Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 579
Filter
1.
Proteins ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109919

ABSTRACT

The HIV-1 protease is critical for the process of viral maturation and as such, it is one of the most well characterized proteins in the Protein Data Bank. There is some evidence to suggest that the HIV-1 protease is capable of accommodating small molecule fragments at several locations on its surface outside of the active site. However, some pockets on the surface of proteins remain unformed in the apo structure and are termed "cryptic sites." To date, no cryptic sites have been identified in the structure of HIV-1 protease. Here, we characterize a novel cryptic cantilever pocket on the surface of the HIV-1 protease through mixed-solvent molecular dynamics simulations using several probes. Interestingly, we noted that several homologous retroviral proteases exhibit evolutionarily conserved dynamics in the cantilever region and possess a conserved pocket in the cantilever region. Immobilization of the cantilever region of the HIV-1 protease via disulfide cross-linking resulted in curling-in of the flap tips and the propensity for the protease to adopt a semi-open flap conformation. Structure-based analysis and fragment-based screening of the cryptic cantilever pocket suggested that the pocket may be capable of accommodating ligand structures. Furthermore, molecular dynamics simulations of a top scoring fragment bound to the cryptic pocket illustrated altered flap dynamics of the fragment-bound enzyme. Together, these results suggest that the mobility of the cantilever region plays a key role in the global dynamics of retroviral proteases. Therefore, the cryptic cantilever pocket of the HIV-1 protease may represent an interesting target for future in vitro studies.

2.
Int J Cancer ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190008

ABSTRACT

Human endogenous retroviruses (HERVs) are emerging as critical elements in host genomic regulation. Aberrant HERV transcription has been implicated in developmental and tissue-specific aging and pathological processes. In this study, we presented a comprehensive locus-specific characterization of the HERV expression landscape in esophageal squamous cell carcinoma (ESCC). We demonstrated the transcriptional diversity among patients and identified 12 clinically relevant HERVs in the SCH cohort, which were experimentally validated by Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) in the CAMS cohort. ESCC patients were stratified into three HERV-based subtypes (HERVhigh, HERVmedian and HERVlow) with distinct clinical and biological characteristics. The HERVhigh subtype was associated with worse survival, increased CD4+ T cells infiltration and decreased metabolic activity, whereas the HERVlow subtype was characterized by abundant CD8+ T cells, increased metabolic activity, and better survival. The HERV-based tumor subtyping was further robustly validated by RNA sequencing and RT-qPCR in two additional external cohorts. Our findings demonstrate the clinical significance of HERVs for tumor subtyping and prognosis, provide insights into the functional role of HERVs and a valuable resource for developing novel biomarkers and therapeutic targets in ESCC.

3.
Int J Immunopathol Pharmacol ; 38: 3946320241274255, 2024.
Article in English | MEDLINE | ID: mdl-39122243

ABSTRACT

OBJECTIVES: Human endogenous retroviruses (HERVs) are integral components of the human genome, and their reactivation has been implicated in the pathogenesis of some malignancies. External viral co-infections are suspected to play a role in HERV transactivation. This study aimed to investigate the expression of HERV-K np9 elements and HERV-R env gene in pediatric acute lymphoblastic leukemia (ALL) patients. Additionally, we explored potential correlations between HERV expression and common viral infections prevalent in this group of patients. METHODS: Blood samples were collected from 43 pediatric ALL patients and 48 age- and sex-matched healthy controls. Quantitative real-time PCR (qRT-PCR) was used to assess the expression of HERV-K np9 and HERV-R env, along with herpes simplex virus (HSV), parvovirus B19, and polyomavirus BK. RESULTS: HERV-K np9 and HERV-R env showed significantly higher expression in the peripheral blood of ALL patients compared to healthy controls (p < .001 and p = .003, respectively). HSV positivity was associated with significantly increased HERV-K np9 expression. No significant correlations were observed between other investigated viruses and HERV gene expression. CONCLUSION: The overexpression of HERV-K np9 and HERV-R env in pediatric ALL patients suggest their potential role in leukemogenesis. Our findings also suggest a possible link between HSV infection and HERV reactivation in this population. Future investigations are needed to understand the precise roles of these genes and viral infections in the development of ALL.


Subject(s)
Endogenous Retroviruses , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Endogenous Retroviruses/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/virology , Male , Female , Child , Child, Preschool , Gene Products, env/genetics , Gene Products, env/metabolism , Adolescent , Case-Control Studies
4.
Article in English | MEDLINE | ID: mdl-39153567

ABSTRACT

OBJECTIVE: This study aims to link aberrant endogenous retroviruses (ERVs) activation and osteoarthritis (OA) progression by comparing the chromatin accessibility and transcriptomic landscapes of diseased or intact joint tissues of OA patients. METHOD: We performed ERVs-centric analysis on published ATAC-seq and RNA-seq data from OA patients' cartilage tissues. Here, we compared the outer region of the lateral tibial plateau, representing intact cartilage, to the inner region of the medial tibial plateau, representing damaged cartilage. In addition, cartilage tissue sections from OA patients and post-traumatic OA mouse models were assayed for global H3K9me3 abundance through immunohistochemistry staining. RESULTS: Chromatin accessibility and transcription of ERVs, particularly from evolutionarily "intermediate age" ERVs families (ERV1 and ERVL), were enriched and elevated in OA cartilage. This integrative analysis suggests that H3K9me3-related heterochromatin loss might be mechanistically connected to ERV activation in OA tissue. We further verified that global H3K9me3 levels were reduced in diseased cartilage relative to intact tissue in OA patients and injury-induced OA mice. CONCLUSION: The findings suggest a compelling hypothesis that the loss of H3K9me3, either due to aging or cellular stressors, may lead to ERVs reactivation that contributes to tissue inflammation and OA progression. This study unveils the intricate relationship between epigenetic alterations, ERVs activation, and OA, paving the way for potential therapeutic interventions targeting these pathogenic mechanisms.

5.
Virus Evol ; 10(1): veae061, 2024.
Article in English | MEDLINE | ID: mdl-39175839

ABSTRACT

The enigmatic origins and transmission events of the gibbon ape leukemia virus (GALV) and its close relative the koala retrovirus (KoRV) have been a source of enduring debate. Bats and rodents are each proposed as major reservoirs of interspecies transmission, with ongoing efforts to identify additional animal hosts of GALV-KoRV-related retroviruses. In this study, we identified nine rodent species as novel hosts of GALV-KoRV-related retroviruses. Included among these hosts are two African rodents, revealing the first appearance of this clade beyond the Australian and Southeast Asian region. One of these African rodents, Mastomys natalensis, carries an endogenous GALV-KoRV-related retrovirus that is fully intact and potentially still infectious. Our findings support the hypothesis that rodents are the major carriers of GALV-KoRV-related retroviruses.

6.
Cell Stem Cell ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39146934

ABSTRACT

Endogenous retroviruses (ERVs) occupy a significant part of the human genome, with some encoding proteins that influence the immune system or regulate cell-cell fusion in early extra-embryonic development. However, whether ERV-derived proteins regulate somatic development is unknown. Here, we report a somatic developmental function for the primate-specific ERVH48-1 (SUPYN/Suppressyn). ERVH48-1 encodes a fragment of a viral envelope that is expressed during early embryonic development. Loss of ERVH48-1 led to impaired mesoderm and cardiomyocyte commitment and diverted cells to an ectoderm-like fate. Mechanistically, ERVH48-1 is localized to sub-cellular membrane compartments through a functional N-terminal signal peptide and binds to the WNT antagonist SFRP2 to promote its polyubiquitination and degradation, thus limiting SFRP2 secretion and blocking repression of WNT/ß-catenin signaling. Knockdown of SFRP2 or expression of a chimeric SFRP2 with the ERVH48-1 signal peptide rescued cardiomyocyte differentiation. This study demonstrates how ERVH48-1 modulates WNT/ß-catenin signaling and cell type commitment in somatic development.

7.
Heliyon ; 10(13): e33407, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39050420

ABSTRACT

The efficiency of human immunodeficiency virus-1 (HIV-1) inhibition by sulfated polysaccharides isolated from the various families of red algae of the Far East Pacific coast were studied. The anti-HIV-1 activity of kappa and lambda-carrageenans from Chondrus armatus, original highly sulfated X-carrageenan with low content of 3,6-anhydrogalactose from Tichocarpus crinitus and i/κ-carrageenan with hybrid structure isolated from Ahnfeltiopsis flabelliformis was found. The antiviral action of these polysaccharides and its low-weight oligosaccharide was compared with commercial κ-carrageenan. Here we used the HIV-1-based lentiviral particles and evaluated that these carrageenans in non-toxic concentrations significantly suppress the transduction potential of lentiviral particles pseudotyped with different envelope proteins, targeting cells of neuronal or T-cell origin. The antiviral action of these carrageenans was confirmed using the chimeric replication competent Mo-MuLV (Moloney murine leukemia retrovirus) encoding marker eGFP protein. We found that X-carrageenans from T. crinitus and its low weight derivative and λ-carrageenan from C. armatus effectively suppress the infection caused by retrovirus. The obtained data suggest that the differences in the suppressive effect of carrageenans on the transduction efficiency of HIV-1 based lentiviral particles may be related to the structural features of the studied polysaccharides.

9.
Viruses ; 16(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39066281

ABSTRACT

Detection methods have been developed to prevent transmission of zoonotic or xenozoonotic porcine viruses after transplantation of pig organs or cells to the recipient (xenotransplantation). Eleven xenotransplantation-relevant viruses, including porcine cytomegalovirus, porcine roseolovirus (PCMV/PRV), porcine lymphotropic herpesviruses -1, -2, -3 (PLHV-1, 2, 3), porcine parvovirus (PPV), porcine circovirus 2, 3, 4 (PCV2, 3, 4), hepatitis E virus genotype 3 (HEV3), porcine endogenous retrovirus-C (PERV-C), and recombinant PERV-A/C have been selected. In the past, several pig breeds, minipigs, and genetically modified pigs generated for xenotransplantation had been analyzed using these methods. Here, spleen, liver, and blood samples from 10 German slaughterhouse pigs were screened using both PCR-based and immunological assays. Five viruses: PCMV/PRV, PLHV-1, PLHV-3, and PERV-C, were found in all animals, and PCV3 in one animal. Some animals were latently infected with PCMV/PRV, as only virus-specific antibodies were detected. Others were also PCR positive in the spleen and/or liver, indicative of an ongoing infection. These results provide important information on the viruses that infect German slaughterhouse pigs, and together with the results of previous studies, they reveal that the methods and test strategies efficiently work under field conditions.


Subject(s)
Swine Diseases , Transplantation, Heterologous , Animals , Swine , Transplantation, Heterologous/adverse effects , Swine Diseases/virology , Swine Diseases/diagnosis , Germany , Abattoirs , Viruses/genetics , Viruses/isolation & purification , Viruses/classification , Polymerase Chain Reaction/methods , Liver/virology , Spleen/virology , Virus Diseases/veterinary , Virus Diseases/diagnosis , Virus Diseases/virology
10.
Front Cell Infect Microbiol ; 14: 1404431, 2024.
Article in English | MEDLINE | ID: mdl-39081866

ABSTRACT

Introduction: Endogenous retroviruses (ERVs), which originated from exogenous retroviral infections of germline cells millions of years ago and were inherited by subsequent generations as per Mendelian inheritance patterns, predominantly comprise non-protein-coding sequences due to the accumulation of mutations, insertions, deletions, and truncations. Nevertheless, recent studies have revealed that ERVs play a crucial role in diverse biological processes by encoding various proteins. Methods: In this study, we successfully identified an ERV envelope (env) gene in a mink species. A phylogenetic tree of mink ERV-V env and reference sequences was constructed using Bayesian methods and maximum-likelihood inference. Results: Phylogenetic analyses indicated a significant degree of sequence conservation and positive selection within the env-surface open reading frame. Additionally, qRT-PCR revealed diverse patterns of mink ERV-V env expression in various tissues. The expression of mink ERV-V env gene in testicular tissue strongly correlated with the seasonal reproductive cycles of minks. Discussion: Our study suggests that the ERV-V env gene in mink may have been repurposed for host functions.


Subject(s)
Endogenous Retroviruses , Mink , Phylogeny , Endogenous Retroviruses/genetics , Animals , Mink/virology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Seasons , Reproduction/genetics , Male , Testis/virology , Bayes Theorem
11.
Emerg Infect Dis ; 30(8): 1523-1530, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043389

ABSTRACT

Histoplasmosis is a fungal disease associated with substantial mortality rates among persons with advanced HIV disease. Our systematic review synthesized data on the global prevalence of Histoplasma--caused antigenuria in persons with HIV. We searched PubMed/Medline, Embase, and Scopus databases on January 3, 2023, to identify cross-sectional and cohort studies evaluating Histoplasma antigenuria prevalence among adults with HIV infection. We calculated point estimates and 95% CIs to summarize prevalence. Of 1,294 studies screened, we included 15. We found Histoplasma antigenuria among 581/5,096 (11%; 95% CI 11%-12%) persons with HIV and 483/3,789 persons with advanced HIV disease (13%; 95% CI 12%-14%). Among persons with HIV and symptoms consistent with histoplasmosis, Histoplasma antigenuria prevalence was 14% (95% CI 13%-15%; 502/3,631 participants). We determined that persons with advanced HIV disease, inpatients, and symptomatic persons might benefit from a systematic approach to early detection of histoplasmosis using urine antigen testing.


Subject(s)
Antigens, Fungal , HIV Infections , Histoplasma , Histoplasmosis , Humans , Histoplasmosis/epidemiology , Histoplasmosis/urine , Histoplasmosis/diagnosis , Histoplasma/immunology , HIV Infections/epidemiology , HIV Infections/complications , Prevalence , Antigens, Fungal/urine , Antigens, Fungal/immunology , Latin America/epidemiology , Africa/epidemiology , AIDS-Related Opportunistic Infections/epidemiology , AIDS-Related Opportunistic Infections/microbiology , AIDS-Related Opportunistic Infections/urine
12.
J Feline Med Surg ; 26(7): 1098612X241245046, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39073897

ABSTRACT

OBJECTIVE: The purpose of this study was to identify knowledge gaps in the global prevalence of feline immunodeficiency virus (FIV) and to obtain professional opinions and experiences regarding FIV in selected countries. We conducted a literature review of abstracts that reported the prevalence of FIV and interviewed experts in feline medicine and retroviruses from different countries to determine regional perspectives. METHODS: A total of 90 articles reporting FIV prevalence as a primary unbiased population-level analysis between 1980 and 2017 were indexed. FIV prevalence, demographics, year and location were analyzed. Statistics were evaluated and compared. In total, 10 experts were interviewed. Results were analyzed for congruence with the findings of the literature review. RESULTS: FIV prevalence was typically in the range of 5-8%, with a global prevalence of 4.7%, and remained largely constant over the reporting period (1980-2017). Over 90% of articles reported greater prevalence in older male cats. More studies were conducted in North America and Europe and reported the lowest prevalence. Expert-estimated prevalence approximated literature review prevalence. Attitudes and recommendations for management were consistent among experts. The limitations of the present review include varying inclusion criteria of cats tested in different studies, variation in testing modalities and the inability to conduct summary statistics across dissimilar cohorts. CONCLUSIONS AND RELEVANCE: The global prevalence of FIV has not changed since its discovery 40 years ago. Prevalence is higher in older male cats and is lower in North America and Europe than other continents. Experts agree that FIV is not typically a disease of high concern and is often associated with infections of the oral cavity. Vaccination is not typically recommended and has been discontinued in North America. The evaluation of risk factors for FIV progression is useful in managing infections. Recommendations for future research include analyses to determine copathogen and environmental factors that impact progression, assessment of life span impacts and investigations of treatment efficacy and side effects.


Subject(s)
Feline Acquired Immunodeficiency Syndrome , Immunodeficiency Virus, Feline , Cats , Animals , Prevalence , Feline Acquired Immunodeficiency Syndrome/epidemiology , Standard of Care , Male , Female , Cat Diseases/epidemiology , Cat Diseases/virology , Expert Testimony , Lentivirus Infections/veterinary , Lentivirus Infections/epidemiology
13.
Viruses ; 16(7)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39066160

ABSTRACT

The evolutionary pressures exerted by viral infections have led to the development of various cellular proteins with potent antiviral activities, some of which are known as antiviral restriction factors. TRIpartite Motif-containing protein 5 alpha (TRIM5α) is a well-studied restriction factor of retroviruses that exhibits virus- and host-species-specific functions in protecting against cross-primate transmission of specific lentiviruses. This specificity is achieved at the level of the host gene through positive selection predominantly within its C-terminal B30.2/PRYSPRY domain, which is responsible for the highly specific recognition of retroviral capsids. However, more recent work has challenged this paradigm, demonstrating TRIM5α as a restriction factor for retroelements as well as phylogenetically distinct viral families, acting similarly through the recognition of viral gene products via B30.2/PRYSPRY. This spectrum of antiviral activity raises questions regarding the genetic and structural plasticity of this protein as a mediator of the recognition of a potentially diverse array of viral molecular patterns. This review highlights the dynamic evolutionary footprint of the B30.2/PRYSPRY domain in response to retroviruses while exploring the guided 'specificity' conferred by the totality of TRIM5α's additional domains that may account for its recently identified promiscuity.


Subject(s)
Immunity, Innate , Retroviridae , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Animals , Humans , Antiviral Restriction Factors/metabolism , Evolution, Molecular , Host-Pathogen Interactions/immunology , Retroviridae/immunology , Retroviridae/genetics , Retroviridae/physiology , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
14.
Viruses ; 16(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38932184

ABSTRACT

Endogenous retroviruses (ERVs) are related to long terminal repeat (LTR) retrotransposons, comprising gene sequences of exogenous retroviruses integrated into the host genome and inherited according to Mendelian law. They are considered to have contributed greatly to the evolution of host genome structure and function. We previously characterized HERV-K HML-9 in the human genome. However, the biological function of this type of element in the genome of the chimpanzee, which is the closest living relative of humans, largely remains elusive. Therefore, the current study aims to characterize HML-9 in the chimpanzee genome and to compare the results with those in the human genome. Firstly, we report the distribution and genetic structural characterization of the 26 proviral elements and 38 solo LTR elements of HML-9 in the chimpanzee genome. The results showed that the distribution of these elements displayed a non-random integration pattern, and only six elements maintained a relatively complete structure. Then, we analyze their phylogeny and reveal that the identified elements all cluster together with HML-9 references and with those identified in the human genome. The HML-9 integration time was estimated based on the 2-LTR approach, and the results showed that HML-9 elements were integrated into the chimpanzee genome between 14 and 36 million years ago and into the human genome between 18 and 49 mya. In addition, conserved motifs, cis-regulatory regions, and enriched PBS sequence features in the chimpanzee genome were predicted based on bioinformatics. The results show that pathways significantly enriched for ERV LTR-regulated genes found in the chimpanzee genome are closely associated with disease development, including neurological and neurodevelopmental psychiatric disorders. In summary, the identification, characterization, and genomics of HML-9 presented here not only contribute to our understanding of the role of ERVs in primate evolution but also to our understanding of their biofunctional significance.


Subject(s)
Endogenous Retroviruses , Evolution, Molecular , Genome , Pan troglodytes , Phylogeny , Terminal Repeat Sequences , Animals , Endogenous Retroviruses/genetics , Humans , Genome, Human , Proviruses/genetics , Virus Integration , Retroelements
15.
mBio ; 15(7): e0115824, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38912776

ABSTRACT

We have investigated the function of inositol hexakisphosphate (IP6) and inositol pentakisphosphate (IP5) in the replication of murine leukemia virus (MLV). While IP6 is known to be critical for the life cycle of HIV-1, its significance in MLV remains unexplored. We find that IP6 is indeed important for MLV replication. It significantly enhances endogenous reverse transcription (ERT) in MLV. Additionally, a pelleting-based assay reveals that IP6 can stabilize MLV cores, thereby facilitating ERT. We find that IP5 and IP6 are packaged in MLV particles. However, unlike HIV-1, MLV depends upon the presence of IP6 and IP5 in target cells for successful infection. This IP6/5 requirement for infection is reflected in impaired reverse transcription observed in IP6/5-deficient cell lines. In summary, our findings demonstrate the importance of capsid stabilization by IP6/5 in the replication of diverse retroviruses; we suggest possible reasons for the differences from HIV-1 that we observed in MLV.IMPORTANCEInositol hexakisphosphate (IP6) is crucial for the assembly and replication of HIV-1. IP6 is packaged in HIV-1 particles and stabilizes the viral core enabling it to synthesize viral DNA early in viral infection. While its importance for HIV-1 is well established, its significance for other retroviruses is unknown. Here we report the role of IP6 in the gammaretrovirus, murine leukemia virus (MLV). We found that like HIV-1, MLV packages IP6, and as in HIV-1, IP6 stabilizes the MLV core thus promoting reverse transcription. Interestingly, we discovered a key difference in the role of IP6 in MLV versus HIV-1: while HIV-1 is not dependent upon IP6 levels in target cells, MLV replication is significantly reduced in IP6-deficient cell lines. We suggest that this difference in IP6 requirements reflects key differences between HIV-1 and MLV replication.


Subject(s)
Leukemia Virus, Murine , Phytic Acid , Virus Replication , Phytic Acid/metabolism , Leukemia Virus, Murine/physiology , Leukemia Virus, Murine/genetics , Humans , Animals , Reverse Transcription , Mice , Inositol Phosphates/metabolism , Cell Line , HIV-1/physiology , HIV-1/genetics , HEK293 Cells , Capsid/metabolism , Virus Assembly
16.
Res Sq ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38854052

ABSTRACT

Repetitive elements (REs) are often expressed at higher levels in tumor cells than normal cells, implicating these genomic regions as an untapped pool of tumor-associated antigens. In ovarian cancer (OC), protein from the RE ERV-K is frequently expressed by tumor cells. Here we determined whether the targeting of a previously identified immunogenic epitope in the envelope gene (env) of ERV-K resulted in target antigen specificity in non-HIV-1 settings. We found that transducing healthy donor T cells with an ERV-K-Env-specific T cell receptor construct resulted in antigen specificity only when co-cultured with HLA-A*03:01 B lymphoblastoid cells. Furthermore, these transduced T cells were not specific for HLA-A*03:01 + OC cells nor for the cognate peptide in HLA-matched systems from multiple healthy donors. These data suggest that the ERV-K-Env epitope recognized by this T cell receptor is of low immunogenicity and has limited potential as a T cell target for OC.

17.
Retrovirology ; 21(1): 13, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898526

ABSTRACT

Retroviruses exploit host proteins to assemble and release virions from infected cells. Previously, most studies focused on interacting partners of retroviral Gag proteins that localize to the cytoplasm or plasma membrane. Given that several full-length Gag proteins have been found in the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings involving previously unknown host processes. Here we systematically compared nuclear factors identified in published HIV-1 proteomic studies and performed our own mass spectrometry analysis using affinity-tagged HIV-1 and RSV Gag proteins mixed with nuclear extracts. We identified 57 nuclear proteins in common between HIV-1 and RSV Gag, and a set of nuclear proteins present in our analysis and ≥ 1 of the published HIV-1 datasets. Many proteins were associated with nuclear processes which could have functional consequences for viral replication, including transcription initiation/elongation/termination, RNA processing, splicing, and chromatin remodeling. Examples include facilitating chromatin remodeling to expose the integrated provirus, promoting expression of viral genes, repressing the transcription of antagonistic cellular genes, preventing splicing of viral RNA, altering splicing of cellular RNAs, or influencing viral or host RNA folding or RNA nuclear export. Many proteins in our pulldowns common to RSV and HIV-1 Gag are critical for transcription, including PolR2B, the second largest subunit of RNA polymerase II (RNAPII), and LEO1, a PAF1C complex member that regulates transcriptional elongation, supporting the possibility that Gag influences the host transcription profile to aid the virus. Through the interaction of RSV and HIV-1 Gag with splicing-related proteins CBLL1, HNRNPH3, TRA2B, PTBP1 and U2AF1, we speculate that Gag could enhance unspliced viral RNA production for translation and packaging. To validate one putative hit, we demonstrated an interaction of RSV Gag with Mediator complex member Med26, required for RNA polymerase II-mediated transcription. Although 57 host proteins interacted with both Gag proteins, unique host proteins belonging to each interactome dataset were identified. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.


Subject(s)
Gene Products, gag , HIV-1 , Humans , HIV-1/physiology , HIV-1/genetics , Gene Products, gag/metabolism , Gene Products, gag/genetics , Cell Nucleus/metabolism , Cell Nucleus/virology , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism , gag Gene Products, Human Immunodeficiency Virus/genetics , Rous sarcoma virus/physiology , Rous sarcoma virus/genetics , Proteomics , Host-Pathogen Interactions , Virus Replication , Host Microbial Interactions , Mass Spectrometry
18.
J Neurovirol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717678

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease. One of the basic mechanisms in this disease is the autoimmune response against the myelin sheet leading to axonal damage. There is strong evidence showing that this response is regulated by both genetic and environmental factors. In addition, the role of viruses has been extensively studied, especially in the case of human endogenous retroviruses (HERVs). However, although several associations with MS susceptibility, especially in the case of HERV-W family have been observed, the pathogenic mechanisms have remained enigmatic. To clarify these HERV-mediated mechanisms as well as the responsible HERV-W loci, we utilized RNA sequencing data obtained from the white matter of the brain of individuals with and without MS. CIBERSORTx tool was applied to estimate the proportions of neuronal, glial, and endothelial cells in the brain. In addition, the transcriptional activity of 215 HERV-W loci were analyzed. The results indicated that 65 HERV-W loci had detectable expression, of which 14 were differentially expressed between MS and control samples. Of these, 12 HERV-W loci were upregulated in MS. Expression levels of the 8 upregulated HERV-W loci had significant negative correlation with estimated oligodendrocyte proportions, suggesting that they are associated with the dynamics of oligodendrocyte generation and/or maintenance. Furthermore, Gene Set Enrichment Analysis (GSEA) results indicated that expression levels of three upregulated HERV-W loci: 2p16.2, 2q13, and Xq13.3, are associated with suppression of oligodendrocyte development and myelination. Taken together, these data suggest new HERV-W loci candidates that might take part in MS pathogenesis.

19.
Front Cell Infect Microbiol ; 14: 1379962, 2024.
Article in English | MEDLINE | ID: mdl-38655281

ABSTRACT

The notion that viruses played a crucial role in the evolution of life is not a new concept. However, more recent insights suggest that this perception might be even more expansive, highlighting the ongoing impact of viruses on host evolution. Endogenous retroviruses (ERVs) are considered genomic remnants of ancient viral infections acquired throughout vertebrate evolution. Their exogenous counterparts once infected the host's germline cells, eventually leading to the permanent endogenization of their respective proviruses. The success of ERV colonization is evident so that it constitutes 8% of the human genome. Emerging genomic studies indicate that endogenous retroviruses are not merely remnants of past infections but rather play a corollary role, despite not fully understood, in host genetic regulation. This review presents some evidence supporting the crucial role of endogenous retroviruses in regulating host genetics. We explore the involvement of human ERVs (HERVs) in key physiological processes, from their precise and orchestrated activities during cellular differentiation and pluripotency to their contributions to aging and cellular senescence. Additionally, we discuss the costs associated with hosting a substantial amount of preserved viral genetic material.


Subject(s)
Endogenous Retroviruses , Endogenous Retroviruses/genetics , Endogenous Retroviruses/physiology , Humans , Animals , Cell Differentiation , Host-Pathogen Interactions/genetics , Host Microbial Interactions/genetics , Retroviridae Infections/virology , Cellular Senescence/genetics , Proviruses/genetics , Proviruses/physiology , Evolution, Molecular
20.
Viruses ; 16(4)2024 04 13.
Article in English | MEDLINE | ID: mdl-38675942

ABSTRACT

The epitranscriptomic modification m6A is a prevalent RNA modification that plays a crucial role in the regulation of various aspects of RNA metabolism. It has been found to be involved in a wide range of physiological processes and disease states. Of particular interest is the role of m6A machinery and modifications in viral infections, serving as an evolutionary marker for distinguishing between self and non-self entities. In this review article, we present a comprehensive overview of the epitranscriptomic modification m6A and its implications for the interplay between viruses and their host, focusing on immune responses and viral replication. We outline future research directions that highlight the role of m6A in viral nucleic acid recognition, initiation of antiviral immune responses, and modulation of antiviral signaling pathways. Additionally, we discuss the potential of m6A as a prognostic biomarker and a target for therapeutic interventions in viral infections.


Subject(s)
Immunity, Innate , Virus Diseases , Humans , Virus Diseases/immunology , Virus Diseases/virology , Methylation , Virus Replication , Viruses/immunology , Viruses/genetics , Animals , RNA, Viral/genetics , RNA, Viral/immunology , Signal Transduction , Host-Pathogen Interactions/immunology
SELECTION OF CITATIONS
SEARCH DETAIL