Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 695
Filter
1.
Anim Microbiome ; 6(1): 53, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313845

ABSTRACT

BACKGROUND: Chronic diarrhea is a common cause of mortality and morbidity in captive rhesus macaques (Macaca mulatta). The exact etiology of chronic diarrhea in macaques remains unidentified. The occurrence of diarrhea is frequently linked to dysbiosis within the gut microbiome. Research into microbiome signatures correlated with diarrhea in macaques have predominantly been conducted with single sample collections. Our analysis was based on the metagenomic composition of longitudinally acquired fecal samples from rhesus macaques with chronic diarrhea and clinically healthy rhesus macaques that were obtained over the course of two years. We aimed to investigate potential relationships between the macaque gut microbiome, the presence of diarrhea and diet interventions with a selection of commercially available monkey diets. RESULTS: The microbiome signature of macaques with intermittent chronic diarrhea showed a significant increase in lactate producing bacteria e.g. lactobacilli, and an increase in fermenters of lactate and succinate. Strikingly, two lactose free diets were associated with a lower incidence of diarrhea. CONCLUSION: A lactose intolerance mechanism is suggested in these animals by the bloom of Lactobacillus in the presence of lactose resulting in an overproduction of intermediate fermentation products likely led to osmotically induced diarrhea. This study provides new insights into suspected microbiome-lactose intolerance relationship in rhesus macaques with intermittent chronic diarrhea. The integration of machine learning with metagenomic data analysis holds potential for developing targeted dietary interventions and therapeutic strategies and therefore ensuring a healthier and more resilient primate population.

2.
Nutrients ; 16(17)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39275251

ABSTRACT

Inulin is a plant polysaccharide which, due to its chemical structure, is not digestible by human gut enzymes but by some bacteria of the human microbiota, acting as a prebiotic. Consequently, inulin consumption has been associated with changes in the composition of the intestinal microbiota related to an improvement of the metabolic state, counteracting different obesity-related disturbances. However, the specific mechanisms of action, including bacterial changes, are not exactly known. Here, a bibliographic review was carried out to study the main effects of inulin on human metabolic health, with a special focus on the mechanisms of action of this prebiotic. Inulin supplementation contributes to body weight and BMI control, reduces blood glucose levels, improves insulin sensitivity, and reduces inflammation markers, mainly through the selective favoring of short-chain fatty acid (SCFA)-producer species from the genera Bifidobacterium and Anaerostipes. These SCFAs have been shown to ameliorate glucose metabolism and decrease hepatic lipogenesis, reduce inflammation, modulate immune activity, and improve anthropometric parameters such as body weight or BMI. In conclusion, the studies collected suggest that inulin intake produces positive metabolic effects through the improvement of the intestinal microbiota and through the metabolites produced by its fermentation.


Subject(s)
Gastrointestinal Microbiome , Inulin , Prebiotics , Humans , Inulin/pharmacology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Fatty Acids, Volatile/metabolism , Obesity/metabolism , Obesity/microbiology , Body Mass Index , Blood Glucose/metabolism , Body Weight/drug effects , Insulin Resistance
3.
Nutrients ; 16(17)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39275258

ABSTRACT

Our previous studies have demonstrated that konjac glucomannan (KGM) can prevent dysbiosis induced by antibiotics. While exercise may also impact the gut microbiome, there are limited studies reporting its protective effect on antibiotic-induced dysbiosis. Therefore, this study investigated the preventive and regulatory effects of a combination of 6-week exercise and KGM intervention on antibiotic-induced dysbiosis in C57BL/6J mice compared with a single intervention. The results showed that combined exercise and KGM intervention could restore the changes in the relative abundance of Bacteroides (3.73% with CTL versus 14.23% with ATBX versus 4.46% with EK) and Prevotellaceae_Prevotella (0.33% with CTL versus 0.00% with ATBX versus 0.30% with EK) induced by antibiotics (p < 0.05), and minimized the Bray-Curtis distance induced by antibiotics (0.55 with CTL versus 0.81 with ATBX versus 0.80 with EXC versus 0.83 with KGM versus 0.75 with EK). Compared with the combined intervention, exercise intervention also produced a certain level of recovery effects; the relative abundance of Rikenellaceae (1.96% with CTL versus 0.09% with ATBX versus 0.49% with EXC) was restored, while KGM supplementation showed the best preventive effect. In addition, the combination of exercise and KGM significantly enriched microbial purine metabolic pathways (p < 0.05). These findings indicate that combining exercise with KGM could be a promising approach to reducing the side effects of antibiotics on the gut microbiome.


Subject(s)
Anti-Bacterial Agents , Dysbiosis , Gastrointestinal Microbiome , Mannans , Mice, Inbred C57BL , Physical Conditioning, Animal , Animals , Mannans/pharmacology , Dysbiosis/prevention & control , Dysbiosis/chemically induced , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/adverse effects , Gastrointestinal Microbiome/drug effects , Mice , Male , Combined Modality Therapy
4.
Food Chem ; 463(Pt 2): 141254, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39298848

ABSTRACT

Spent brewery grain (SBG) is a by-product of the brewery industry. The study aimed to investigate the prebiotic potential of SBG. The chemical composition and fermentation capacity of SBG were checked. The gut microbiota response to SBG was assessed in two in vitro models (batch fermentation and dynamic system). Substances with prebiotic properties, including arabinoxylans (16.7 g/100 g) and polyphenols (49.1 mg/100 g), were identified in SBG. Suitable growth and fermentation by probiotic bacteria were observed. The modulatory effect of gut microbiota depends on the in vitro system used. In batch fermentation, there was no stimulation of Bifidobacterium or lactic acid bacteria (LAB), but short-chain fatty acid (SCFA) and branched short-chain fatty acids (BCFA) synthesis increased. In dynamic, SBG exhibited a moderate bifidogenic effect, promoting Akkermansia and LAB growth while reducing Bacteroides and Escherichia-Shigella. SCFA stabilisation and reduction of BCFA content were noted. Moderate prebiotic effects were observed.

5.
Metabolites ; 14(9)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39330504

ABSTRACT

GoodBiome™ Foods are functional foods containing a probiotic (Bacillus subtilis HU58™) and prebiotics (mainly inulin). Their effects on the human gut microbiota were assessed using ex vivo SIFR® technology, which has been validated to provide clinically predictive insights. GoodBiome™ Foods (BBM/LCM/OSM) were subjected to oral, gastric, and small intestinal digestion/absorption, after which their impact on the gut microbiome of four adults was assessed (n = 3). All GoodBiome™ Foods boosted health-related SCFA acetate (+13.1/14.1/13.8 mM for BBM/LCM/OSM), propionate (particularly OSM; +7.4/7.5/8.9 mM for BBM/LCM/OSM) and butyrate (particularly BBM; +2.6/2.1/1.4 mM for BBM/LCM/OSM). This is related to the increase in Bifidobacterium species (B. catenulatum, B. adolescentis, B. pseudocatenulatum), Coprococcus catus and Bacteroidetes members (Bacteroides caccae, Phocaeicola dorei, P. massiliensis), likely mediated via inulin. Further, the potent propionogenic potential of OSM related to increased Bacteroidetes members known to ferment oats (s key ingredient of OSM), while the butyrogenic potential of BBM related to a specific increase in Anaerobutyricum hallii, a butyrate producer specialized in the fermentation of erythritol (key ingredient of BBM). In addition, OSM/BBM suppressed the pathogen Clostridioides difficile, potentially due to inclusion of HU58™ in GoodBiome™ Foods. Finally, all products enhanced a spectrum of metabolites well beyond SCFA, including vitamins (B3/B6), essential amino acids, and health-related metabolites such as indole-3-propionic acid. Overall, the addition of specific ingredients to complex foods was shown to specifically modulate the gut microbiome, potentially contributing to health benefits. Noticeably, our findings contradict a recent in vitro study, underscoring the critical role of employing a physiologically relevant digestion/absorption procedure for a more accurate evaluation of the microbiome-modulating potential of complex foods.

6.
Cell Rep ; 43(9): 114736, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39277863

ABSTRACT

Short-chain fatty acids (SCFAs) are immunomodulatory compounds produced by the microbiome through dietary fiber fermentation. Although generally considered beneficial for gut health, patients suffering from inflammatory bowel disease (IBD) display poor tolerance to fiber-rich diets, suggesting that SCFAs may have contrary effects under inflammatory conditions. To investigate this, we examined the effect of SCFAs on human macrophages in the presence of Toll-like receptor (TLR) agonists. In contrast to anti-inflammatory effects under steady-state conditions, we found that butyrate and propionate activated the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in the presence of TLR agonists. Mechanistically, these SCFAs prevented transcription of FLICE-like inhibitory protein (cFLIP) and interleukin-10 (IL-10) through histone deacetylase (HDAC) inhibition, triggering caspase-8-dependent NLRP3 inflammasome activation. SCFA-driven NLRP3 activation was potassium efflux independent and did not result in cell death but rather triggered hyperactivation and IL-1ß release. Our findings demonstrate that butyrate and propionate are bacterially derived danger signals that regulate NLRP3 inflammasome activation through epigenetic modulation of the inflammatory response.


Subject(s)
Butyrates , Inflammasomes , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Propionates , Toll-Like Receptors , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Propionates/pharmacology , Butyrates/pharmacology , Macrophages/metabolism , Macrophages/drug effects , Toll-Like Receptors/metabolism , Signal Transduction/drug effects , Interleukin-1beta/metabolism , Interleukin-10/metabolism
7.
Transl Pediatr ; 13(8): 1312-1326, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39263295

ABSTRACT

Background: Early enteral nutrition and the gut microbiota profoundly influence neonatal brain development, with short-chain fatty acids (SCFAs) from the microbiota playing a pivotal role. Understanding the relationship between dysbiosis, SCFAs, and brain development is crucial. In this study, we investigated the impact of antibiotics on the concentration of SCFAs in neonatal feces. Additionally, we developed a model of gut dysbiosis in neonatal mice to examine the potential relationship between this imbalance, SCFAs production, and brain function development. Methods: We measured the SCFAs content in the feces of two groups of neonates, categorized based on whether antibiotics were used, and conducted the Neonatal Behavioral Neurological Assessment (NBNA) test on all neonates. Then we evaluated fecal SCFAs levels in neonates and neonatal mice post-antibiotic treatment using liquid chromatography-mass spectrometry (LC-MS) analysis. Morris water maze (MWM) tests assessed behavioral performance, and western blot analysis examined brain tissue-related proteins-neuron-specific enolase (NSE), ionized calcium binding adaptor molecule-1 (IBA1), and myelin basic proteins (MBP). Results: The use of antibiotics did not affect the NBNA scores of the two groups of neonates, but it did reduce the SCFAs content in their feces. Antibiotic administration induced gut dysbiosis in mice, resulting in decreased IBA1 and MBP expression. Interventions to restore gut microbiota ameliorated these effects. Mice with dysbiosis displayed cognitive deficits in the MWM test. SCFAs levels decreased during dysbiosis, and increased upon microbiota recovery. Conclusions: Neonatal dysbiosis affects the microbiota-gut-brain axis, impairing cognitive function and nervous system development. Reduced SCFAs may contribute significantly to these alterations.

8.
BMC Med ; 22(1): 358, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39227818

ABSTRACT

BACKGROUND: Individuals with non-celiac gluten/wheat sensitivity (NCGWS) experience improvement in gastrointestinal symptoms following a gluten-free diet. Although previous results have indicated that fructo-oligosaccharides (FOS), a type of short-chain fructans, were more likely to induce symptoms than gluten in self-reported NCGWS patients, the underlying mechanisms are unresolved. METHODS: Our main objective was therefore to investigate whether FOS-fructans and gluten affect the composition and diversity of the faecal microbiota (16S rRNA gene sequencing), faecal metabolites of microbial fermentation (short-chain fatty acids [SCFA]; gas chromatography with flame ionization detector), and a faecal biomarker of gut inflammation (neutrophil gelatinase-associated lipocalin, also known as lipocalin 2, NGAL/LCN2; ELISA). In the randomised double-blind placebo-controlled crossover study, 59 participants with self-reported NCGWS underwent three different 7-day diet challenges with gluten (5.7 g/day), FOS-fructans (2.1 g/day), and placebo separately (three periods, six challenge sequences). RESULTS: The relative abundances of certain bacterial taxa were affected differently by the diet challenges. After the FOS-fructan challenge, Fusicatenibacter increased, while Eubacterium (E.) coprostanoligenes group, Anaerotruncus, and unknown Ruminococcaceae genera decreased. The gluten challenge was primarily characterized by increased abundance of Eubacterium xylanophilum group. However, no differences were found for bacterial diversity (α-diversity), overall bacterial community structure (ß-diversity), faecal metabolites (SCFA), or NGAL/LCN2. Furthermore, gastrointestinal symptoms in response to FOS-fructans were generally not linked to substantial shifts in the gut bacterial community. However, the reduction in E. coprostanoligenes group following the FOS-fructan challenge was associated with increased gastrointestinal pain. Finally, correlation analysis revealed that changes in gastrointestinal symptoms following the FOS-fructan and gluten challenges were linked to varying bacterial abundances at baseline. CONCLUSIONS: In conclusion, while FOS-fructans induced more gastrointestinal symptoms than gluten in the NCGWS patients, we did not find that substantial shifts in the composition nor function of the faecal microbiota could explain these differences in the current study. However, our results indicate that individual variations in baseline bacterial composition/function may influence the gastrointestinal symptom response to both FOS-fructans and gluten. Additionally, the change in E. coprostanoligenes group, which was associated with increased symptoms, implies that attention should be given to these bacteria in future trials investigating the impact of dietary treatments on gastrointestinal symptoms. TRIAL REGISTRATION: Clinicaltrials.gov as NCT02464150.


Subject(s)
Cross-Over Studies , Feces , Fructans , Gastrointestinal Microbiome , Glutens , Humans , Male , Female , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Glutens/adverse effects , Glutens/administration & dosage , Adult , Feces/microbiology , Feces/chemistry , Middle Aged , Double-Blind Method , Wheat Hypersensitivity/diet therapy , Oligosaccharides/administration & dosage , Young Adult
9.
Article in English | MEDLINE | ID: mdl-39276608

ABSTRACT

Fermentation-derived short-chain fatty acids (SCFA)4 are potential mediators of the health benefits associated with dietary fiber intake. SCFA affect physiological processes locally in the gut and on distant organs via the systemic circulation. Since SCFA are used as energy source for colonocytes and substrate for the liver metabolism, their concentrations in the systemic circulation are low. Therefore, quantification of systemic SCFA requires sensitive analytical techniques. This article covers the optimization and validation of a gas chromatography-mass spectrometry method to measure systemic SCFA concentrations following derivatization with 2,4-difluoroaniline (DFA)5 and extraction in ethyl acetate. Sample preparation was optimized by varying the amount of DFA, coupling agent 1,3-dicyclohexylcarbodiimide, ethyl acetate and sodium bicarbonate, which is used to quench derivatization. In addition, evaporation of the samples using a vacuum concentrator resulted in less contamination, notably of acetate, compared to drying with N2 gas. The method showed excellent linearity with coefficient of variation (R2) > 0.99 and a good precision (relative standard deviation < 20 %) and accuracy. Finally, systemic concentrations of SCFA in human plasma samples could successfully be determined.

10.
Gut Microbes ; 16(1): 2393270, 2024.
Article in English | MEDLINE | ID: mdl-39284033

ABSTRACT

Short-chain fatty acids (SCFAs) - acetate, propionate, and butyrate - are important bacterial fermentation metabolites regulating many important aspects of human physiology. Decreases in the concentrations of any or multiple SCFAs are associated with various detrimental effects to the host. Previous research has broadly focused on gut microbiome produced SCFAs as a group, with minimal distinction between acetate, propionate, and butyrate independently, each with significantly different host effects. In this review, we comprehensively delineate the roles of these SCFAs with emphasis on receptor affinity, signaling pathway involvement, and net host physiologic effects. Butyrate is highlighted due to its unique role in gastrointestinal-associated functions, especially maintaining gut barrier integrity. Butyrate functions by promoting epithelial tight junctions, serving as fuel for colonocyte ATP production, and modulating the immune system. Interaction with the immune system occurs locally in the gastrointestinal tract and systemically in the brain. Investigation into research conducted on butyrate production pathways and specific bacterial players involved highlights a unique risk associated with use of gram-positive targeted antibiotics. We review and discuss evidence showing the relationship between the butyrate-producing gram-positive genus, Roseburia, and susceptibility to commonly prescribed, widely used gram-positive antibiotics. Considering gut microbiome implications when choosing antibiotic therapy may benefit health outcomes in patients.


Subject(s)
Butyrates , Fatty Acids, Volatile , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/physiology , Fatty Acids, Volatile/metabolism , Animals , Butyrates/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism , Anti-Bacterial Agents
11.
Gastro Hep Adv ; 3(4): 461-470, 2024.
Article in English | MEDLINE | ID: mdl-39131720

ABSTRACT

Background and Aims: Gut dysbiosis characterized by an imbalanced microbiota is closely involved in the pathogenesis of a widespread gastrointestinal inflammatory disorder, inflammatory bowel disease. However, it is unclear how the complex intestinal microbiota affects development or resistant of mucosal inflammation. Our aim was to investigate the impact of the gut microbiota on susceptibility in a mouse model of ulcerative colitis. Methods: We compared the susceptibility to dextran sulfate sodium (DSS)-induced colitis of inbred BALB/c mice obtained from the 3 main distributors of laboratory animals in Japan. Clinical symptoms of the colitis and the faecal microbiota were assessed. Cohousing approach was used to identify whether the gut microbiota is a primary factor determining disease susceptibility. Results: Here, we showed differences in the susceptibility of BALB/c mice from the vendors to DSS colitis. Analysis of the gut microbiota using 16S ribosomal RNA sequencing revealed clear separation of the gut microbial composition among mice from the vendors. Notably, the abundance of the phylum Actinobacteriota was strongly associated with disease activity. We also observed the expansion of butyrate-producing Roseburia species in mice with decreased susceptibility of the disease. Further cohousing experiments showed that variation in clinical outcomes was more correlated with the gut microbiota than genetic variants among substrains from different suppliers. Conclusion: A BALB/c substrain that was resistant to DSS-induced colitis was observed, and the severity of DSS-induced colitis was mainly influenced by the gut microbiota. Targeting butyrate-producing bacteria could have therapeutic potential for ulcerative colitis.

12.
Ann Transl Med ; 12(4): 74, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39118956

ABSTRACT

Acute lymphocytic leukemia (ALL) is an aggressive hematological malignancy of highly proliferative lymphoblasts. ALL is the most common cancer in children, and is typically treated with combination chemotherapy. The 5-year survival of ALL improved significantly in recent decades with this treatment approach. However, certain age groups (below 2 and over 10 years of age) have much worse prognosis, and over 50% of patients with ALL experience long-term side effects proportional to the dosage of anticancer drugs. Therefore, different treatment strategies are required to improve survival in ALL and to reduce side effects of chemotherapy. Since epigenetic modifications are dominantly reversible, "epidrugs" (drugs targeting epigenetic markers) are considered for feasibility in the treatment of ALL as epigenetic modifications, and acetylation of histones was demonstrated to play a critical role in the pathogenesis of ALL. Histone deacetylases (HDACs) have been shown to be differentially expressed in several hematological malignancies, including ALL. HDAC inhibitors (HDACis) have been shown to express selective toxicity for ALL cells, but they showed limited efficacy and higher than expected toxicity in mouse models or clinical trials in ALL. The aim of this review is to examine the role of the microbiota and microbial metabolites in the mechanisms of HDAC functions, and explore the utilization of the microbiota and microbial metabolites in improving the efficacy of HDACi in ALL. HDAC regulators and natural HDACi are depleted in ALL due to microbiota change leading to a decrease in butyrate and propionate, and HDACi treatment is not effective in ALL due to their short half-life. We propose that HDACi released by the microbiota may be necessary in HDAC regulation and this process is impaired in ALL. Furthermore, the review will also consider the role of restoration of the microbiota or supplementation of natural HDACi in potentially restoring HDAC and HDACi functions.

13.
J Agric Food Chem ; 72(34): 18971-18985, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39146036

ABSTRACT

Our previous study showed that heavy metal lead (Pb) exposure exacerbates high-fat-diet (HFD)-induced metabolic damage and significantly depletes the gut microbiota-derived metabolite short-chain fatty acid (SCFA) levels. However, it remains unclear whether SCFA is a key metabolite involved in accelerating adverse consequences after Pb exposure. In this study, we explored the effects of exogenous supplementation of acetate, propionate, and butyrate on a metabolic disorder model in Pb-exposed HFD mice. We found that three SCFA interventions attenuated glycolipid metabolism disorders and liver damage, with butyrate performing the best effects in improving obesity-related symptoms. All three SCFA promoted the abundance of Muribaculaceae and Muribaculum, acetate specifically enriched Christensenellaceae, Blautia, and Ruminococcus, and butyrate specifically enriched Parasutterella, Rikenella, Prevotellaceae_UCG-001, and Bacteroides, which contributed to the positive promotion of SCFA production forming a virtuous cycle. Besides, butyrate inhibited Gram-negative bacteria Escherichia-Shigella. All of these events alleviated the intestinal Th17/Treg imbalance and inflammatory response through crosstalk between the G protein-coupled receptor (GPR)/histone deacetylase 3 (HDAC3) and lipopolysaccharide (LPS)/toll-like receptors 4 (TLR4)/nuclear factor κ-B (NF-κB) pathways and ultimately improved the intestinal barrier function. SCFA further upregulated the monocarboxylate transporter 1 (MCT1) and GPR43/adenosine 5'-monophosphate-activated protein kinase (AMPK) pathways to inhibit hepatic lipid accumulation. Overall, SCFA, especially butyrate, is an effective modulator to improve metabolic disorders in obese individuals exposed to heavy metals by targeting gut microecology.


Subject(s)
Bacteria , Diet, High-Fat , Fatty Acids, Volatile , Gastrointestinal Microbiome , Homeostasis , Lead , Mice, Inbred C57BL , Obesity , Animals , Mice , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/drug effects , Obesity/metabolism , Obesity/drug therapy , Fatty Acids, Volatile/metabolism , Male , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/drug effects , Homeostasis/drug effects , Humans , Lead/metabolism , Intestines/microbiology , Intestines/drug effects
14.
Nutrients ; 16(16)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39203805

ABSTRACT

Acetate-producing Saccharomyces cerevisiae var. boulardii strains could exert improved effects on ulcerative colitis, which here, was preclinically evaluated in an acute dextran sodium sulphate induced model of colitis. Nine-week-old female mice were divided into 12 groups, receiving either drinking water or 2.75% dextran sodium sulphate for 7 days, combined with a daily gavage of various treatments with different levels of acetate accumulation: sham control (phosphate buffered saline, no acetate), non-probiotic control (Baker's yeast, no acetate), probiotic control (Enterol®, transient acetate), and additionally several Saccharomyces cerevisiae var. boulardii strains with respectively no, high, and extra-high acetate accumulation. Disease activity was monitored daily, and feces samples were collected at different timepoints. On day 14, the mice were sacrificed, upon which blood and colonic tissue were collected for analysis. Disease activity in inflamed mice was lower when treated with the high-acetate-producing strain compared to sham and non-probiotic controls. The non-acetate-producing strain showed higher disease activity compared to the acetate-producing strains. Accordingly, higher histologic inflammation was observed in non- or transient-acetate-producing strains compared to the sham control, whereas this increase was not observed for high- and extra-high-acetate-producing strains upon induction of inflammation. These anti-inflammatory findings were confirmed by transcriptomic analysis of differentially expressed genes. Moreover, only the strain with the highest acetate production was superior in maintaining a stable gut microbial alpha-diversity upon inflammation. These findings support new possibilities for acetate-mediated management of inflammation in inflammatory bowel disease by administrating high-acetate-producing Saccharomyces cerevisae var. boulardii strains.


Subject(s)
Acetates , Colitis , Dextran Sulfate , Probiotics , Saccharomyces cerevisiae , Animals , Female , Mice , Saccharomyces cerevisiae/genetics , Colitis/chemically induced , Colitis/therapy , Disease Models, Animal , Colon/metabolism , Colon/microbiology , Colon/pathology , Saccharomyces boulardii , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/therapy , Colitis, Ulcerative/microbiology , Mutation , Gastrointestinal Microbiome , Feces/microbiology , Mice, Inbred C57BL
15.
Food Chem ; 460(Pt 3): 140664, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39116774

ABSTRACT

Red Cooked Sauce (RCS) and Red Raw Sauce (RRS) are a mixture of natural crops that have a promising content of bioactive compounds (BC). The aim was to determine the effect of the indigestible fraction (IF) during the colonic fermentation in RCS and RRS by studying the two-way relationship between gut microbiota composition and microbial metabolites produced from BC fermented in the TNO in vitro dynamic model of the human colon (TIM-2). Total BC in undigested and predigested RRS, 957 and 715 mg/100 g DW, respectively, was significantly higher (p < 0.05) than in the RCS, 571 and 406 mg/100 g DW, respectively. Catenibacterium and Holdemanella increased during RCS fermentation, while 13 genera showed a clear positive correlation with most microbial phenolic metabolites. Our findings suggest that the mechanisms, pathways, and enzymes involved in producing microbial metabolites exhibited uniqueness among bacterial taxa, even within shared genus/family classifications.


Subject(s)
Bacteria , Fermentation , Gastrointestinal Microbiome , Solanum lycopersicum , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Humans , Solanum lycopersicum/microbiology , Solanum lycopersicum/metabolism , Solanum lycopersicum/chemistry , Colon/microbiology , Colon/metabolism
16.
Biomedicines ; 12(8)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39200366

ABSTRACT

The gut microbiome, crucial to human health, changes with age and disease, and influences metabolic profiles. Gut bacteria produce short-chain fatty acids (SCFAs), essential for maintaining homeostasis and modulating inflammation. Dysbiosis, commonly due to poor diet or lifestyle, disrupts the integrity of the intestinal barrier and may contribute to conditions such as obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD). Analytical methods such as gas chromatography-mass spectrometry (GC/MS) are vital for SCFA analysis, with various preparation and storage techniques improving the accuracy. Advances in these methods have improved the reliability and sensitivity of SCFA quantification, which is crucial for the identification of disease biomarkers. Evidence from GC/MS-based studies has revealed that accurate SCFA quantification requires meticulous sample preparation and handling. The process begins with the extraction of SCFAs from biological samples using methods such as direct solvent extraction or solid-phase microextraction (SPME), both of which require optimization for maximum recovery. Derivatization, which chemically modifies SCFAs to enhance volatility and detectability, is a crucial step, typically involving esterification or silylation. Following this, the cleanup process removes impurities that might interfere with the analysis. Although recent advances in GC/MS technology have significantly improved SCFA-detection sensitivity and specificity, proper sample storage, with acid preservatives and the avoidance of repeated thawing, is essential for maintaining SCFA integrity.

17.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38986506

ABSTRACT

AIMS: This study aimed to compare the effects of linear and branched fructooligosaccharides (FOS) extracted from chicory and grass (Lolium perenne), respectively on human microbiota composition, diversity, and metabolism. METHODS AND RESULTS: To test the effects of linear and branched FOS on human microbiota we used the artificial in vitro human colon model (TIM-2). Microbiota composition and diversity were assessed by V3-V4 16S rRNA metagenomic sequencing, followed by differential taxa abundance and alpha/beta diversity analyses. SCFA/BCFA production was evaluated by gas chromatography-mass spectrometry. As a result, branched FOS had the most beneficial effects on microbial diversity and metabolite production. Also, branched FOS significantly increased the abundance of commensal bacteria associated with maintaining healthy gut functions and controlling inflammation, such as Butyricicoccus, Erysipelotrichaceae, Phascolarctobacterium, and Sutterella. Linear FOS also significantly increased the abundance of some other commensal gut bacteria (Anaerobutyricum, Lachnospiraceae, Faecalibacterium), but there were no differences in diversity metrics compared to the control. CONCLUSIONS: The study revealed that branched FOS had the most beneficial effects compared to the linear FOS in vitro, concerning microbiota modulation, and metabolite production, making this a good candidate for further studies in food biotechnology.


Subject(s)
Bacteria , Colon , Gastrointestinal Microbiome , Oligosaccharides , RNA, Ribosomal, 16S , Gastrointestinal Microbiome/drug effects , Oligosaccharides/pharmacology , Oligosaccharides/metabolism , Humans , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/drug effects , Colon/microbiology , Colon/metabolism , RNA, Ribosomal, 16S/genetics , Lolium/microbiology , Cichorium intybus , Feces/microbiology
18.
Metabolites ; 14(7)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39057718

ABSTRACT

Short-chain fatty acids (SCFAs) are the major microbial metabolites produced from the fermentation of dietary fiber in the gut. They are recognised as secretagogues of the glucagon-like peptides, GLP-1 and GLP-2, likely mediated by the activation of free fatty acid receptors 2 and 3 (FFAR2 and 3) expressed on enteroendocrine L-cells. Fiber-deficient diets are associated with decreased intestinal function and decreased colonic GLP-1 and GLP-2 content. Here, we speculated that the lowered colonic GLP-1 observed following a fiber-free diet was a consequence of decreased SCFA production and a subsequent decrease in FFAR2/3 activation. Furthermore, we explored the consequences of a fiber-free diet followed by intestinal injury, and we mechanistically explored the SCFA-FFAR2/3-GLP-1 pathway to explain the increased severity. Colonic luminal content from mice fed either a fiber-free or chow diet were analysed for SCFA content by LC-MS. FFAR2/3 receptor contributions to SCFA-mediated colonic GLP-1 secretion were assessed in isolated perfused preparations of the colon from FFAR2/3 double knockout (KO) and wild-type (WT) mice. Colitis was induced by the delivery of 3% dextran sulfate sodium (DSS) for 4 days in the drinking water of mice exposed to a fiber-free diet for 21 days. Colitis was induced by the delivery of 3% DSS for 7 days in FFAR2/3 KO mice. The removal of dietary fiber significantly decreased SCFA concentrations in the luminal contents of fiber-free fed mice compared to chow-fed mice. In the perfused colon, luminal SCFAs significantly increased colonic GLP-1 secretion in WT mice but not in FFAR2/3 KO mice. In the DSS-induced colitis model, the removal of dietary fiber increased the severity and prevented the recovery from intestinal injury. Additionally, colitis severity was similar in FFAR2/3 KO and WT mice after DSS application. In conclusion, the results confirm that the removal of dietary fiber is sufficient to decrease the colonic concentrations of SCFAs. Additionally, we show that a fiber-free diet predisposes the colon to increased intestinal injury, but this effect is independent of FFAR2 and FFAR3 signalling; therefore, it is unlikely that a fiber-free diet induces a decrease in luminal SCFAs and sensitivity to intestinal disease involves the SCFA-FFAR2/3-GLP-1 pathway.

19.
Front Nutr ; 11: 1346923, 2024.
Article in English | MEDLINE | ID: mdl-38978703

ABSTRACT

Recent experimental and epidemiological studies underscore the vital interaction between the intestinal microbiota and the lungs, an interplay known as the "gut-lung axis". The significance of this axis has been further illuminated following the identification of intestinal microbial metabolites, such as short-chain fatty acids (SCFA), as key mediators in setting the tone of the immune system. Through the gut-lung axis, the gut microbiota and its metabolites, or allergens, are directly or indirectly involved in the immunomodulation of pulmonary diseases, thereby increasing susceptibility to allergic airway diseases such as asthma. Asthma is a complex outcome of the interplay between environmental factors and genetic predispositions. The concept of the gut-lung axis may offer new targets for the prevention and treatment of asthma. This review outlines the relationships between asthma and the respiratory microbiome, gut microbiome, and environmental microbiome. It also discusses the current advancements and applications of microbiomics, offering novel perspectives and strategies for the clinical management of chronic respiratory diseases like asthma.

20.
Nutrients ; 16(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39064763

ABSTRACT

Developing modified dietary fibers that maintain prebiotic benefits without significantly affecting meal taste is of high importance in the midst of the obesity pandemic. These benefits include regulating the composition of gut microbiota, increasing feelings of fullness, and improving human metabolic parameters. This study investigated the use of a resistant dextrin (RD) derived from potato starch, which possesses prebiotic properties, as a potential additive in vegetable-fruit preparations that aid weight loss and improve health markers in overweight children. HPLC was employed to examine metabolites like lactic acid, short-chain fatty acids (SCFAs; formic, acetic, propionic, butyric, and valeric acids), and branched-chain fatty acids (BCFAs; isobutyric and isovaleric acids). The activities of α-glucosidase, ß-glucosidase, α-galactosidase, ß-galactosidase, and ß-glucuronidase enzymes in fecal samples were measured using spectrophotometric analysis at a wavelength of 400 nm. Incorporating the RD into vegetable-fruit preparations yielded favorable outcomes in terms of increased concentrations of the tested metabolites (SCFAs and BCFAs) and enhanced fecal enzyme activities after 6 months of consuming the preparations. Furthermore, these effects were found to last for an extended period of 3 months even after discontinuing the treatment. The study has shown that including RD into vegetable-fruit preparations enhances the metabolic parameters of obese and overweight children, hence providing a strong rationale for the widespread usage of these preparations in the industry.


Subject(s)
Dextrins , Feces , Fruit , Prebiotics , Solanum tuberosum , Humans , Solanum tuberosum/chemistry , Child , Male , Female , Fruit/chemistry , Feces/chemistry , Pediatric Obesity , Food, Fortified , Vegetables , Gastrointestinal Microbiome , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Overweight , Starch , Resistant Starch
SELECTION OF CITATIONS
SEARCH DETAIL