Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Genes Genomics ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39112833

ABSTRACT

BACKGROUND: This study is based on deep mining of Ribo-seq data for the identification of lncRNAs that have highly expressed sORFs in HCC. In this paper, dynamic prospects associated with sORFs acting as newly defined tumor-specific epitopes are discussed with possible improvement in strategies for tumor immunotherapy. OBJECTIVE: Using ribosome profiling to identify and characterize sORFs within lncRNAs in HCC, identify potential therapeutic targets and tumor-specific epitopes applicable for immunotherapy. METHODS: MetamORF performed the identification of sORFs with deep analysis of the data of ribosome profiling in lncRNAs associated with HCC. The translation efficiency in these molecules was estimated, and epitope prediction was done by pVACbind. Peptide search was done to check the presence of micropeptides translated from these identified sORFs. validated translational activity and identified potential epitopes. RESULTS: Higher translation efficiency was noted in the case of lncRNAs associated with HCC compared to normal tissues. Of particular note is ORF3418981, which results in the highest expression and has supporting experimental evidence at the protein level. Epitope prediction identified a putative epitope at the C-terminus of ORF3418981. CONCLUSIONS: This study uncovers the as-yet-unknown potential of lncRNA-derived sORFs as sources of tumor antigens, shifting the research focus from protein-coding genes to non-coding RNAs also in the HCC context. Moreover, this study highlights the contribution of a subset of lncRNAs, especially LINC00152, to the development of tumors and modulation of the immune response by its sORFs.

2.
Elife ; 122024 Jul 16.
Article in English | MEDLINE | ID: mdl-39010741

ABSTRACT

Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5' leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5' leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.


Subject(s)
Neuroglia , Protein Biosynthesis , Animals , Neuroglia/metabolism , Neurons/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Gene Expression Regulation , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Brain/metabolism , Brain/cytology , Ribosomes/metabolism , Drosophila/genetics
3.
Int J Mol Sci ; 25(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063227

ABSTRACT

Regulation of translation is a crucial step in gene expression. Developmental signals and environmental stimuli dynamically regulate translation via upstream small open reading frames (uORFs) and ribosome pausing. Recent studies have revealed many plant genes that are specifically regulated by uORF translation following changes in growth conditions, but ribosome-pausing events are less well understood. In this study, we performed ribosome profiling (Ribo-seq) of etiolated maize (Zea mays) seedlings exposed to light for different durations, revealing hundreds of genes specifically regulated at the translation level during the early period of light exposure. We identified over 400 ribosome-pausing events in the dark that were rapidly released after illumination. These results suggested that ribosome pausing negatively regulates translation from specific genes, a conclusion that was supported by a non-targeted proteomics analysis. Importantly, we identified a conserved nucleotide motif downstream of the pausing sites. Our results elucidate the role of ribosome pausing in the control of gene expression in plants; the identification of the cis-element at the pausing sites provides insight into the mechanisms behind translation regulation and potential targets for artificial control of plant translation.


Subject(s)
Gene Expression Regulation, Plant , Open Reading Frames , Plant Proteins , Protein Biosynthesis , Ribosomes , Seedlings , Zea mays , Zea mays/genetics , Zea mays/metabolism , Ribosomes/metabolism , Seedlings/genetics , Seedlings/metabolism , Seedlings/radiation effects , Seedlings/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Open Reading Frames/genetics , Light , Darkness , Proteomics/methods
4.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38842510

ABSTRACT

Accurate and comprehensive annotation of microprotein-coding small open reading frames (smORFs) is critical to our understanding of normal physiology and disease. Empirical identification of translated smORFs is carried out primarily using ribosome profiling (Ribo-seq). While effective, published Ribo-seq datasets can vary drastically in quality and different analysis tools are frequently employed. Here, we examine the impact of these factors on identifying translated smORFs. We compared five commonly used software tools that assess open reading frame translation from Ribo-seq (RibORFv0.1, RibORFv1.0, RiboCode, ORFquant, and Ribo-TISH) and found surprisingly low agreement across all tools. Only ~2% of smORFs were called translated by all five tools, and ~15% by three or more tools when assessing the same high-resolution Ribo-seq dataset. For larger annotated genes, the same analysis showed ~74% agreement across all five tools. We also found that some tools are strongly biased against low-resolution Ribo-seq data, while others are more tolerant. Analyzing Ribo-seq coverage revealed that smORFs detected by more than one tool tend to have higher translation levels and higher fractions of in-frame reads, consistent with what was observed for annotated genes. Together these results support employing multiple tools to identify the most confident microprotein-coding smORFs and choosing the tools based on the quality of the dataset and the planned downstream characterization experiments of the predicted smORFs.


Subject(s)
Open Reading Frames , Software , Ribosomes/metabolism , Ribosomes/genetics , Molecular Sequence Annotation/methods , Humans , Protein Biosynthesis , Computational Biology/methods , Ribosome Profiling
5.
Wellcome Open Res ; 9: 179, 2024.
Article in English | MEDLINE | ID: mdl-38846930

ABSTRACT

Ribosome profiling is a powerful technique to study translation at a transcriptome-wide level. However, ensuring good data quality is paramount for accurate interpretation, as is ensuring that the analyses are reproducible. We introduce a new Nextflow DSL2 pipeline, riboseq-flow, designed for processing and comprehensive quality control of ribosome profiling experiments. Riboseq-flow is user-friendly, versatile and upholds high standards in reproducibility, scalability, portability, version control and continuous integration. It enables users to efficiently analyse multiple samples in parallel and helps them evaluate the quality and utility of their data based on the detailed metrics and visualisations that are automatically generated. Riboseq-flow is available at https://github.com/iraiosub/riboseq-flow.


Ribosome profiling is a cutting-edge method that provides a detailed view of protein synthesis across the entire set of RNA molecules within cells. To ensure the reliability of such studies, high-quality data and the ability to replicate analyses are crucial. To address this, we present riboseq-flow, a new tool built with Nextflow DSL2, tailored for analysing data from ribosome profiling experiments. This pipeline stands out for its ease of use, flexibility, and commitment to high reproducibility standards. It's designed to handle multiple samples simultaneously, ensuring efficient analysis for large-scale studies. Moreover, riboseq-flow automatically generates detailed reports and visual representations to assess the data quality, enhancing researchers' understanding of their experiments and guiding future decisions. This valuable resource is freely accessible at https://github.com/iraiosub/riboseq-flow.

6.
BMC Genomics ; 25(1): 554, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831306

ABSTRACT

BACKGROUND: Sperm storage capacity (SSC) determines the duration of fertility in hens and is an important reproduction trait that cannot be ignored in production. Currently, the genetic mechanism of SSC is still unclear in hens. Therefore, to explore the genetic basis of SSC, we analyzed the uterus-vagina junction (UVJ) of hens with different SSC at different times after insemination by RNA-seq and Ribo-seq. RESULTS: Our results showed that 589, 596, and 527 differentially expressed genes (DEGs), 730, 783, and 324 differentially translated genes (DTGs), and 804, 625, and 467 differential translation efficiency genes (DTEGs) were detected on the 5th, 10th, and 15th days after insemination, respectively. In transcription levels, we found that the differences of SSC at different times after insemination were mainly reflected in the transmission of information between cells, the composition of intercellular adhesion complexes, the regulation of ion channels, the regulation of cellular physiological activities, the composition of cells, and the composition of cell membranes. In translation efficiency (TE) levels, the differences of SSC were mainly related to the physiological and metabolic activities in the cell, the composition of the organelle membrane, the physiological activities of oxidation, cell components, and cell growth processes. According to pathway analysis, SSC was related to neuroactive ligand-receptor interaction, histidine metabolism, and PPAR signaling pathway at the transcriptional level and glutathione metabolism, oxidative phosphorylation, calcium signaling pathway, cell adhesion molecules, galactose metabolism, and Wnt signaling pathway at the TE level. We screened candidate genes affecting SSC at transcriptional levels (COL4A4, MUC6, MCHR2, TACR1, AVPR1A, COL1A1, HK2, RB1, VIPR2, HMGCS2) and TE levels(COL4A4, MUC6, CYCS, NDUFA13, CYTB, RRM2, CAMK4, HRH2, LCT, GCK, GALT). Among them, COL4A4 and MUC6 were the key candidate genes differing in transcription, translation, and translation efficiency. CONCLUSIONS: Our study used the combined analysis of RNA-seq and Ribo-seq for the first time to investigate the SSC and reveal the physiological processes associated with SSC. The key candidate genes affecting SSC were screened, and the theoretical basis was provided for the analysis of the molecular regulation mechanism of SSC.


Subject(s)
Chickens , RNA-Seq , Spermatozoa , Animals , Chickens/genetics , Female , Male , Spermatozoa/metabolism , Gene Expression Profiling , Insemination , Transcriptome , Sequence Analysis, RNA , Ribosome Profiling
7.
Comput Struct Biotechnol J ; 23: 1912-1918, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38721586

ABSTRACT

Translational regulation plays the most critical role in gene expression. Ribosome profiling sequencing (Ribo-Seq) is one of the methods to study translation and its regulation. It is a high throughput technology based on deep sequencing, which targets ribosome protected mRNA fragments to produce a 'global snapshot' of translatome. There has been an annual increase in the number of publications incorporating Ribo-seq technology. Because of its importance, we used PubMed database to conduct a comprehensive bibliometric analysis on Ribo-seq. We identified 2744 published articles that utilized the term 'Ribo-seq' between 2009 and Jan 2024, and 684 articles that contained both Ribo-seq and RNA-seq terms. Based on keywords correlation analysis, we discovered that the primary focus of Ribo-seq articles lies in the areas of translation, transcriptome, and ribosome in the past few years and other topics such as single-cell ribo-seq and crispr within two years, reflecting current areas of interests in Ribo-seq research. The Ribo-seq data analysis applications were also explored and summarized, providing a guide for researchers to choose corresponding tools for different types of analysis. Overall, we highlighted the advances made by Ribo-seq technologies, and the possibilities of utilizing machine learning models to unravel information from multi-omics data. The integration of Ribo-seq with other omics data, such as RNA-seq, is essential to understand the gene expression in complex biological systems.

8.
Front Microbiol ; 15: 1335310, 2024.
Article in English | MEDLINE | ID: mdl-38812687

ABSTRACT

Bioinformatic studies on small proteins are under-represented due to difficulties in annotation posed by their small size. However, recent discoveries emphasize the functional significance of small proteins in cellular processes including cell signaling, metabolism, and adaptation to stress. In this study, we utilized a Random Forest classifier trained on sequence features, RNA-Seq, and Ribo-Seq data to uncover small proteins (smORFs) in M. tuberculosis. Independent predictions for the exponential and starvation conditions resulted in 695 potential smORFs. We examined the functional implications of these smORFs using homology searches, LC-MS/MS, and ChIP-seq data, testing their expression in diverse growth conditions, and identifying protein domains. We provide evidence that some of these smORFs could be part of operons, or exist as upstream ORFs. This expanded data resource for the proteins of M. tuberculosis would aid in fine-tuning the existing protein and gene regulatory networks, thereby improving system-wide studies. The primary goal of this study was to uncover and characterize smORFs in M. tuberculosis through bioinformatic analysis, shedding light on their functional roles and genomic organization. Further investigation of these potential smORFs would provide valuable insights into the genome organization and functional diversity of the M. tuberculosis proteome.

9.
Sci Rep ; 14(1): 12295, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811812

ABSTRACT

Intramuscular fat (IMF) in pork holds significant importance for economic performance within the pig industry and dietary calcium supplementation enhances the accumulation of intramuscular fat. Additionally, calcium ions inhibit translation and reduce protein synthesis. However, the mechanism by which calcium regulates IMF deposition in muscle through translation remains largely unknown. In this study, we compared the ribosome profiles of the longissimus dorsi muscles of Duroc × Landrace × Large white pigs from the normal calcium (NC) group or calcium supplement (HC) group by Ribo-seq, and RNA-seq. By integrating multiple-omics analysis, we further discovered 437 genes that were transcriptionally unchanged but translationally altered and these genes were significantly enriched in the oxidative phosphorylation signaling pathway. Furthermore, experimental data showed that inhibiting the expression of COX10 and mtND4L increased triglyceride accumulation in C2C12 cells, providing new targets for intramuscular fat deposition. Finally, this work links dietary calcium, translation regulation and IMF deposition, providing a new strategy for both meat quality and economic performance within the pig industry.


Subject(s)
Calcium, Dietary , Muscle, Skeletal , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Swine , Calcium, Dietary/metabolism , Adipose Tissue/metabolism , Dietary Supplements , Mice , Protein Biosynthesis/drug effects , Triglycerides/metabolism , Calcium/metabolism
10.
Plant Physiol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808472

ABSTRACT

Non-canonical peptides (NCPs) are a class of peptides generated from regions previously thought of as non-coding, such as introns, 5' untranslated regions (UTRs), 3' UTRs, and intergenic regions. In recent years, the significance and diverse functions of NCPs have come to light, yet a systematic and comprehensive NCP database remains absent. Here, we developed NCPbook (https://ncp.wiki/ncpbook/), a database of evidence-supported NCPs, which aims to provide a resource for efficient exploration, analysis, and manipulation of NCPs. NCPbook incorporates data from diverse public databases and scientific literature. The current version of NCPbook includes 180,676 NCPs across 29 different species, evidenced by mass spectrometry (MS), ribosome profiling (Ribo-seq), or molecular experiments (ME). These NCPs are distributed across kingdoms, comprising 123,408 from 14 plant species, 56,999 from seven animal species, and 269 from eight microbial species. Furthermore, NCPbook encompasses 9,166 functionally characterized NCPs playing important roles in immunity, stress resistance, growth, and development. Equipped with a user-friendly interface, NCPbook allows users to search, browse, visualize, and retrieve data, making it an indispensable platform for researching NCPs in various plant, animal, and microbial species.

11.
bioRxiv ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38585907

ABSTRACT

The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Yet, accurately delineating the variation in RNA translation represents a significant challenge. Here, we develop RiboTIE, a transformer model-based approach to map global RNA translation. We find that RiboTIE offers unparalleled precision and sensitivity for ribosome profiling data. Application of RiboTIE to normal brain and medulloblastoma cancer samples enables high-resolution insights into disease regulation of RNA translation.

12.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339016

ABSTRACT

Y-box-binding proteins (YB proteins) are multifunctional DNA- and RNA-binding proteins that play an important role in the regulation of gene expression. The high homology of their cold shock domains and the similarity between their long, unstructured C-terminal domains suggest that Y-box-binding proteins may have similar functions in a cell. Here, we consider the functional interchangeability of the somatic YB proteins YB-1 and YB-3. RNA-seq and Ribo-seq are used to track changes in the mRNA abundance or mRNA translation in HEK293T cells solely expressing YB-1, YB-3, or neither of them. We show that YB proteins have a dual effect on translation. Although the expression of YB proteins stimulates global translation, YB-1 and YB-3 inhibit the translation of their direct CLIP-identified mRNA targets. The impact of YB-1 and YB-3 on the translation of their mRNA targets is similar, which suggests that they can substitute each other in inhibiting the translation of their mRNA targets in HEK293T cells.


Subject(s)
DNA-Binding Proteins , Protein Biosynthesis , Humans , HEK293 Cells , RNA, Messenger/genetics , RNA, Messenger/metabolism , DNA-Binding Proteins/metabolism , Y-Box-Binding Protein 1/genetics , Y-Box-Binding Protein 1/metabolism
13.
bioRxiv ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38260303

ABSTRACT

Ribosome profiling is a widely-used technique for measuring ribosome occupancy at nucleotide resolution. However, the need to analyze this data at nucleotide resolution introduces unique challenges in data visualization and analyses. In this study, we introduce RiboGraph, a dedicated visualization tool designed to work with .ribo files, a specialized and efficient format for ribosome occupancy data. Unlike existing solutions that rely on large alignment files and time-consuming preprocessing steps, RiboGraph operates on a purpose designed compact file type and eliminates the need for data preprocessing. This efficiency allows for interactive, real-time visualization at ribosome-protected fragment length resolution. By providing an integrated toolset, RiboGraph empowers researchers to conduct comprehensive visual analysis of ribosome occupancy data. Availability and Implementation: Source code, step-by-step installation instructions and links to documentation are available on GitHub: https://github.com/ribosomeprofiling/ribograph. On the same page, we provide test files and a step-by-step tutorial highlighting the key features of RiboGraph.

14.
Mol Cell ; 84(2): 261-276.e18, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38176414

ABSTRACT

A hallmark of high-risk childhood medulloblastoma is the dysregulation of RNA translation. Currently, it is unknown whether medulloblastoma dysregulates the translation of putatively oncogenic non-canonical open reading frames (ORFs). To address this question, we performed ribosome profiling of 32 medulloblastoma tissues and cell lines and observed widespread non-canonical ORF translation. We then developed a stepwise approach using multiple CRISPR-Cas9 screens to elucidate non-canonical ORFs and putative microproteins implicated in medulloblastoma cell survival. We determined that multiple lncRNA-ORFs and upstream ORFs (uORFs) exhibited selective functionality independent of main coding sequences. A microprotein encoded by one of these ORFs, ASNSD1-uORF or ASDURF, was upregulated, associated with MYC-family oncogenes, and promoted medulloblastoma cell survival through engagement with the prefoldin-like chaperone complex. Our findings underscore the fundamental importance of non-canonical ORF translation in medulloblastoma and provide a rationale to include these ORFs in future studies seeking to define new cancer targets.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Protein Biosynthesis , Medulloblastoma/genetics , Open Reading Frames/genetics , Cell Survival/genetics , Cerebellar Neoplasms/genetics
15.
Methods Mol Biol ; 2741: 73-100, 2024.
Article in English | MEDLINE | ID: mdl-38217649

ABSTRACT

Noncoding RNAs, including regulatory RNAs (sRNAs), are instrumental in regulating gene expression in pathogenic bacteria, allowing them to adapt to various stresses encountered in their host environments. Staphylococcus aureus is a well-studied model for RNA-mediated regulation of virulence and pathogenicity, with sRNAs playing significant roles in shaping S. aureus interactions with human and animal hosts. By modulating the translation and/or stability of target mRNAs, sRNAs regulate the synthesis of virulence factors and regulatory proteins required for pathogenesis. Moreover, perturbation of the levels of RNA modifications in two other classes of noncoding RNAs, rRNAs, and tRNAs, has been proposed to contribute to stress adaptation. However, the study of how these various factors affect translation regulation has often been restricted to specific genes, using in vivo reporters and/or in vitro translation systems. Genome-wide sequencing approaches offer novel perspectives for studying RNA-dependent regulation. In particular, ribosome profiling methods provide a powerful resource for characterizing the overall landscape of translational regulation, contributing to a better understanding of S. aureus physiopathology. Here, we describe protocols that we have adapted to perform ribosome profiling in S. aureus.


Subject(s)
Ribosome Profiling , Staphylococcus aureus , Animals , Humans , Staphylococcus aureus/metabolism , Gene Expression Regulation , RNA, Ribosomal/genetics , RNA, Messenger/genetics , Gene Expression Regulation, Bacterial
16.
Adv Sci (Weinh) ; 11(3): e2300702, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38036415

ABSTRACT

Cattle and the draught force provided by its skeletal muscle have been integral to agro-ecosystems of agricultural civilization for millennia. However, relatively little is known about the cattle muscle functional genomics (including protein coding genes, non-coding RNA, etc.). Circular RNAs (circRNAs), as a new class of non-coding RNAs, can be effectively translated into detectable peptides, which enlightened us on the importance of circRNAs in cattle muscle physiology function. Here, RNA-seq, Ribosome profiling (Ribo-seq), and peptidome data are integrated from cattle skeletal muscle, and detected five encoded peptides from circRNAs. It is further identified and functionally characterize a 907-amino acids muscle-specific peptide that is named circNEB-peptide because derived by the splicing of Nebulin (NEB) gene. This peptide localizes to the nucleus and cytoplasm and directly interacts with SKP1 and TPM1, key factors regulating physiological activities of myoblasts, via ubiquitination and myoblast fusion, respectively. The circNEB-peptide is found to promote myoblasts proliferation and differentiation in vitro, and induce muscle regeneration in vivo. These findings suggest circNEB-peptide is an important regulator of skeletal muscle regeneration and underscore the possibility that more encoding polypeptides derived by RNAs currently annotated as non-coding exist.


Subject(s)
Multiomics , Muscle Proteins , RNA, Circular , Cattle , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , Ecosystem , Muscle, Skeletal , Muscle Development/genetics , Peptides/metabolism
17.
Methods Mol Biol ; 2724: 139-163, 2024.
Article in English | MEDLINE | ID: mdl-37987904

ABSTRACT

Translation is a key step in control of gene expression, yet most analyses of global responses to a stimulus focus on transcription and the transcriptome. For RNA viruses in particular, which have no DNA-templated transcriptional control, control of viral and host translation is crucial. Here, we describe the method of ribosome profiling (ribo-seq) in plants, applied to virus infection. Ribo-seq is a deep sequencing technique that reveals the translatome by presenting a snapshot of the positions and relative amounts of translating ribosomes on all mRNAs in the cell. In contrast to RNA-seq, a crude cell extract is first digested with ribonuclease to degrade all mRNA not protected by a translating 80S ribosome. The resulting ribosome-protected fragments (RPFs) are deep sequenced. The number of reads mapping to a specific mRNA compared to the standard RNA-seq reads reveals the translational efficiency of that mRNA. Moreover, the precise positions of ribosome pause sites, previously unknown translatable open reading frames, and noncanonical translation events can be characterized quantitatively using ribo-seq. As this technique requires meticulous technique, here we present detailed step-by-step instructions for cell lysate preparation by flash freezing of samples, nuclease digestion of cell lysate, monosome collection by sucrose cushion ultracentrifugation, size-selective RNA extraction and rRNA depletion, library preparation for sequencing and finally quality control of sequenced data. These experimental methods apply to many plant systems, with minor nuclease digestion modifications depending on the plant tissue and species. This protocol should be valuable for studies of plant virus gene expression, and the global translational response to virus infection, or any other biotic or abiotic stress, by the host plant.


Subject(s)
Protein Biosynthesis , Virus Diseases , Humans , Ribosome Profiling , Ribosomes/genetics , Ribosomes/metabolism , RNA, Messenger/genetics , Virus Diseases/metabolism
18.
Viruses ; 15(12)2023 11 29.
Article in English | MEDLINE | ID: mdl-38140587

ABSTRACT

Avian reovirus (ARV) infection is prevalent in farmed poultry and causes viral arthritis and severe immunosuppression. The spleen plays a very important part in protecting hosts against infectious pathogens. In this research, transcriptome and translatome sequencing technology were combined to investigate the mechanisms of transcriptional and translational regulation in the spleen after ARV infection. On a genome-wide scale, ARV infection can significantly reduce the translation efficiency (TE) of splenic genes. Differentially expressed translational efficiency genes (DTEGs) were identified, including 15 upregulated DTEGs and 396 downregulated DTEGs. These DTEGs were mainly enriched in immune regulation signaling pathways, which indicates that ARV infection reduces the innate immune response in the spleen. In addition, combined analyses revealed that the innate immune response involves the effects of transcriptional and translational regulation. Moreover, we discovered the key gene IL4I1, the most significantly upregulated gene at both the transcriptional and translational levels. Further studies in DF1 cells showed that overexpression of IL4I1 could inhibit the replication of ARV, while inhibiting the expression of endogenous IL4I1 with siRNA promoted the replication of ARV. Overexpression of IL4I1 significantly downregulated the mRNA expression of IFN-ß, LGP2, TBK1 and NF-κB; however, the expression of these genes was significantly upregulated after inhibition of IL4I1, suggesting that IL4I1 may be a negative feedback effect of innate immune signaling pathways. In addition, there may be an interaction between IL4I1 and ARV σA protein, and we speculate that the IL4I1 protein plays a regulatory role by interacting with the σA protein. This study not only provides a new perspective on the regulatory mechanisms of the innate immune response after ARV infection but also enriches the knowledge of the host defense mechanisms against ARV invasion and the outcome of ARV evasion of the host's innate immune response.


Subject(s)
Chickens , Orthoreovirus, Avian , Animals , Transcriptome , Orthoreovirus, Avian/genetics , Spleen , Immunity, Innate , Signal Transduction , Gene Expression Profiling
19.
RNA Biol ; 20(1): 943-954, 2023 01.
Article in English | MEDLINE | ID: mdl-38013207

ABSTRACT

Building a reference set of protein-coding open reading frames (ORFs) has revolutionized biological process discovery and understanding. Traditionally, gene models have been confirmed using cDNA sequencing and encoded translated regions inferred using sequence-based detection of start and stop combinations longer than 100 amino-acids to prevent false positives. This has led to small ORFs (smORFs) and their encoded proteins left un-annotated. Ribo-seq allows deciphering translated regions from untranslated irrespective of the length. In this review, we describe the power of Ribo-seq data in detection of smORFs while discussing the major challenge posed by data-quality, -depth and -sparseness in identifying the start and end of smORF translation. In particular, we outline smORF cataloguing efforts in humans and the large differences that have arisen due to variation in data, methods and assumptions. Although current versions of smORF reference sets can already be used as a powerful tool for hypothesis generation, we recommend that future editions should consider these data limitations and adopt unified processing for the community to establish a canonical catalogue of translated smORFs.


Subject(s)
Proteins , Ribosome Profiling , Humans , Proteins/genetics , Open Reading Frames , Protein Biosynthesis , Micropeptides
20.
Mol Cell Proteomics ; 22(9): 100631, 2023 09.
Article in English | MEDLINE | ID: mdl-37572790

ABSTRACT

Ribosome profiling (Ribo-Seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of noncanonical sites of ribosome translation outside the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7000 noncanonical ORFs are translated, which, at first glance, has the potential to expand the number of human protein CDSs by 30%, from ∼19,500 annotated CDSs to over 26,000 annotated CDSs. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of noncanonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome but searching for guidance on how to proceed. Here, we discuss the current state of noncanonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein coding."


Subject(s)
Protein Biosynthesis , Proteome , Humans , Proteome/metabolism , Proteomics/methods , Ribosome Profiling , Ribosomes/metabolism , Open Reading Frames
SELECTION OF CITATIONS
SEARCH DETAIL