Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Microbiol ; 73(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39145374

ABSTRACT

Introduction. Sporotrichosis is a subcutaneous infection caused by dimorphic Sporothrix species embedded in the clinical clade. Fungi have virulence factors, such as biofilm and melanin production, which contribute to their survival and are related to the increase in the number of cases of therapeutic failure, making it necessary to search for new options.Gap statement. Proton pump inhibitors (PPIs) have already been shown to inhibit the growth and melanogenesis of other fungi.Aim. Therefore, this study aimed to evaluate the effect of the PPIs omeprazole (OMP), rabeprazole (RBP), esomeprazole, pantoprazole and lansoprazole on the susceptibility and melanogenesis of Sporothrix species, and their interactions with itraconazole, terbinafine and amphotericin B.Methodology. The antifungal activity of PPIs was evaluated using the microdilution method, and the combination of PPIs with itraconazole, terbinafine and amphotericin B was assessed using the checkerboard method. The assessment of melanogenesis inhibition was assessed using grey scale.Results. The OMP and RBP showed significant MIC results ranging from 32 to 256 µg ml-1 and 32 to 128 µg ml-1, respectively. Biofilms were sensitive, with a significant reduction (P<0.05) in metabolic activity of 52% for OMP and 50% for RBP at a concentration of 512 µg ml-1 and of biomass by 53% for OMP and 51% for RBP at concentrations of 512 µg ml-1. As for the inhibition of melanogenesis, only OMP showed inhibition, with a 54% reduction.Conclusion. It concludes that the PPIs OMP and RBP have antifungal activity in vitro against planktonic cells and biofilms of Sporothrix species and that, in addition, OMP can inhibit the melanization process in Sporothrix species.


Subject(s)
Amphotericin B , Antifungal Agents , Melanogenesis , Proton Pump Inhibitors , Sporothrix , Sporotrichosis , Humans , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Biofilms/drug effects , Biofilms/growth & development , Itraconazole/pharmacology , Melanins/biosynthesis , Melanins/metabolism , Melanogenesis/drug effects , Microbial Sensitivity Tests , Proton Pump Inhibitors/pharmacology , Proton Pump Inhibitors/therapeutic use , Sporothrix/drug effects , Sporothrix/metabolism , Sporotrichosis/drug therapy , Sporotrichosis/microbiology , Terbinafine/pharmacology
2.
Int J Mol Sci ; 22(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502400

ABSTRACT

Giardiasis represents a latent problem in public health due to the exceptionally pathogenic strategies of the parasite Giardia lamblia for evading the human immune system. Strains resistant to first-line drugs are also a challenge. Therefore, new antigiardial therapies are urgently needed. Here, we tested giardial arginine deiminase (GlADI) as a target against giardiasis. GlADI belongs to an essential pathway in Giardia for the synthesis of ATP, which is absent in humans. In silico docking with six thiol-reactive compounds was performed; four of which are approved drugs for humans. Recombinant GlADI was used in enzyme inhibition assays, and computational in silico predictions and spectroscopic studies were applied to follow the enzyme's structural disturbance and identify possible effective drugs. Inhibition by modification of cysteines was corroborated using Ellman's method. The efficacy of these drugs on parasite viability was assayed on Giardia trophozoites, along with the inhibition of the endogenous GlADI. The most potent drug against GlADI was assayed on Giardia encystment. The tested drugs inhibited the recombinant GlADI by modifying its cysteines and, potentially, by altering its 3D structure. Only rabeprazole and omeprazole decreased trophozoite survival by inhibiting endogenous GlADI, while rabeprazole also decreased the Giardia encystment rate. These findings demonstrate the potential of GlADI as a target against giardiasis.


Subject(s)
Giardia lamblia/drug effects , Giardiasis/drug therapy , Hydrolases/metabolism , Animals , Antiprotozoal Agents/pharmacology , Computer Simulation , Cysteine/chemistry , Drug Evaluation, Preclinical/methods , Drug Repositioning/methods , Giardia lamblia/pathogenicity , Giardiasis/immunology , Gold Sodium Thiomalate/pharmacology , Humans , Hydrolases/drug effects , Hydrolases/ultrastructure , Omeprazole/pharmacology , Proton Pump Inhibitors/pharmacology , Rabeprazole , Thiamine/analogs & derivatives , Thiamine/pharmacology , Trophozoites/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL