Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 273(Pt 2): 132704, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825283

ABSTRACT

HOXA9 transcription factor is expressed in hematopoietic stem cells and is involved in the regulation of their differentiation and maturation to various blood cells. HOXA9 is linked to various leukemia and is a marker for poor prognosis of acute myeloid leukemia (AML). This protein has a conserved DNA-binding homeodomain and a transactivation domain. We show that this N-terminal transactivation domain is intrinsically disordered and inhibits DNA-binding by the homeodomain. Using NMR spectroscopy and molecular dynamics simulation, we show that the hexapeptide 197AANWLH202 in the disordered region transiently occludes the DNA-binding interface. The hexapeptide also forms a rigid segment, as determined by NMR dynamics, in an otherwise flexible disordered region. Interestingly, this hexapeptide is known to mediate the interaction of HOXA9 and its TALE partner proteins, such as PBX1, and help in cooperative DNA binding. Mutation of tryptophan to alanine in the hexapeptide abrogates the DNA-binding auto-inhibition. We propose that the disordered transactivation region plays a dual role in the regulation of HOXA9 function. In the absence of TALE partners, it inhibits DNA binding, and in the presence of TALE partners it interacts with the TALE protein and facilitates the cooperative DNA binding by the HOX-TALE complex.


Subject(s)
DNA , Homeodomain Proteins , Intrinsically Disordered Proteins , Protein Binding , Transcriptional Activation , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , DNA/metabolism , Humans , Molecular Dynamics Simulation , Amino Acid Sequence , Protein Domains
2.
Cell Mol Life Sci ; 81(1): 245, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814467

ABSTRACT

DNA replication is a tightly coordinated event carried out by a multiprotein replication complex. An essential factor in the bacterial replication complex is the ring-shaped DNA sliding clamp, ß-clamp, ensuring processive DNA replication and DNA repair through tethering of polymerases and DNA repair proteins to DNA. ß -clamp is a hub protein with multiple interaction partners all binding through a conserved clamp binding sequence motif. Due to its central role as a DNA scaffold protein, ß-clamp is an interesting target for antimicrobial drugs, yet little effort has been put into understanding the functional interactions of ß-clamp. In this review, we scrutinize the ß-clamp structure and dynamics, examine how its interactions with a plethora of binding partners are regulated through short linear binding motifs and discuss how contexts play into selection. We describe the dynamic process of clamp loading onto DNA and cover the recent advances in drug development targeting ß-clamp. Despite decades of research in ß-clamps and recent landmark structural insight, much remains undisclosed fostering an increased focus on this very central protein.


Subject(s)
Bacterial Proteins , DNA Replication , DNA, Bacterial , Drug Discovery , DNA, Bacterial/metabolism , DNA, Bacterial/chemistry , Drug Discovery/methods , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Protein Binding , DNA Polymerase III/metabolism , DNA Polymerase III/chemistry , Models, Molecular , Bacteria/metabolism , Bacteria/genetics , DNA Repair
3.
J Cell Commun Signal ; 18(1): e12014, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38545252

ABSTRACT

Protein-protein interactions (PPIs) play a crucial role in various biological processes by establishing domain-motif (DMI) and domain-domain interactions (DDIs). While the existence of real DMIs/DDIs is generally assumed, it is rarely tested; therefore, this study extensively compared high-throughput methods and public PPI repositories as sources for DMI and DDI prediction based on the assumption that the human interactome provides sufficient data for the reliable identification of DMIs and DDIs. Different datasets from leading high-throughput methods (Yeast two-hybrid [Y2H], Affinity Purification coupled Mass Spectrometry [AP-MS], and Co-fractionation-coupled Mass Spectrometry) were assessed for their ability to capture DMIs and DDIs using known DMI/DDI information. High-throughput methods were not notably worse than PPI databases and, in some cases, appeared better. In conclusion, all PPI datasets demonstrated significant enrichment in DMIs and DDIs (p-value <0.001), establishing Y2H and AP-MS as reliable methods for predicting these interactions. This study provides valuable insights for biologists in selecting appropriate methods for predicting DMIs, ultimately aiding in SLiM discovery.

SELECTION OF CITATIONS
SEARCH DETAIL