Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
J Neurochem ; 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37984072

ABSTRACT

Treatment with bexarotene, a selective retinoid X receptor (RXR) agonist, significantly improves behavioral dysfunctions in various neurodegenerative animal models. Additionally, it activates neurodevelopmental and plasticity pathways in the brains of adult mice. Our objective was to investigate the impact of RXR activation by bexarotene on adult neural stem cells (aNSC) and their cell lineages. To achieve this, we treated NSCs isolated from the subventricular zone (SVZ) of adult rat brains from the proliferative stage to the differentiated status. The results showed that bexarotene-treated aNSC exhibited increased BrdU incorporation, SOX2+ dividing cell pairs, and cell migration from neurospheres, revealing that the treatment promotes self-renewing proliferation and cell motility in SVZ-aNCS. Furthermore, bexarotene induced a cell fate shift characterized by a significant increase in GFAP+/S100B+ differentiated astrocytes, which uncovers the participation of activated-RXR in astrogenesis. In the neuronal lineage, the fate shift was counteracted by bexarotene-induced enhancement of NeuN+ nuclei together with neurite network outgrowth, indicating that the RXR agonist stimulates SVZ-aNCS neuronal differentiation at later stages. These findings establish new connections between RXR activation, astro- and neurogenesis in the adult brain, and contribute to the development of therapeutic strategies targeting nuclear receptors for neural repair.

2.
Ann Hepatol ; 28(1): 100775, 2023.
Article in English | MEDLINE | ID: mdl-36280014

ABSTRACT

INTRODUCTION AND OBJECTIVES: Liver fibrosis is a common pathological change in many chronic liver diseases. Activation of hepatic stellate cells (HSCs) is the core event in liver fibrosis. This study aimed to investigate the role of testicular orphan receptor 4 (TR4) in the activation of HSCs. MATERIALS AND METHODS: In vivo, bile duct ligation (BDL)-induced rat liver fibrosis model was established, and the expressions of TR4 and α-smooth muscle actin (α-SMA) in liver tissues were detected. In vitro, TR4 knockdown and overexpression in JS-1 cells using lentiviral vectors were constructed, and the expressions of TR4, α-SMA, Col-I, and TGF-ß1/smads and retinoid X receptor (RXR) pathway-related genes were detected. RESULTS: TR4 was highly expressed in BDL-induced fibrotic liver, accompanied by increased expression of α-SMA. Knockdown of TR4 significantly inhibited the expressions of α-SMA, Col-I, p-TßRI, and p-Smad2/3, and up-regulated the expression of RXRα in HSCs in vitro. In contrast, TR4 overexpression significantly increased the expressions of α-SMA, Col-I, p-TßRI, and p-Smad2/3, and inhibited the expression of RXRα. CONCLUSIONS: TR4 may promote the activation of HSCs by up-regulating TßR I/Smad2/3 signaling pathway and down-regulating RXRα signaling, thereby promoting the progression of liver fibrosis. Our findings may provide a new therapeutic target against hepatic fibrosis.


Subject(s)
Hepatic Stellate Cells , Transforming Growth Factor beta1 , Rats , Animals , Hepatic Stellate Cells/metabolism , Transforming Growth Factor beta1/metabolism , Liver Cirrhosis/metabolism , Signal Transduction , Liver/pathology , Receptors, Transforming Growth Factor beta/metabolism
3.
Exp Dermatol ; 31(8): 1202-1207, 2022 08.
Article in English | MEDLINE | ID: mdl-35377505

ABSTRACT

1,25(OH)2 D3 , the active form of vitamin D, has been extensively studied for its putative protective activities against tumors. It does biological work by connecting to a nuclear receptor called VDR, which heterodimerizes itself to another nuclear receptor, RXR. The study observed differences in VDR and RXR expression in non-melanoma skin cancer a actinic keratosis and compared it with normal skin. We performed VDR and RXR immunohistochemistry of 76 controls (normal skin), 49 actinic keratosis, 99 basal cell carcinomas and 96 squamous cell carcinomas from formalin-fixed paraffin-embedded, resulting from surgical procedures. There was a clear pattern in the control group (p < 0.001), with the positivity of both receptors, VDR and RXR. Actinic keratosis differed from the basal cell carcinoma and control groups concerning RXR expression (p < 0.001). SCC was negative for both receptors, differing in all groups (p < 0.001). The site of positivity (nuclear, cytoplasmatic or both) of VDR differed between all groups (p < 0.001). To date, our series is the largest of VDR and RXR immunohistochemistry concerning non-melanoma skin cancer. Our findings reinforce the need to understand the pathways involving VDR and RXR to direct therapies and prevention manoeuvres.


Subject(s)
Carcinoma, Basal Cell , Keratosis, Actinic , Skin Neoplasms , Carrier Proteins , Humans , Receptors, Calcitriol/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Retinoid X Receptors/metabolism
4.
Psychopharmacology (Berl) ; 237(7): 2055-2073, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32472163

ABSTRACT

RATIONALE: The nuclear receptor retinoid X receptor (RXR) belongs to a nuclear receptor superfamily that modulates diverse functions via homodimerization with itself or several other nuclear receptors, including PPARα. While the activation of PPARα by natural or synthetic agonists regulates the sleep-wake cycle, the role of RXR in the sleep modulation is unknown. OBJECTIVES: We investigated the effects of bexarotene (Bexa, a RXR agonist) or UVI 3003 (UVI, a RXR antagonist) on sleep, sleep homeostasis, levels of neurochemical related to sleep modulation, and c-Fos and NeuN expression. METHODS: The sleep-wake cycle and sleep homeostasis were analyzed after application of Bexa or UVI. Moreover, we also evaluated whether Bexa or UVI could induce effects on dopamine, serotonin, norepinephrine epinephrine, adenosine, and acetylcholine contents, collected from either the nucleus accumbens or basal forebrain. In addition, c-Fos and NeuN expression in the hypothalamus was determined after Bexa or UVI treatments. RESULTS: Systemic application of Bexa (1 mM, i.p.) attenuated slow-wave sleep and rapid eye movement sleep. In addition, Bexa increased the levels of dopamine, serotonin, norepinephrine epinephrine, adenosine, and acetylcholine sampled from either the nucleus accumbens or basal forebrain. Moreover, Bexa blocked the sleep rebound period after total sleep deprivation, increased in the hypothalamus the expression of c-Fos, and decreased NeuN activity. Remarkably, UVI 3003 (1 mM, i.p.) induced opposite effects in sleep, sleep homeostasis, neurochemicals levels, and c-Fos and NeuN activity. CONCLUSIONS: The administration of RXR agonist or antagonist significantly impaired the sleep-wake cycle and exerted effects on the levels of neurochemicals related to sleep modulation. Moreover, Bexa or UVI administration significantly affected c-Fos and NeuN expression in the hypothalamus. Our findings highlight the neurobiological role of RXR on sleep modulation.


Subject(s)
Bexarotene/pharmacology , Coumaric Acids/pharmacology , Retinoid X Receptors/metabolism , Sleep Stages/drug effects , Sleep Stages/physiology , Tetrahydronaphthalenes/pharmacology , Animals , Male , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Rats , Rats, Wistar , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/metabolism , Retinoid X Receptors/agonists , Retinoid X Receptors/antagonists & inhibitors
5.
Gene ; 654: 23-35, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29425825

ABSTRACT

Retinoic acid receptors (RAR) and retinoid X receptors (RXR) are ligand-mediated transcription factors that synchronize intricate signaling networks in metazoans. Dimer formation between these two nuclear receptors mediates the recruitment of co-regulatory complexes coordinating the progression of signaling cascades during developmental and regenerative events. In the present study we identified and characterized the receptors for retinoic acid in the sea cucumber Holothuria glaberrima; a model system capable of regenerative organogenesis during adulthood. Molecular characterizations revealed the presence of three isoforms of RAR and two of RXR as a consequence of alternative splicing events. Various analyses including: primary structure sequencing, phylogenetic analysis, protein domain prediction, and multiple sequence alignment further confirmed their identity. Semiquantitative reverse transcription PCR analysis of each receptor isoform herein identified showed that the retinoid receptors are expressed in all tissues sampled: the mesenteries, respiratory trees, muscles, gonads, and the digestive tract. During regenerative organogenesis two of the receptors (RAR-L and RXR-T) showed differential expression in the posterior segment while RAR-S is differentially expressed in the anterior segment of the intestine. This work presents the first description of the components relaying the signaling for retinoic acid within this model system.


Subject(s)
Gene Expression Profiling , Holothuria/physiology , Intestines/physiology , Receptors, Retinoic Acid/metabolism , Alternative Splicing , Animals , Computational Biology , Contig Mapping , DNA, Complementary/metabolism , Gene Expression Regulation , Holothuria/genetics , Open Reading Frames , Phylogeny , Regeneration , Retinoid X Receptors/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Signal Transduction
6.
Ann Hepatol ; 16(4): 501-509, 2017.
Article in English | MEDLINE | ID: mdl-28611266

ABSTRACT

BACKGROUND AND AIM: The HBV covalently closed circular DNA (cccDNA) is organized into a minichromosome in the nuclei of infected hepatocytes through interactions with histone and nonhistone proteins. Retinoid X receptor α (RXRα), a liver-enriched nuclear receptor, participates in regulation of HBV replication and transcription through modulation of HBV enhancer 1 and core promoter activity. MATERIAL AND METHODS: This study investigated RXRα involvement in HBV cccDNA epigenetic modifications. Quantitative cccDNA chromatin immunoprecipitation (ChIP) was applied to study the recruitment of RXRα, histones, and chromatin-modifying enzymes to HBV minichromosome in HepG2 cells after transfection of the linear HBV genome. RESULTS: RXRα Was found to directly bind to HBV cccDNA; recruitment of RXRα to HBV mini-chromosome paralleled HBV replication, histone recruitment, and histone acetylation in HBVcccDNA. Moreover, RXRα overexpression or knock-down significantly increased or impaired the recruitment of the p300 acetyltransferase to cccDNAminichromosome. CONCLUSIONS: Our results confirmed the regulation of RXRα on HBV replication in vitro and demonstrated the modulation of RXRα on HBV cccDNA epigenetics. These findings provide a profound theoretical and experimental basis for late-model antiviral treatment acting on the HBV cccDNA and minichromosome.


Subject(s)
DNA, Circular/genetics , DNA, Viral/genetics , Hepatitis B virus/genetics , Hepatocytes/virology , Retinoid X Receptor alpha/metabolism , Virus Replication , Acetylation , Chromatin Assembly and Disassembly , DNA, Circular/biosynthesis , DNA, Viral/biosynthesis , Epigenesis, Genetic , Gene Expression Regulation, Viral , Hep G2 Cells , Hepatitis B virus/growth & development , Hepatitis B virus/metabolism , Hepatocytes/metabolism , Histones/metabolism , Host-Pathogen Interactions , Humans , Protein Binding , Retinoid X Receptor alpha/genetics , Time Factors , Transcription, Genetic , p300-CBP Transcription Factors/metabolism
7.
J Nutr Biochem ; 38: 12-17, 2016 12.
Article in English | MEDLINE | ID: mdl-27721113

ABSTRACT

Much evidence suggests an association between vitamin D deficiency and chronic diseases such as obesity and dyslipidemia. Although genetic factors play an important role in the etiology of these diseases, only a few studies have investigated the relationship between vitamin D-related genes and anthropometric and lipid profiles. The aim of this study was to investigate the association of three vitamin D-related genes with anthropometric and lipid parameters in 542 adult individuals. We analyzed the rs2228570 polymorphism in the vitamin D receptor gene (VDR), rs2134095 in the retinoid X receptor gamma gene (RXRG) and rs7041 in the vitamin D-binding protein gene (GC). Polymorphisms were genotyped by TaqMan allelic discrimination. Gene-gene interactions were evaluated by the general linear model. The functionality of the polymorphisms was investigated using the following predictors and databases: SIFT (Sorting Intolerant from Tolerant), PolyPhen-2 (Polymorphism Phenotyping v2) and Human Splicing Finder 3. We identified a significant effect of the interaction between RXRG (rs2134095) and GC (rs7041) on low-density lipoprotein cholesterol (LDL-c) levels (P=.005). Furthermore, our in silico analysis suggested a functional role for both variants in the regulation of the gene products. Our results suggest that the vitamin D-related genes RXRG and GC affect LDL-c levels. These findings are in agreement with other studies that consistently associate vitamin D and lipid profile. Together, our results corroborate the idea that analyzing gene-gene interaction would be helpful to clarify the genetic component of lipid profile.


Subject(s)
Cholesterol, LDL/blood , Genetic Predisposition to Disease , Hypercholesterolemia/genetics , Polymorphism, Single Nucleotide , Receptors, Calcitriol/genetics , Retinoid X Receptor gamma/genetics , Vitamin D-Binding Protein/genetics , Adolescent , Adult , Alleles , Brazil , Computational Biology , Databases, Genetic , Expert Systems , Female , Gene Frequency , Genetic Association Studies , Humans , Hypercholesterolemia/blood , Hypercholesterolemia/metabolism , Male , Receptors, Calcitriol/metabolism , Retinoid X Receptor gamma/metabolism , Vitamin D-Binding Protein/metabolism , Young Adult
8.
Biochim Biophys Acta ; 1840(10): 3034-41, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24972164

ABSTRACT

BACKGROUND: Brazilian green propolis (BGP), a resinous substance produced from Baccharis dracunculifolia by Africanized honey bees (Apis mellifera), is used as a folk medicine. Our present study explores the retinoid X receptor (RXR) agonistic activity of BGP and the identification of an RXR agonist in its extract. METHODS: RXRα agonistic activity was evaluated using a luciferase reporter gene assay. Isolation of the RXRα agonist from the ethanolic extract of BGP was performed using successive silica gel and a reversed phase column chromatography. The interaction between the isolated RXRα agonist and RXRα protein was predicted by a receptor-ligand docking simulation. The nuclear receptor (NR) cofactor assay was used to estimate whether the isolated RXRα agonist bound to various NRs, including RXRs and peroxisome proliferator-activated receptors (PPARs). We further examined its effect on adipogenesis in 3T3-L1 fibroblasts. RESULTS: We identified drupanin as an RXRα agonist with an EC50 value of 4.8 ± 1.0 µM. Drupanin activated three RXR subtypes by a similar amount and activated PPARγ moderately. Additionally, drupanin induced adipogenesis and elevated aP2 mRNA levels in 3T3-L1 fibroblasts. CONCLUSIONS: Drupanin, a component of BGP, is a novel RXR agonist with slight PPARγ agonistic activity. GENERAL SIGNIFICANCE: This study revealed for the first time that BGP activates RXR and drupanin is an RXR agonist in its extract.


Subject(s)
Molecular Docking Simulation , PPAR gamma/agonists , Propolis , Retinoid X Receptor alpha/agonists , 3T3-L1 Cells , Adipogenesis/drug effects , Adipogenesis/physiology , Animals , Bees , Brazil , HEK293 Cells , Humans , Mice , PPAR gamma/genetics , PPAR gamma/metabolism , Propolis/chemistry , Propolis/pharmacology , Retinoid X Receptor alpha/genetics , Retinoid X Receptor alpha/metabolism
9.
Aquat Toxicol ; 142-143: 447-57, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24121122

ABSTRACT

The pregnane X receptor (PXR) (nuclear receptor NR1I2) is a ligand activated transcription factor, mediating responses to diverse xenobiotic and endogenous chemicals. The properties of PXR in fish are not fully understood. Here we report on cloning and characterization of full-length PXR of zebrafish, Danio rerio, and pxr expression in vivo. Initial efforts gave a cDNA encoding a 430 amino acid protein identified as zebrafish pxr by phylogenetic and synteny analysis. The sequence of the cloned Pxr DNA binding domain (DBD) was highly conserved, with 74% identity to human PXR-DBD, while the ligand-binding domain (LBD) of the cloned sequence was only 44% identical to human PXR-LBD. Sequence variation among clones in the initial effort prompted sequencing of multiple clones from a single fish. There were two prominent variants, one sequence with S183, Y218 and H383 and the other with I183, C218 and N383, which we designate as alleles pxr*1 (nr1i2*1) and pxr*2 (nr1i2*2), respectively. In COS-7 cells co-transfected with a PXR-responsive reporter gene, the full-length Pxr*1 (the more common variant) was activated by known PXR agonists clotrimazole and pregnenolone 16α-carbonitrile but to a lesser extent than the full-length human PXR. Activation of full-length Pxr*1 was only 10% of that with the Pxr*1 LBD. Quantitative real time PCR analysis showed prominent expression of pxr in liver and eye, as well as brain and intestine of adult zebrafish. The pxr was expressed in heart and kidney at levels similar to that in intestine. The expression of pxr in liver was weakly induced by ligands for mammalian PXR or constitutive androstane receptor (NR1I3). The results establish a foundation for PXR studies in this vertebrate model. PXR allelic variation and the differences between the full-length PXR and the LBD in reporter assays have implications for assessing the action of PXR ligands in zebrafish.


Subject(s)
Alleles , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Zebrafish/genetics , Animals , Brain/metabolism , Constitutive Androstane Receptor , Eye/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Order , Liver/metabolism , Male , Molecular Sequence Data , Phenobarbital/pharmacology , Phylogeny , Pregnane X Receptor , Protein Binding , Pyridines/pharmacology , Water Pollutants, Chemical/pharmacology , Zebrafish/classification , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL