidation of toluene and other compounds containing C(sp3)-H bonds.

14.
Pest Manag Sci ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899477

ABSTRACT

BACKGROUND: To discover more efficient agricultural antimicrobial agents, a series of new quinazoline derivatives containing both a piperazine linker and the N-acetyl moiety were prepared and assessed for their antibacterial and antifungal activities. RESULTS: All the target compounds were characterized by 1H and 13C NMR as well as high-resolution mass spectrometry (HRMS), and the chemical structure of the most potent compound E19 incorporating a 4-trifluoromethoxy substituent was clearly confirmed via single crystal X-ray diffraction measurements. The bioassay results indicated that some compounds possessed notable inhibitory effects in vitro against the bacterium Xanthomonas oryzae pv. oryzicola (Xoc). For example, compound E19 had an EC50 (effective concentration for 50% activity) value of 7.1 µg/mL towards this pathogen, approximately 15- and 10-fold more effective than the commercial bactericides thiodiazole copper and bismerthiazol (EC50 = 110.2 and 72.4 µg/mL, respectively). Subsequently, the mechanistic studies showed that compound E19 likely exerted its antibacterial efficacies by altering the cell morphology, increasing the permeability of bacterial cytoplasmic membrane, suppressing the production of bacterial extracellular polysaccharides and the extracellular enzyme activities (amylase and cellulase), and blocking the swimming motility of Xoc. Moreover, the proteomic analysis revealed that compound E19 could reduce the bacterial flagellar biosynthesis and decrease the flagellar motility by down-regulating the expression of the related differential proteins. CONCLUSION: Compound E19 exhibited good potential for further development as a bactericide candidate for control of Xoc. © 2024 Society of Chemical Industry.

15.
Bioorg Chem ; 150: 107559, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38905889

ABSTRACT

A library of new quinazoline pharmacophores bearing benzenesulfonamide moiety was designed and synthesized. Compounds 3a-n were screened for their in vitro antimicrobial activity against eight multidrug-resistant clinical isolates. Compounds 3d and 3n exhibited prominent antibacterial activity, specifically against MRSA. After exhibiting relative in vitro and in vivo safety, compound 3n was selected to assess its anti-inflammatory activity displaying promising COX-2 inhibitory activity compared to Ibuprofen. In vivo experimental MRSA pneumonia model was conducted on immunodeficient (irradiated) mice to reveal the antimicrobial and anti-inflammatory responses of compound 3n compared to azithromycin (AZ). Treatment with compound 3n (10 and 20 mg/kg) as well as AZ resulted in a significant decrease in bacterial counts in lung tissues, suppression of serum C-reactive protein (CRP), lung interleukin-6 (IL-6), myeloperoxidase activity (MPO) and transforming growth factor-ß (TGF-ß). Compound 3n showed a non-significant deviation of lung TGF-ß1 from normal values which in turn controlled the lung inflammatory status and impacted the histopathological results. Molecular docking of 3n showed promising interactions inside the active sites of TGF-ß and COX-2. Our findings present a new dual-target quinazoline benzenesulfonamide derivative 3n, which possesses significant potential for treating MRSA-induced pneumonia in an immunocompromised state.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Quinazolines , Sulfonamides , Methicillin-Resistant Staphylococcus aureus/drug effects , Animals , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , Mice , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Molecular Structure , Structure-Activity Relationship , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Pneumonia, Staphylococcal/drug therapy
16.
Arch Pharm (Weinheim) ; : e2400296, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923553

ABSTRACT

Nontuberculous mycobacteria (NTM), which include the Mycobacterium avium complex, are classified as difficult-to-treat pathogens due to their ability to quickly develop drug resistance against the most common antibiotics used to treat NTM infections. The overexpression of efflux pumps (EPs) was demonstrated to be a key mechanism of clarithromycin (CLA) resistance in NTM. Therefore, in this work, 24 compounds from an in-house library, characterized by chemical diversity, were tested as potential NTM EP inhibitors (EPIs) against Mycobacterium smegmatis mc2 155 and M. avium clinical isolates. Based on the acquired results, 12 novel analogs of the best derivatives 1b and 7b were designed and synthesized to improve the NTM EP inhibition activity. Among the second set of compounds, 13b emerged as the most potent NTM EPI. At a concentration of 4 µg/mL, it reduced the CLA minimum inhibitory concentration by 16-fold against the clinical isolate M. avium 2373 overexpressing EPs as primary mechanism of CLA resistance.

17.
Cureus ; 16(5): e60662, 2024 May.
Article in English | MEDLINE | ID: mdl-38899242

ABSTRACT

Most of the current chemotherapeutic medications are extremely toxic, exhibit little selectivity, and contribute to the emergence of treatment resistance. Consequently, the discovery of targeted chemotherapy drugs with high selectivity and low side effects is necessary for cancer treatment. The quinazoline system has a broad range and a long history of biological activities. Numerous quinazoline derivatives have been used to treat different types of cancer by working on various molecular targets. This review presents various chemical information, including molecular structure, design, and biological activity of some reported quinazolines that function by inhibiting four types of important molecular targets: dihydrofolate reductase, breast cancer resistant protein, poly-(ADP-ribose)-polymerase, and tubulin polymerization.

18.
Int Immunopharmacol ; 137: 112496, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38901240

ABSTRACT

Lung cancer (LC) is the most common cancer in males. As per GLOBOCAN 2020, 8.1 % of deaths and 5.9 % of cases of LC were reported in India. Our laboratory has previously reported the significant anticancer potential of 5H-benzo[h]thiazolo[2,3-b]quinazoline analogues. In this study, we have explored the anticancer potential of 7A {4-(6,7-dihydro-5H-benzo[h]thiazolo[2,3-b]quinazolin-7-yl)phenol} and 9A {7-(4-chlorophenyl)-9-methyl-6,7-dihydro-5H-benzo[h]thiazolo[2,3-b]quinazoline}by using in-vitro and in-vivo models of LC. In this study, we investigated the antiproliferative potential of quinazoline analogues using A549 cell line to identify the best compound of the series. The in-vitro and molecular docking studies revealed 7A and 9A compounds as potential analogues. We also performed acute toxicity study to determine the dose. After that, in-vivo studies using urethane-induced LC in male albino Wistar rats carried out further physiological, biochemical, and morphological evaluation (SEM and H&E) of the lung tissue. We have also evaluated the antioxidant level, inflammatory, and apoptotic marker expressions. 7A and 9A did not demonstrate any signs of acute toxicity. Animals treated with urethane showed a significant upregulation of oxidative stress. However, treatment with 7A and 9A restored antioxidant markers near-normal levels. SEM and H&E staining of the lung tissue demonstrated recovered architecture after treatment with 7A and 9A. Both analogues significantly restore inflammatory markers to normal level and upregulate the intrinsic apoptosis protein expression in the lung tissue. These experimental findings demonstrated the antiproliferative potential of the synthetic analogues 7A and 9A, potentially due to their anti-inflammatory and apoptotic properties.


Subject(s)
Anti-Inflammatory Agents , Antineoplastic Agents , Apoptosis , Cell Proliferation , Lung Neoplasms , Molecular Docking Simulation , Quinazolines , Animals , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , A549 Cells , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/therapeutic use , Male , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Rats, Wistar , Rats
19.
Bioorg Med Chem ; 108: 117774, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38833750

ABSTRACT

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), which remains a significant global health challenge. The emergence of multidrug-resistant (MDR) Mtb strains imposes the development of new therapeutic strategies. This study focuses on the identification and evaluation of potential inhibitors against Mtb H37Ra through a comprehensive screening of an in-house chemolibrary. Subsequently, a promising pyrimidine derivative (LQM495) was identified as promising and then further investigated by experimental and in silico approaches. In this context, computational techniques were used to elucidate the potential molecular target underlying the inhibitory action of LQM495. Then, a consensus reverse docking (CRD) protocol was used to investigate the interactions between this compound and several Mtb targets. Out of 98 Mtb targets investigated, the enhanced intracellular survival (Eis) protein emerged as a target for LQM495. To gain insights into the stability of the LQM495-Eis complex, molecular dynamics (MD) simulations were conducted over a 400 ns trajectory. Further insights into its binding modes within the Eis binding site were obtained through a Quantum mechanics (QM) approach, using density functional theory (DFT), with B3LYP/D3 basis set. These calculations shed light on the electronic properties and reactivity of LQM495. Subsequently, inhibition assays and kinetic studies of the Eis activity were used to investigate the activity of LQM495. Then, an IC50 value of 11.0 ± 1.4 µM was found for LQM495 upon Eis protein. Additionally, its Vmax, Km, and Ki parameters indicated that it is a competitive inhibitor. Lastly, this study presents LQM495 as a promising inhibitor of Mtb Eis protein, which could be further explored for developing novel anti-TB drugs in the future.


Subject(s)
Antitubercular Agents , Bacterial Proteins , Molecular Docking Simulation , Mycobacterium tuberculosis , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Structure-Activity Relationship , Microbial Sensitivity Tests , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Molecular Structure , Acetyltransferases/antagonists & inhibitors , Acetyltransferases/metabolism , Dose-Response Relationship, Drug , Molecular Dynamics Simulation , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis
20.
Arch Pharm (Weinheim) ; 357(8): e2400057, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38775630

ABSTRACT

Quinazoline and quinazolinone derivatives piqued medicinal chemistry interest in developing novel drug candidates owing to their pharmacological potential. They are important chemicals for the synthesis of a variety of physiologically significant and pharmacologically useful molecules. Quinazoline and quinazolinone derivatives have anticancer, anti-inflammatory, antidiabetic, anticonvulsant, antiviral, and antimicrobial potential. The increased understanding of quinazoline and quinazolinone derivatives in biological activities provides opportunities for new medicinal products. The present review focuses on novel advances in the synthesis of these important scaffolds and other medicinal aspects involving drug design, structure-activity relationship, and action mechanisms of quinazoline and quinazolinone derivatives to help in the development of new quinazoline and quinazolinone derivatives.


Subject(s)
Molecular Docking Simulation , Quinazolines , Quinazolinones , Quinazolines/pharmacology , Quinazolines/chemical synthesis , Quinazolines/chemistry , Quinazolinones/pharmacology , Quinazolinones/chemical synthesis , Quinazolinones/chemistry , Humans , Structure-Activity Relationship , Drug Design , Animals , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL