Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
Methods Mol Biol ; 2733: 87-99, 2024.
Article in English | MEDLINE | ID: mdl-38064028

ABSTRACT

The piscine orthomyxovirus called infectious salmon anemia virus (ISAV) is one of the most important emerging pathogens affecting the salmon industry worldwide. The first reverse genetics system for ISAV, which allows the generation of recombinant ISA virus (rISAV), is an important tool for the characterization and study of this virus. The plasmid-based reverse genetics system for ISAV includes the use of a novel fish promoter, the Atlantic salmon internal transcribed spacer region 1 (ITS-1). The salmon, viral, and mammalian genetic elements included in the pSS-URG vectors allow the expression of the eight viral RNA segments. In addition to four cytomegalovirus (CMV)-based vectors that express the four proteins of the ISAV ribonucleoprotein complex, the eight pSS-URG vectors allowed the generation of infectious rISAV in salmon cells.


Subject(s)
Fish Diseases , Isavirus , Orthomyxoviridae Infections , Orthomyxoviridae , Animals , Isavirus/genetics , DNA, Complementary/genetics , Cell Line , Orthomyxoviridae/genetics , RNA, Viral/genetics , Orthomyxoviridae Infections/veterinary , Salmon/genetics , Mammals/genetics
2.
Methods Mol Biol ; 2733: 231-248, 2024.
Article in English | MEDLINE | ID: mdl-38064036

ABSTRACT

Dengue virus (DENV) is one of the most important and widespread arthropod-borne viruses, causing millions of infections over the years. Considering its epidemiological importance, efforts have been directed towards understanding various aspects of DENV biology, which have been facilitated by the development of different molecular strategies for engineering viral genomes, such as reverse genetics approaches. Reverse genetic systems are a powerful tool for investigating virus-host interaction, for vaccine development, and for high-throughput screening of antiviral compounds. However, stable manipulation of DENV genomes is a major molecular challenge, especially when using conventional cloning systems. To circumvent this issue, we describe a simple and efficient yeast-based reverse genetics system to recover infectious DENV clones.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue Virus/genetics , Reverse Genetics , High-Throughput Screening Assays , Genome, Viral , Dengue/genetics , Virus Replication/genetics
3.
Front Cell Infect Microbiol ; 11: 772311, 2021.
Article in English | MEDLINE | ID: mdl-34858879

ABSTRACT

Until 2015, loss-of-function studies to elucidate protein function in Leishmania relied on gene disruption through homologous recombination. Then, the CRISPR/Cas9 revolution reached these protozoan parasites allowing efficient genome editing with one round of transfection. In addition, the development of LeishGEdit, a PCR-based toolkit for generating knockouts and tagged lines using CRISPR/Cas9, allowed a more straightforward and effective genome editing. In this system, the plasmid pTB007 is delivered to Leishmania for episomal expression or integration in the ß-tubulin locus and for the stable expression of T7 RNA polymerase and Cas9. In South America, and especially in Brazil, Leishmania (Viannia) braziliensis is the most frequent etiological agent of tegumentary leishmaniasis. The L. braziliensis ß-tubulin locus presents significant sequence divergence in comparison with Leishmania major, which precludes the efficient integration of pTB007 and the stable expression of Cas9. To overcome this limitation, the L. major ß-tubulin sequences, present in the pTB007, were replaced by a Leishmania (Viannia) ß-tubulin conserved sequence generating the pTB007_Viannia plasmid. This modification allowed the successful integration of the pTB007_Viannia cassette in the L. braziliensis M2903 genome, and in silico predictions suggest that this can also be achieved in other Viannia species. The activity of Cas9 was evaluated by knocking out the flagellar protein PF16, which caused a phenotype of immobility in these transfectants. Endogenous PF16 was also successfully tagged with mNeonGreen, and an in-locus complementation strategy was employed to return a C-terminally tagged copy of the PF16 gene to the original locus, which resulted in the recovery of swimming capacity. The modified plasmid pTB007_Viannia allowed the integration and stable expression of both T7 RNA polymerase and Cas9 in L. braziliensis and provided an important tool for the study of the biology of this parasite.


Subject(s)
Leishmania braziliensis , Leishmania major , CRISPR-Cas Systems , DNA-Directed RNA Polymerases , Gene Editing , Leishmania braziliensis/genetics , Viral Proteins
4.
Genes (Basel) ; 11(10)2020 09 30.
Article in English | MEDLINE | ID: mdl-33007987

ABSTRACT

The protozoan parasite Leishmania (Viannia) braziliensis (L. braziliensis) is the main cause of human tegumentary leishmaniasis in the New World, a disease affecting the skin and/or mucosal tissues. Despite its importance, the study of the unique biology of L. braziliensis through reverse genetics analyses has so far lagged behind in comparison with Old World Leishmania spp. In this study, we successfully applied a cloning-free, PCR-based CRISPR-Cas9 technology in L. braziliensis that was previously developed for Old World Leishmania major and New World L. mexicana species. As proof of principle, we demonstrate the targeted replacement of a transgene (eGFP) and two L. braziliensis single-copy genes (HSP23 and HSP100). We obtained homozygous Cas9-free HSP23- and HSP100-null mutants in L. braziliensis that matched the phenotypes reported previously for the respective L. donovani null mutants. The function of HSP23 is indeed conserved throughout the Trypanosomatida as L. majorHSP23 null mutants could be complemented phenotypically with transgenes from a range of trypanosomatids. In summary, the feasibility of genetic manipulation of L. braziliensis by CRISPR-Cas9-mediated gene editing sets the stage for testing the role of specific genes in that parasite's biology, including functional studies of virulence factors in relevant animal models to reveal novel therapeutic targets to combat American tegumentary leishmaniasis.


Subject(s)
CRISPR-Cas Systems , Endopeptidase Clp/genetics , Heat-Shock Proteins/genetics , Leishmania braziliensis/genetics , Protozoan Proteins/genetics , Reverse Genetics , Endopeptidase Clp/metabolism , Gene Editing , Gene Targeting , Genes, Protozoan , Heat-Shock Proteins/metabolism , Leishmania braziliensis/physiology , Leishmania major/genetics , Leishmania major/physiology , Mutation , Polymerase Chain Reaction , Protozoan Proteins/metabolism , Thermotolerance
5.
J Gen Virol ; 101(10): 1021-1024, 2020 10.
Article in English | MEDLINE | ID: mdl-32579100

ABSTRACT

The emergence and rapid worldwide spread of a novel pandemic of acute respiratory disease - eventually named coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO) - across the human population has raised great concerns. It prompted a mobilization around the globe to study the underlying pathogen, a close relative of severe acute respiratory syndrome coronavirus (SARS-CoV) called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Numerous genome sequences of SARS-CoV-2 are now available and in-depth analyses are advancing. These will allow detailed characterization of sequence and protein functions, including comparative studies. Care should be taken when inferring function from sequence information alone, and reverse genetics systems can be used to unequivocally identify key features. For example, the molecular markers of virulence, host range and transmissibility of SARS-CoV-2 can be compared to those of related viruses in order to shed light on the biology of this emerging pathogen. Here, we summarize some recent insights from genomic studies and strategies for reverse genetics systems to generate recombinant viruses, which will be useful to investigate viral genome properties and evolution.


Subject(s)
Betacoronavirus/genetics , Genome, Viral/genetics , Reverse Genetics/methods , COVID-19 , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2
6.
Mem. Inst. Oswaldo Cruz ; 115: e190457, 2020. tab, graf
Article in English | LILACS, Sec. Est. Saúde SP | ID: biblio-1135252

ABSTRACT

BACKGROUND Imitation SWItch (ISWI) ATPase is the catalytic subunit in diverse chromatin remodeling complexes. These complexes modify histone-DNA interactions and therefore play a pivotal role in different DNA-dependent processes. In Trypanosoma cruzi, a protozoan that controls gene expression principally post-transcriptionally, the transcriptional regulation mechanisms mediated by chromatin remodeling are poorly understood. OBJECTIVE To characterise the ISWI remodeler in T. cruzi (TcISWI). METHODS A new version of pTcGW vectors was constructed to express green fluorescent protein (GFP)-tagged TcISWI. CRISPR-Cas9 system was used to obtain parasites with inactivated TcISWI gene and we determined TcISWI partners by cryomilling-affinity purification-mass spectrometry (MS) assay as an approximation to start to unravel the function of this protein. FINDINGS Our approach identified known ISWI partners [nucleoplasmin-like protein (NLP), regulator of chromosome condensation 1-like protein (RCCP) and phenylalanine/tyrosine-rich protein (FYRP)], previously characterised in T. brucei, and new components in TcISWI complex [DRBD2, DHH1 and proteins containing a domain characteristic of structural maintenance of chromosomes (SMC) proteins]. Data are available via ProteomeXchange with identifier PXD017869. MAIN CONCLUSIONS In addition to its participation in transcriptional silencing, as it was reported in T. brucei, the data generated here provide a framework that suggests a role for TcISWI chromatin remodeler in different nuclear processes in T. cruzi, including mRNA nuclear export control and chromatin compaction. Further work is necessary to clarify the TcISWI functional diversity that arises from this protein interaction study.


Subject(s)
Animals , Transcription Factors/genetics , Trypanosoma cruzi/genetics , Adenosine Triphosphatases/genetics , Chromatin Assembly and Disassembly/genetics , Gene Expression Regulation , Blotting, Western , Flow Cytometry
7.
Methods Mol Biol ; 1822: 115-122, 2018.
Article in English | MEDLINE | ID: mdl-30043300

ABSTRACT

Successful application of virus-induced gene silencing for functional genomics requires a virus vector that can initiate a systemic infection of the host plant. Agroinoculation of the pea early browning virus vectors pCAPE1 and pCAPE2 can establish infection in several genotypes of Medicago truncatula and can reduce target gene RNA levels to an extent that allows investigation of gene function.


Subject(s)
Gene Expression Regulation, Plant , Gene Silencing , Medicago truncatula/genetics , RNA Interference , Genome, Plant , Genomics/methods , Medicago truncatula/microbiology , Phenotype , Plants, Genetically Modified , Plasmids/genetics
8.
J Gen Virol ; 98(11): 2712-2724, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29022864

ABSTRACT

Zika virus (ZIKV, genus Flavivirus) has emerged as a major mosquito-transmitted human pathogen, with recent outbreaks associated with an increased incidence of neurological complications, particularly microcephaly and the Guillain-Barré syndrome. Because the virus has only very recently emerged as an important pathogen, research is being hampered by a lack of reliable molecular tools. Here we report an infectious cDNA (icDNA) clone for ZIKV isolate BeH819015 from Brazil, which was selected as representative of South American ZIKV isolated at early stages of the outbreak. icDNA clones were assembled from synthetic DNA fragments corresponding to the consensus sequence of the BeH819015 isolate. Virus rescued from the icDNA clone had properties identical to a natural ZIKV isolate from South America. Variants of the clone-derived virus, expressing nanoluciferase, enhanced green fluorescent or mCherry marker proteins in both mammalian and insect cells and being genetically stable for multiple in vitro passages, were obtained. A ZIKV subgenomic replicon, lacking a prM- and E glycoprotein encoding region and expressing a Gaussia luciferase marker, was constructed and shown to replicate both in mammalian and insect cells. In the presence of the Semliki Forest virus replicon, expressing ZIKV structural proteins, the ZIKV replicon was packaged into virus-replicon particles. Efficient reverse genetic systems, genetically stable marker viruses and packaged replicons offer significant improvements for biological studies of ZIKV infection and disease, as well as for the development of antiviral approaches.


Subject(s)
Reverse Genetics/methods , Zika Virus/genetics , Brazil , DNA, Complementary/genetics , DNA, Complementary/isolation & purification , Genes, Reporter , Luciferases/genetics , Staining and Labeling/methods , Zika Virus/isolation & purification
9.
Methods Mol Biol ; 1602: 239-250, 2017.
Article in English | MEDLINE | ID: mdl-28508224

ABSTRACT

The piscine Orthomyxovirus called Infectious Salmon Anemia Virus (ISAV) is one of the most important emerging pathogens affecting the salmon industry worldwide. The first reverse genetics system for ISAV, which allows the generation of recombinant ISA virus (rISAV), is an important tool for the characterization and study of this fish virus. The plasmid-based reverse genetics system for ISAV includes the use of a novel fish promoter, the Atlantic salmon internal transcribed spacer region 1 (ITS-1). The salmon, viral and mammalian genetic elements included in pSS-URG vectors allow the expression of the eight viral RNA segments. In addition to four cytomegalovirus (CMV)-based vectors that express the four proteins of the ISAV ribonucleoprotein complex, the eight pSS-URG vectors allowed the generation of infectious rISAV in salmon cells.


Subject(s)
DNA, Complementary , Isavirus/genetics , RNA, Viral , Virus Replication , Animals , Cell Line , Cloning, Molecular , Gene Expression , Gene Order , Genome, Viral , Plasmids/genetics , Reverse Genetics , Transfection
10.
Braz. j. microbiol ; Braz. j. microbiol;47(4): 993-999, Oct.-Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-828184

ABSTRACT

Abstract The open reading frame of a Brazilian bovine viral diarrhea virus (BVDV) strain, IBSP4ncp, was recombined with the untranslated regions of the reference NADL strain by homologous recombination in Saccharomyces cerevisiae, resulting in chimeric full-length cDNA clones of BVDV (chi-NADL/IBSP4ncp#2 and chi-NADL/IBSP4ncp#3). The recombinant clones were successfully recovered, resulting in viable viruses, having the kinetics of replication, focus size, and morphology similar to those of the parental virus, IBSP4ncp. In addition, the chimeric viruses remained stable for at least 10 passages in cell culture, maintaining their replication efficiency unaltered. Nucleotide sequencing revealed a few point mutations; nevertheless, the phenotype of the rescued viruses was nearly identical to that of the parental virus in all experiments. Thus, genetic stability of the chimeric clones and their phenotypic similarity to the parental virus confirm the ability of the yeast-based homologous recombination to maintain characteristics of the parental virus from which the recombinant viruses were derived. The data also support possible use of the yeast system for the manipulation of the BVDV genome.


Subject(s)
Animals , Cattle , Yeasts/genetics , Genome, Viral , DNA, Complementary , Diarrhea Viruses, Bovine Viral/genetics , Homologous Recombination , Virus Replication , Yeasts/metabolism , Cell Line , Open Reading Frames , Sequence Analysis, DNA , Diarrhea Viruses, Bovine Viral/physiology , Diarrhea Viruses, Bovine Viral/ultrastructure
11.
Braz. J. Microbiol. ; 47(4): 993-999, Out-Dez. 2016. tab, ilus, graf
Article in English | VETINDEX | ID: vti-23302

ABSTRACT

The open reading frame of a Brazilian bovine viral diarrhea virus (BVDV) strain, IBSP4ncp, was recombined with the untranslated regions of the reference NADL strain by homologous recombination in Saccharomyces cerevisiae, resulting in chimeric full-length cDNA clones of BVDV (chi-NADL/IBSP4ncp/2 and chi-NADL/IBSP4ncp/3). The recombinant clones were successfully recovered, resulting in viable viruses, having the kinetics of replication, focus size, and morphology similar to those of the parental virus, IBSP4ncp. In addition, the chimeric viruses remained stable for at least 10 passages in cell culture, maintaining their replication efficiency unaltered. Nucleotide sequencing revealed a few point mutations; nevertheless, the phenotype of the rescued viruses was nearly identical to that of the parental virus in all experiments. Thus, genetic stability of the chimeric clones and their phenotypic similarity to the parental virus confirm the ability of the yeast-based homologous recombination to maintain characteristics of the parental virus from which the recombinant viruses were derived. The data also support possible use of the yeast system for the manipulation of the BVDV genome.(AU)


Subject(s)
Animals , Cattle , Cattle/genetics , Cattle/microbiology , Yeasts/growth & development , Yeasts/genetics , Pestivirus Infections/veterinary , Clone Cells/microbiology
12.
Braz J Microbiol ; 47(4): 993-999, 2016.
Article in English | MEDLINE | ID: mdl-27522929

ABSTRACT

The open reading frame of a Brazilian bovine viral diarrhea virus (BVDV) strain, IBSP4ncp, was recombined with the untranslated regions of the reference NADL strain by homologous recombination in Saccharomyces cerevisiae, resulting in chimeric full-length cDNA clones of BVDV (chi-NADL/IBSP4ncp#2 and chi-NADL/IBSP4ncp#3). The recombinant clones were successfully recovered, resulting in viable viruses, having the kinetics of replication, focus size, and morphology similar to those of the parental virus, IBSP4ncp. In addition, the chimeric viruses remained stable for at least 10 passages in cell culture, maintaining their replication efficiency unaltered. Nucleotide sequencing revealed a few point mutations; nevertheless, the phenotype of the rescued viruses was nearly identical to that of the parental virus in all experiments. Thus, genetic stability of the chimeric clones and their phenotypic similarity to the parental virus confirm the ability of the yeast-based homologous recombination to maintain characteristics of the parental virus from which the recombinant viruses were derived. The data also support possible use of the yeast system for the manipulation of the BVDV genome.


Subject(s)
DNA, Complementary , Diarrhea Viruses, Bovine Viral/genetics , Genome, Viral , Homologous Recombination , Yeasts/genetics , Animals , Cattle , Cell Line , Diarrhea Viruses, Bovine Viral/physiology , Diarrhea Viruses, Bovine Viral/ultrastructure , Open Reading Frames , Sequence Analysis, DNA , Virus Replication , Yeasts/metabolism
13.
Mem. Inst. Oswaldo Cruz ; 110(5): 687-690, Aug. 2015. ilus
Article in English | LILACS | ID: lil-755906

ABSTRACT

The functional characterisation of thousands of Trypanosoma cruzi genes remains a challenge. Reverse genetics approaches compatible with high-throughput cloning strategies can provide the tool needed to tackle this challenge. We previously published the pTcGW platform, composed by plasmid vectors carrying different options of N-terminal fusion tags based on Gateway® technology. Here, we present an improved 1.1 version of pTcGW vectors, which is characterised by a fully flexible structure allowing an easy customisation of each element of the vectors in a single cloning step. Additionally, both N and C-terminal fusions are available with new tag options for protein complexes purification. Three of the newly created vectors were successfully used to determine the cellular localisation of four T. cruzi proteins. The 1.1 version of pTcGW platform can be used in a variety of assays, such as protein overexpression, identification of protein-protein interaction and protein localisation. This powerful and versatile tool allows adding valuable functional information to T. cruzigenes and is freely available for scientific community.

.


Subject(s)
Genetic Vectors/genetics , Trypanosoma cruzi/genetics , Chromatography, Affinity , Cloning, Molecular , Expressed Sequence Tags/metabolism , Gene Expression/genetics , Plasmids
14.
Vet Microbiol ; 175(1): 17-25, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25480165

ABSTRACT

To examine the effects of the NS1 and NEP genes of avian influenza viruses (AIVs) on pathogenicity in mice, we generated recombinant PR8 viruses containing 3 different NS genes of AIVs. In contrast to the reverse genetics-generated PR8 (rPR8) strain and other recombinant viruses, the recombinant virus rPR8-NS(0028), which contained the NS gene of A/chicken/KBNP-0028/2000 (H9N2) (0028), was non-pathogenic to mice. The novel single mutations of 0028 NS1 to corresponding amino acid of PR8 NS1, G139D and S151T increased the pathogenicity of rPR8-NS(0028). The replacement of the PL motifs (EPEV or RSEV) of pathogenic recombinant viruses with that of 0028 (GSEV) did not reduce the pathogenicity of the viruses. However, a recombinant virus with an EPEV-grafted 0028 NS gene was more pathogenic than rPR8-NS(0028) but less than rPR8. The lower pathogenicity of rPR8-NS(0028) might be associated with the lower virus titer and IFN-ß level in the lungs of infected mice, and be attributed to G139, S151 and GSEV-PL motif of NS1 gene of 0028. In conclusion we defined new amino acid residues of NS1 related to mice pathogenicity and the presence of pathogenic NS genes among low pathogenic AIVs may encourage continuous monitoring of their mammalian pathogenicity.


Subject(s)
Chickens/virology , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza in Birds/virology , Viral Nonstructural Proteins/genetics , Amino Acid Sequence , Animals , Base Sequence , Female , Influenza in Birds/immunology , Interferon-beta/metabolism , Lung/virology , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Mutation , Phylogeny , Sequence Analysis, DNA , Viral Load , Virulence
15.
Braz. J. Microbiol. ; 45(4): 1555-1563, Oct.-Dec. 2014. ilus, graf, tab
Article in English | VETINDEX | ID: vti-26914

ABSTRACT

The Infectious Bursal Disease Virus (IBDV) causes immunosuppression in young chickens. Advances in molecular virology and vaccines for IBDV have been achieved by viral reverse genetics (VRG). VRG for IBDV has undergone changes over time, however all strategies used to generate particles of IBDV involves multiple rounds of amplification and need of in vitro ligation and restriction sites. The aim of this research was to build the world's first VRG for IBDV by yeast-based homologous recombination; a more efficient, robust and simple process than cloning by in vitro ligation. The wild type IBDV (Wt-IBDV-Br) was isolated in Brazil and had its genome cloned in pJG-CMV-HDR vector by yeast-based homologous recombination. The clones were transfected into chicken embryo fibroblasts and the recovered virus (IC-IBDV-Br) showed genetic stability and similar phenotype to Wt-IBDV-Br, which were observed by nucleotide sequence, focus size/morphology and replication kinetics, respectively. Thus, IBDV reverse genetics by yeast-based homologous recombination provides tools to IBDV understanding and vaccines/viral vectors development.


Subject(s)
Animals , Chick Embryo , Homologous Recombination , Infectious bursal disease virus/genetics , Reverse Genetics/methods , Brazil , Cells, Cultured , Fibroblasts/virology , Genetic Vectors , Infectious bursal disease virus/isolation & purification , Saccharomyces cerevisiae/genetics , Transfection , Virus Cultivation , Virus Replication
16.
Braz. j. microbiol ; Braz. j. microbiol;45(4): 1555-1563, Oct.-Dec. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-741314

ABSTRACT

The Infectious Bursal Disease Virus (IBDV) causes immunosuppression in young chickens. Advances in molecular virology and vaccines for IBDV have been achieved by viral reverse genetics (VRG). VRG for IBDV has undergone changes over time, however all strategies used to generate particles of IBDV involves multiple rounds of amplification and need of in vitro ligation and restriction sites. The aim of this research was to build the world's first VRG for IBDV by yeast-based homologous recombination; a more efficient, robust and simple process than cloning by in vitro ligation. The wild type IBDV (Wt-IBDV-Br) was isolated in Brazil and had its genome cloned in pJG-CMV-HDR vector by yeast-based homologous recombination. The clones were transfected into chicken embryo fibroblasts and the recovered virus (IC-IBDV-Br) showed genetic stability and similar phenotype to Wt-IBDV-Br, which were observed by nucleotide sequence, focus size/morphology and replication kinetics, respectively. Thus, IBDV reverse genetics by yeast-based homologous recombination provides tools to IBDV understanding and vaccines/viral vectors development.


Subject(s)
Animals , Chick Embryo , Homologous Recombination , Infectious bursal disease virus/genetics , Reverse Genetics/methods , Brazil , Cells, Cultured , Fibroblasts/virology , Genetic Vectors , Genomic Instability , Infectious bursal disease virus/isolation & purification , Infectious bursal disease virus/physiology , Saccharomyces cerevisiae/genetics , Transfection , Virus Cultivation , Virus Replication
17.
Braz J Microbiol ; 45(4): 1555-63, 2014.
Article in English | MEDLINE | ID: mdl-25763067

ABSTRACT

The Infectious Bursal Disease Virus (IBDV) causes immunosuppression in young chickens. Advances in molecular virology and vaccines for IBDV have been achieved by viral reverse genetics (VRG). VRG for IBDV has undergone changes over time, however all strategies used to generate particles of IBDV involves multiple rounds of amplification and need of in vitro ligation and restriction sites. The aim of this research was to build the world's first VRG for IBDV by yeast-based homologous recombination; a more efficient, robust and simple process than cloning by in vitro ligation. The wild type IBDV (Wt-IBDV-Br) was isolated in Brazil and had its genome cloned in pJG-CMV-HDR vector by yeast-based homologous recombination. The clones were transfected into chicken embryo fibroblasts and the recovered virus (IC-IBDV-Br) showed genetic stability and similar phenotype to Wt-IBDV-Br, which were observed by nucleotide sequence, focus size/morphology and replication kinetics, respectively. Thus, IBDV reverse genetics by yeast-based homologous recombination provides tools to IBDV understanding and vaccines/viral vectors development.


Subject(s)
Homologous Recombination , Infectious bursal disease virus/genetics , Reverse Genetics/methods , Animals , Brazil , Cells, Cultured , Chick Embryo , Fibroblasts/virology , Genetic Vectors , Genomic Instability , Infectious bursal disease virus/isolation & purification , Infectious bursal disease virus/physiology , Saccharomyces cerevisiae/genetics , Transfection , Virus Cultivation , Virus Replication
18.
Vet Microbiol ; 168(1): 41-9, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24296300

ABSTRACT

We generated reassorted PR8 viruses containing six different combinations of avian influenza virus (AIV) polymerase genes from A/chicken/Korea/01310/2001 (H9N2) (01310) and A/chicken/Korea/KBNP-0028/2000 (H9N2) (0028) to examine the effects of the AIV polymerase genes PB1, PB2, and PA on replication efficiency in different host cells and pathogenicity in mice. The virus titers of the reassorted viruses possessing 01310 [rPR8-PB2(01310)] and 0028 [rPR8-PB2(0028)] PB2 genes were significantly higher than those of the others except the rPR8 virus in embryonated chicken eggs at 37°C, and those of avian polymerase reassorted viruses were significantly less than rPR8 in MDCK cells at 32 and 37°C. rPR8-PB2(01310), rPR8-PB2(0028), and rPR8-PA(0028) caused no body weight loss in BALB/c mice but rPR8-PA(01310), rPR8-PB1(01310), and rPR8-PB1(0028) caused mortality and significantly different body weight loss compared to those in the mock treatment. In contrast to rPR8-PB2(0028) and rPR8-PA(0028), rPR8-PB2(01310) was not isolated from infected mice, and rPR8-PB1(0028) was less pathogenic than rPR8-PB1(01310). We determined the amino acid residues that were specific to the less pathogenic polymerases. A comparison with those of pandemic 2009 H1N1, human fatal H5N1 and H7N9, and pathogenic AIVs to mice without adaptation revealed that they possessed the mammalian pathogenic constellation of polymerases. Thus, the novel polymerase genes and amino acid residues may be useful to understand the host-barrier overcome of AIVs in mice and to develop safer and efficacious vaccines.


Subject(s)
Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A virus/enzymology , Influenza in Birds/virology , Virulence/genetics , Virus Replication/genetics , Animals , Chick Embryo , Chickens , Dogs , Female , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H9N2 Subtype/enzymology , Influenza A Virus, H9N2 Subtype/genetics , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Reassortant Viruses/metabolism , Republic of Korea , Viral Load , Viral Proteins/genetics , Viral Proteins/metabolism
19.
Mem. Inst. Oswaldo Cruz ; 108(8): 983-991, 6/dez. 2013.
Article in English | LILACS | ID: lil-697152

ABSTRACT

Dengue virulence and fitness are important factors that determine disease outcome. However, dengue virus (DENV) molecular biology and pathogenesis are not completely elucidated. New insights on those mechanisms have been facilitated by the development of reverse genetic systems in the past decades. Unfortunately, instability of flavivirus genomes cloned in Escherichia coli has been a major problem in these systems. Here, we describe the development of a complete reverse genetics system, based on the construction of an infectious clone and replicon for a low passage DENV-3 genotype III of a clinical isolate. Both constructs were assembled into a newly designed yeast- E. coli shuttle vector by homologous recombination technique and propagated in yeast to prevent any possible genome instability in E. coli . RNA transcripts derived from the infectious clone are infectious upon transfection into BHK-21 cells even after repeated passages of the plasmid in yeast. Transcript-derived DENV-3 exhibited growth kinetics, focus formation size comparable to original DENV-3 in mosquito C6/36 cell culture. In vitro characterisation of DENV-3 replicon confirmed its identity and ability to replicate transiently in BHK-21 cells. The reverse genetics system reported here is a valuable tool that will facilitate further molecular studies in DENV replication, virus attenuation and pathogenesis.


Subject(s)
Dengue Virus/genetics , Reverse Genetics , RNA, Viral/genetics , Virus Replication/genetics , Escherichia coli/genetics , Genetic Vectors/genetics , Plasmids
20.
Genet. mol. res. (Online) ; Genet. mol. res. (Online);3(3): 323-341, 2004. tab, ilus
Article in English | LILACS | ID: lil-482174

ABSTRACT

Virus-induced gene silencing (VIGS) has been shown to be of great potential in plant reverse genetics. Advantages of VIGS over other approaches, such as T-DNA or transposon tagging, include the circumvention of plant transformation, methodological simplicity and robustness, and speedy results. These features make VIGS an attractive alternative instrument in functional genomics, even in a high throughput fashion. The system is already well established in Nicotiana benthamiana; however, efforts are being made to improve VIGS in other species, including monocots. Current research is focussed on unravelling the mechanisms of post-transcriptional gene silencing and VIGS, as well as on finding novel viral vectors in order to broaden the host species spectrum. We examined how VIGS has been used to assess gene functions in plants, including molecular mechanisms involved in the process, available methodological elements, such as vectors and inoculation procedures, and we looked for examples in which the system has been applied successfully to characterize gene function in plants.


Subject(s)
Gene Silencing , Genes, Plant/genetics , Plants, Genetically Modified/genetics , Nicotiana/genetics , Transcription, Genetic/genetics , Plant Viruses/genetics , DNA, Viral , Flowers/genetics , Genetic Vectors , Genomics/methods , Models, Genetic , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL