Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Int J Mol Sci ; 25(16)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39201299

ABSTRACT

The receptor-receptor interaction (RRI) of G protein-coupled receptors (GPCRs) leads to new functional entities that are conceptually distinct from the simple addition of signals mediated by the activation of the receptors that form the heteromers. Focusing on astrocytes, there is evidence for the existence of inhibitory and facilitatory RRIs, including the heteromers formed by the adenosine A2A and the dopamine D2 receptors, by A2A and the oxytocin receptor (OTR), and the D2-OTR heteromers. The possible involvement of these receptors in mosaicism has never been investigated in striatal astrocytes. By biophysical and functional approaches, we focused our attention on the existence of an A2A-D2-OTR high-order receptor complex and its role in modulating cytosolic calcium levels and endogenous glutamate release, when striatal astrocyte processes were stimulated with 4-aminopyridine. Functional data indicate a permissive role of OTR on dopamine signaling in the regulation of the glutamatergic transmission, and an inhibitory control mediated by A2A on both the D2-mediated signaling and on the OTR-facilitating effect on D2. Imaging biochemical and bioinformatic evidence confirmed the existence of the A2A-D2-OTR complex and its ternary structure in the membrane. In conclusion, the D2 receptor appears to be a hotspot in the control of the glutamate release from the astrocytic processes and may contribute to the regulation and integration of different neurotransmitter-mediated signaling in the striatum by the A2A-D2-OTR heterotrimers. Considering the possible selectivity of allosteric interventions on GPCRs organized as receptor mosaics, A2A-D2-OTR heterotrimers may offer selective pharmacological targets in neuropsychiatric disorders and neurodegenerative diseases.


Subject(s)
Astrocytes , Corpus Striatum , Dopamine , Receptor, Adenosine A2A , Receptors, Dopamine D2 , Signal Transduction , Astrocytes/metabolism , Animals , Receptor, Adenosine A2A/metabolism , Corpus Striatum/metabolism , Corpus Striatum/cytology , Receptors, Dopamine D2/metabolism , Dopamine/metabolism , Receptors, Oxytocin/metabolism , Receptors, Oxytocin/genetics , Humans , Calcium/metabolism , Glutamic Acid/metabolism , Mice
2.
Life (Basel) ; 14(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39063569

ABSTRACT

In late December 2019, SARS-CoV-2 was identified as the cause of a new pneumonia (COVID-19), leading to a global pandemic declared by the WHO on 11 March 2020, with significant human, economic, and social costs. Although most COVID-19 cases are asymptomatic or mild, 14% progress to severe disease, and 5% develop critical illness with complications such as interstitial pneumonia, acute respiratory distress syndrome (ARDS), and multiple organ dysfunction syndrome (MODS). SARS-CoV-2 primarily targets the respiratory system but can affect multiple organs due to the widespread presence of angiotensin-converting enzyme 2 (ACE2) receptors, which the virus uses to enter cells. This broad distribution of ACE2 receptors means that SARS-CoV-2 infection can lead to cardiovascular, gastrointestinal, renal, hepatic, central nervous system, and ocular damage. The virus triggers the innate and adaptive immune systems, resulting in a massive cytokine release, known as a "cytokine storm", which is linked to tissue damage and poor outcomes in severe lung disease. Interleukin-6 (IL-6) is particularly important in this cytokine release, with elevated levels serving as a marker of severe COVID-19. IL-6 is a multifunctional cytokine with both anti-inflammatory and pro-inflammatory properties, acting through two main pathways: classical signalling and trans-signalling. Classical signalling involves IL-6 binding to its membrane-bound receptor IL-6R and then to the gp130 protein, while trans-signalling occurs when IL-6 binds to the soluble form of IL-6R (sIL-6R) and then to membrane-bound gp130 on cells that do not express IL-6R. The soluble form of gp130 (sgp130) can inhibit IL-6 trans-signalling by binding to sIL-6R, thereby preventing it from interacting with membrane-bound gp130. Given the central role of IL-6 in COVID-19 inflammation and its association with severe disease, we aimed to analyse the behaviour of IL-6 and its soluble receptor complex during different waves of the pandemic. This analysis could help determine whether IL-6 levels can serve as prognostic markers of disease severity.

3.
Proc Natl Acad Sci U S A ; 121(25): e2312415121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38875149

ABSTRACT

Plants rely on immune receptor complexes at the cell surface to perceive microbial molecules and transduce these signals into the cell to regulate immunity. Various immune receptors and associated proteins are often dynamically distributed in specific nanodomains on the plasma membrane (PM). However, the exact molecular mechanism and functional relevance of this nanodomain targeting in plant immunity regulation remain largely unknown. By utilizing high spatiotemporal resolution imaging and single-particle tracking analysis, we show that myosin XIK interacts with remorin to recruit and stabilize PM-associated kinase BOTRYTIS-INDUCED KINASE 1 (BIK1) within immune receptor FLAGELLIN SENSING 2 (FLS2)-containing nanodomains. This recruitment facilitates FLS2/BIK1 complex formation, leading to the full activation of BIK1-dependent defense responses upon ligand perception. Collectively, our findings provide compelling evidence that myosin XI functions as a molecular scaffold to enable a spatially confined complex assembly within nanodomains. This ensures the presence of a sufficient quantity of preformed immune receptor complex for efficient signaling transduction from the cell surface.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Immunity, Innate , Myosins , Plant Immunity , Protein Serine-Threonine Kinases , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Cell Membrane/metabolism , Myosins/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction
4.
J Biomol Struct Dyn ; : 1-12, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587907

ABSTRACT

Glucagon-like peptide-1 (GLP-1) is an intestinal hormone that exerts its pleiotropic effects through a specific GLP-1 receptor (GLP-1R). The hormone-receptor complex might regulate glucose-dependent insulin secretion, and energy homeostasis; moreover, it could decrease inflammation and provide cardio- and neuroprotection. Additionally, the beneficial influence of GLP-1 on obesity in women might lead to improvement of their ovarian function. The links between metabolism and reproduction are tightly connected, and it is not surprising that different estrogen derivatives, estrogen-receptor modulator (SERM) and progestins used for gonadal and oncological disorders might influence carbohydrate and lipid metabolism. However, their possible influence on the GLP-1R has not been studied. The docking scores and top-ranked poses of raloxifene were much higher than those observed for other investigated SERMs and estradiol per se. Among different studied progestins, drospirenone showed slightly higher affinity to GLP-1R. Herein, the same data set of the drugs is evaluated by molecular dynamics (MD) simulations and compared with the obtained docking result. Notably, it is demonstrated that the used docking protocol and the applied MD calculations ranked the same ligand (raloxifene) as the best one. In the present study, raloxifene might exert an allosteric influence on GLP-1R signaling, which might contribute to potential beneficial effects on metabolism and weight regulation. However, further experimental and clinical studies are needed to reveal if the GLP-1R modulation has a real biological impact.Communicated by Ramaswamy H. Sarma.

6.
Am J Alzheimers Dis Other Demen ; 39: 15333175241238577, 2024.
Article in English | MEDLINE | ID: mdl-38491918

ABSTRACT

Dysregulation of the peripheral immune system is be involved in the neuroinflammation in Alzheimer disease (AD) and accelerate the disease progression. The contribution of immune cells, particularly B cells, to AD pathogenesis has gained attention in recent research. In this study, we investigated the role of Peripheral Blood Memory B cells (PBMBs) and their secreted Migration Inhibition Factor (MIF) in driving macrophage behavior in AD based on the scRNA-seq technique, immunofluorescence and flow cytometry. We discovered that MIF binds to the CD74-CD44 receptor complex on macrophages, influencing their behavior. The dysregulated macrophage response hampers the clearance of amyloid-beta (Aß) plaques, exacerbating AD pathology. Targeting the MIF-CD74-CD44 signal pathway may hold therapeutic potential in modulating macrophage activity and mitigating neuroinflammation in AD. This study provides a further understanding of peripheral immune cells dysregulated in AD.


Subject(s)
Alzheimer Disease , Macrophage Migration-Inhibitory Factors , Humans , Memory B Cells , Neuroinflammatory Diseases , Macrophage Migration-Inhibitory Factors/metabolism , Hyaluronan Receptors/metabolism
7.
Cell Mol Life Sci ; 81(1): 35, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214784

ABSTRACT

Diabetes mellitus is on the rise globally and is a known susceptibility factor for severe influenza virus infections. However, the mechanisms by which diabetes increases the severity of an influenza virus infection are yet to be fully defined. Diabetes mellitus is hallmarked by high glucose concentrations in the blood. We hypothesized that these high glucose concentrations affect the functionality of CD8+ T cells, which play a key role eliminating virus-infected cells and have been shown to decrease influenza disease severity. To study the effect of hyperglycemia on CD8+ T cell function, we stimulated peripheral blood mononuclear cells (PBMCs) from donors with and without diabetes with influenza A virus, anti-CD3/anti-CD28-coated beads, PMA and ionomycin (PMA/I), or an influenza viral peptide pool. After stimulation, cells were assessed for functionality [as defined by expression of IFN-γ, TNF-α, macrophage inflammatory protein (MIP)-1ß, and lysosomal-associated membrane protein-1 (CD107a)] using flow cytometry. Our results showed that increasing HbA1c correlated with a reduction in TNF-α production by CD8+ T cells in response to influenza stimulation in a TCR-specific manner. This was not associated with any changes to CD8+ T cell subsets. We conclude that hyperglycemia impairs CD8+ T cell function to influenza virus infection, which may be linked with the increased risk of severe influenza in patients with diabetes.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Influenza A virus , Influenza, Human , Humans , CD8-Positive T-Lymphocytes/metabolism , Diabetes Mellitus/metabolism , Glucose/metabolism , Glycated Hemoglobin , Hyperglycemia/metabolism , Leukocytes, Mononuclear/metabolism , Receptors, Antigen, T-Cell/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
Intern Med ; 63(2): 319-322, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37225479

ABSTRACT

Encephalitis caused by antibodies targeting the leucine-rich glioma-inactivated 1 protein receptor, which belongs to the anti-voltage-gated potassium channel receptor complex, is characterized by hyponatremia, progressive cognitive impairment, seizures, and psychiatric disorders. The patient initially presented with faciobrachial dystonic seizures and subsequently developed encephalopathy. Brain magnetic resonance imaging revealed atypical unilateral hyperintense signals in the cerebral cortex and white matter. Intravenous corticosteroid pulse therapy effectively improved faciobrachial dystonic seizures and brain lesions.


Subject(s)
Encephalitis , Glioma , Limbic Encephalitis , White Matter , Humans , Leucine , White Matter/diagnostic imaging , Intracellular Signaling Peptides and Proteins , Limbic Encephalitis/complications , Antibodies , Encephalitis/complications , Encephalitis/diagnostic imaging , Encephalitis/drug therapy , Seizures/etiology , Cerebral Cortex/diagnostic imaging , Glioma/complications , Autoantibodies
9.
Pathogens ; 12(10)2023 10 20.
Article in English | MEDLINE | ID: mdl-37887780

ABSTRACT

In December 2019, a SARS-CoV-2 virus, coined Coronavirus Disease 2019 (COVID-19), discovered in Wuhan, China, affected the global population, causing more than a million and a half deaths. Since then, many studies have shown that the hyperinflammatory response of the most severely affected patients was primarily related to a higher concentration of the pro-inflammatory cytokine interleukin-6, which directly correlated with disease severity and high mortality. Our study analyzes IL-6 and its soluble receptor complex (sIL-6R and sgp130) in critically ill COVID-19 patients who suffered severe respiratory failure from the perspective of the second COVID wave of 2020. A chemiluminescent immunoassay was performed for the determination of IL6 in serum together with an enzyme-linked immunosorbent assay to detect serum levels of sIL-6R and sgp130, which confirmed that the second wave's serum levels of IL-6 were significantly elevated in the more severe patients, as with the first 2019 COVID-19 wave, resulting in adverse clinical outcomes. At present, considering that no specific treatment for severe COVID-19 cases in its later stages exists, these molecules could be considered promising markers for disease progression, illness severity, and risk of mortality.

10.
Int J Mol Sci ; 24(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37628960

ABSTRACT

TGF-ß signaling promotes migration, invasion, and distant colonization of cancer cells in advanced metastatic cancers. TGF-ß signaling suppresses the anti-tumor immune response in a tumor microenvironment, allowing sustained tumor growth. TGF-ß plays an important role in normal physiology; thus it is no surprise that the clinical development of effective and safe TGF-ß inhibitors has been hampered due to their high toxicity. We discovered that increased expression of LY6K in cancer cells led to increased TGF-ß signaling and that inhibition of LY6K could lead to reduced TGF-ß signaling and reduced in vivo tumor growth. LY6K is a highly cancer-specific protein, and it is not expressed in normal organs except in the testes. Thus, LY6K is a valid target for developing therapeutic strategies to inhibit TGF-ß signaling in cancer cells. We employed in vitro pull-down assays and molecular dynamics simulations to understand the structural determinants of the TGF-ß receptor complex with LY6K. This combined approach allowed us to identify the critical residues and dynamics of the LY6K interaction with the TGF-ß receptor complex. These data are critical in designing novel drugs for the inhibition of TGF-ß in LY6K expressing cancer, induction of anti-tumor immune response, and inhibition of tumor growth and metastatic spread.


Subject(s)
Inferior Colliculi , Neoplasms, Second Primary , Humans , Transforming Growth Factor beta , Receptors, Transforming Growth Factor beta , Lymphocytes , Tumor Microenvironment
11.
Dev Comp Immunol ; 147: 104768, 2023 10.
Article in English | MEDLINE | ID: mdl-37414235

ABSTRACT

Leukocyte immune-type receptors (LITRs) are a large family of teleost immunoregulatory receptor-types belonging to the immunoglobulin superfamily. These immune genes are phylogenetically and syntenically related to Fc receptor-like protein genes (fcrls) present in other vertebrates, including amphibians, birds, mice, and man. In vitro-based functional analyses of LITRs, using transfection approaches, have shown that LITRs have diverse immunoregulatory potentials including the activation and inhibition of several innate immune effector responses such as cell-mediated killing responses, degranulation, cytokine secretion, and phagocytosis. The purpose of this mini review is to provide an overview of fish LITR-mediated immunoregulatory potentials obtained from various teleost model systems, including channel catfish, zebrafish, and goldfish. We will also describe preliminary characterization of a new goldish LITR-specific polyclonal antibody (pAb) and discuss the significance of this tool for further investigation of the functions of fish LITRs.


Subject(s)
Receptors, Immunologic , Zebrafish , Mice , Animals , Zebrafish/metabolism , Receptors, Immunologic/genetics , Phagocytosis/genetics , Immunity, Innate , Leukocytes
12.
Plant Cell Physiol ; 64(9): 1046-1056, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37384578

ABSTRACT

Strigolactones (SLs) play fundamental roles in regulating plant architecture, which is a major factor determining crop yield. The perception and signal transduction of SLs require the formation of a complex containing the receptor DWARF14 (D14), an F-box protein D3 and a transcriptional regulator D53 in an SL-dependent manner. Structural and biochemical analyses of D14 and its orthologs DAD2 and AtD14, D3 and the complexes of ASK1-D3-AtD14 and D3CTH-D14 have made great contributions to understanding the mechanisms of SL perception. However, structural analyses of D53 and the D53-D3-D14 holo-complex are challenging, and the biochemical mechanism underlying the complex assembly remains poorly understood. Here, we found that apo-D53 was rather flexible and reconstituted the holo-complex containing D53, S-phase kinase-associated protein 1 (SKP1), D3 and D14 with rac-GR24. The cryo-electron microscopy (cryo-EM) structure of SKP1-D3-D14 in the presence of D53 was analyzed and superimposed on the crystal structure of ASK1-D3-AtD14 without D53. No large conformational rearrangement was observed, but a 9Å rotation appeared between D14 and AtD14. Using hydrogen-deuterium exchange monitored by mass spectrometry, we analyzed dynamic motifs of D14, D3 and D53 in the D53-SKP1-D3-D14 complex assembly process and further identified two potential interfaces in D53 that are located in the N and D2 domains, respectively. Together, our results uncovered the dynamic conformational changes and built a model of the holo-complex D53-SKP1-D3-D14, offering valuable information for the biochemical and genetic mechanisms of SL perception and signal transduction.


Subject(s)
F-Box Proteins , Plant Growth Regulators , Plant Growth Regulators/metabolism , Cryoelectron Microscopy , F-Box Proteins/genetics , F-Box Proteins/metabolism , Lactones/metabolism , Signal Transduction
13.
Front Immunol ; 14: 1197687, 2023.
Article in English | MEDLINE | ID: mdl-37234165

ABSTRACT

Background: The mammalian Leukocyte Receptor Complex (LRC) chromosomal region may contain gene families for the killer cell immunoglobulin-like receptor (KIR) and/or leukocyte immunoglobulin-like receptor (LILR) collections as well as various framing genes. This complex region is well described in humans, mice, and some domestic animals. Although single KIR genes are known in some Carnivora, their complements of LILR genes remain largely unknown due to obstacles in the assembly of regions of high homology in short-read based genomes. Methods: As part of the analysis of felid immunogenomes, this study focuses on the search for LRC genes in reference genomes and the annotation of LILR genes in Felidae. Chromosome-level genomes based on single-molecule long-read sequencing were preferentially sought and compared to representatives of the Carnivora. Results: Seven putatively functional LILR genes were found across the Felidae and in the Californian sea lion, four to five genes in Canidae, and four to nine genes in Mustelidae. They form two lineages, as seen in the Bovidae. The ratio of functional genes for activating LILRs to inhibitory LILRs is slightly in favor of inhibitory genes in the Felidae and the Canidae; the reverse is seen in the Californian sea lion. This ratio is even in all of the Mustelidae except the Eurasian otter, which has a predominance of activating LILRs. Various numbers of LILR pseudogenes were identified. Conclusions: The structure of the LRC is rather conservative in felids and the other Carnivora studied. The LILR sub-region is conserved within the Felidae and has slight differences in the Canidae, but it has taken various evolutionary paths in the Mustelidae. Overall, the process of pseudogenization of LILR genes seems to be more frequent for activating receptors. Phylogenetic analysis found no direct orthologues across the Carnivora which corroborate the rapid evolution of LILRs seen in mammals.


Subject(s)
Canidae , Carnivora , Felidae , Mustelidae , Sea Lions , Animals , Humans , Mice , Phylogeny , Receptors, Immunologic/genetics , Leukocytes , Carnivora/genetics , Receptors, KIR/genetics , Genomics
15.
J Leukoc Biol ; 113(6): 544-554, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36805947

ABSTRACT

Aquaporins are a family of ubiquitously expressed transmembrane water channels implicated in a broad range of physiological functions. We have previously reported that aquaporin 4 (AQP4) is expressed on T cells and that treatment with a small molecule AQP4 inhibitor significantly delays T cell mediated heart allograft rejection. Using either genetic deletion or small molecule inhibitor, we show that AQP4 supports T cell receptor mediated activation of both mouse and human T cells. Intact AQP4 is required for optimal T cell receptor (TCR)-related signaling events, including nuclear translocation of transcription factors and phosphorylation of proximal TCR signaling molecules. AQP4 deficiency or inhibition impairs actin cytoskeleton rearrangements following TCR crosslinking, causing inferior TCR polarization and a loss of TCR signaling. Our findings reveal a novel function of AQP4 in T lymphocytes and identify AQP4 as a potential therapeutic target for preventing TCR-mediated T cell activation.


Subject(s)
Aquaporin 4 , Lymphocyte Activation , Mice , Humans , Animals , Aquaporin 4/genetics , Aquaporin 4/metabolism , Receptors, Antigen, T-Cell , T-Lymphocytes , Signal Transduction
17.
Cell Rep ; 41(3): 111490, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36261006

ABSTRACT

Interleukin-27 (IL-27) uniquely assembles p28 and EBI3 subunits to a heterodimeric cytokine that signals via IL-27Rα and gp130. To provide the structural framework for receptor activation by IL-27 and its emerging therapeutic targeting, we report here crystal structures of mouse IL-27 in complex with IL-27Rα and of human IL-27 in complex with SRF388, a monoclonal antibody undergoing clinical trials with oncology indications. One face of the helical p28 subunit interacts with EBI3, while the opposite face nestles into the interdomain elbow of IL-27Rα to juxtapose IL-27Rα to EBI3. This orients IL-27Rα for paired signaling with gp130, which only uses its immunoglobulin domain to bind to IL-27. Such a signaling complex is distinct from those mediated by IL-12 and IL-23. The SRF388 binding epitope on IL-27 overlaps with the IL-27Rα interaction site explaining its potent antagonistic properties. Collectively, our findings will facilitate the mechanistic interrogation, engineering, and therapeutic targeting of IL-27.


Subject(s)
Interleukin-27 , Humans , Mice , Animals , Cytokine Receptor gp130/metabolism , Receptors, Cytokine/metabolism , Interleukin-12 , Cytokines , Antibodies, Monoclonal/pharmacology , Epitopes , Interleukin-23
18.
Molecules ; 27(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35956840

ABSTRACT

Molecular interaction analysis is an essential technique for the study of biomolecular functions and the development of new drugs. Most current methods generally require manipulation to immobilize or label molecules, and require advance identification of at least one of the two molecules in the reaction. In this study, we succeeded in detecting the interaction of low-molecular-weight (LMW) compounds with a membrane protein mixture derived from cultured cells expressing target membrane proteins by using the size exclusion chromatography-mass spectrometry (SEC-MS) method under the condition of 0.001% lauryl maltose neopentyl glycol as detergent and atmospheric pressure chemical ionization. This method allowed us to analyze the interaction of a mixture of medicinal herbal ingredients with a mixture of membrane proteins to identify the two interacting ingredients. As it does not require specialized equipment (e.g., a two-dimensional liquid chromatography system), this SEC-MS method enables the analysis of interactions between LMW compounds and relatively high-expressed membrane proteins without immobilization or derivatization of the molecules.


Subject(s)
Membrane Proteins , Chromatography, Gel , Chromatography, Liquid/methods , Mass Spectrometry/methods , Molecular Weight
19.
Methods ; 204: 55-63, 2022 08.
Article in English | MEDLINE | ID: mdl-35609776

ABSTRACT

Intrinsically Disordered Proteins (IDPs) are a class of proteins in which at least some region of the protein does not possess any stable structure in solution in the physiological condition but may adopt an ordered structure upon binding to a globular receptor. These IDP-receptor complexes are thus subject to protein complex modeling in which computational techniques are applied to accurately reproduce the IDP ligand-receptor interactions. This often exists in the form of protein docking, in which the 3D structures of both the subunits are known, but the position of the ligand relative to the receptor is not. Here, we evaluate the performance of three IDP-receptor modeling tools with metrics that characterize the IDP-receptor interface at various resolutions. We show that all three methods are able to properly identify the general binding site, as identified by lower resolution metrics, but begin to struggle with higher resolution metrics that capture biophysical interactions.


Subject(s)
Intrinsically Disordered Proteins , Binding Sites , Intrinsically Disordered Proteins/chemistry , Ligands , Protein Binding , Protein Conformation , Protein Domains
20.
Respir Res ; 23(1): 75, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35351157

ABSTRACT

BACKGROUND: Up-regulation of aerobic glycolysis has been reported as a characterization of asthma and facilitates airway inflammation. We has been previously reported that short isoform thymic stromal lymphopoietin (sTSLP) could reduce inflammation in asthmatic airway epithelial cells. Here we wanted to investigate whether the inhibition of sTSLP on asthma is related to aerobic glycolysis. METHODS: Asthmatic model was established in challenging Male BALB/c mice and 16-HBE (human bronchial epithelial) cell line with house dust mite (HDM). Indicators of glycolysis were assessed to measure whether involve in sTSLP regulating airway epithelial cells inflammation in asthmatic model in vivo and in vitro. RESULTS: sTSLP decreased inflammation of asthmatic airway and aerobic glycolysis in mice. HDM or long isoform thymic stromal lymphopoietin (lTSLP) promoted HIF-1α expression and aerobic glycolysis by miR-223 to target and inhibit VHL (von Hippel-Lindau) expression 16-HBE. Inhibition of aerobic glycolysis restrained HDM- and lTSLP-induced inflammatory cytokines production. sTSLP along had almost no potential to alter aerobic glycolysis of 16-HBE. But sTSLP decreased LDHA (lactate dehydrogenase A) and LD (Lactic acid) levels in BALF, and HIF-1α and LDHA protein levels in airway epithelial cells of asthma mice model. lTSLP and sTSLP both induced formation of TSLPR and IL-7R receptor complex, and lTSLP obviously facilitated phosphorylation of JAK1, JAK2 and STAT5, while sTSLP induced a little phosphorylation of JAK1 and STAT5. CONCLUSION: We identified a novel mechanism that lTSLP could promote inflammatory cytokines production by miR-223/VHL/HIF-1α pathway to upregulate aerobic glycolysis in airway epithelial cells in asthma. This pathway is suppressed by sTSLP through occupying binding site of lTSLP in TSLPR and IL-7R receptor complex.


Subject(s)
Asthma , Cytokines , Animals , Asthma/metabolism , Cytokines/metabolism , Epithelium/metabolism , Glycolysis , Humans , Inflammation/metabolism , Male , Mice , Protein Isoforms , Thymic Stromal Lymphopoietin
SELECTION OF CITATIONS
SEARCH DETAIL