Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 843
Filter
1.
Article in English | MEDLINE | ID: mdl-39238384

ABSTRACT

BACKGROUND: Guettarda viburnoides Cham. & Schltdl., "veludinho do campo", is used in the Brazilian Amazon for its effects on the central nervous system (CNS) as a "brain tonic"; however, scientific evidence is needed to elucidate its ethnobotanical uses. OBJECTIVE: This study evaluated the neurobehavioural effects of an ethanolic extract of G. viburnoides (EEGV). Molecular docking, microchemical and morphoanatomical features of the species were investigated. METHODS: EEGV was investigated by UHPLC‒MS/MS and dereplication and molecular network were investigated using platforms available for natural product chemistry. For the in vivo assay, EEGV was administered to mice orally (3, 30 or 100 mg/kg). The effect of EEGV on spatial memory was measured using the Morris water maze test in mice with scopolamine-induced amnesia. The depression- and anxiety-like effects were assessed by forced swimming, tail suspension, marble burying and elevated plus maze tests. The AChE inhibition was evaluated in the brains of treated mice and molecular docking simulations were carried out with the main constituents. The leaves and stems of G. viburnoides were analysed via optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. RESULTS: Secoxyloganin, grandifloroside, hyperin/or isoquercitrin, uncaric acid and ursolic acid were identified by UHPLC‒MS/MS. Molecular networking by three flavonoids, three triterpenes, two coumarins, two iridoids, and one phenolic acid. EEGV reversed these scopolamineinduced effects. In the forced swim and tail suspension test, EEGV (30 and 100 mg/kg) significantly reduced the immobility time. EEGV significantly reduced the number of buried marbles, while in the elevated plus maze test, no changes were observed compared to the Sco group. AChE activity was altered in the hippocampus. Studies of the molecular coupling of iridoid glycosides (grandifloroside and secoxyloganin) and flavonoid hyperin with AChE revealed significant interactions, corroborating the activity indicated by the inhibition assay. CONCLUSIONS: These results might be in accordance with medicinal use for neuroprotetor effects and important microchemical and micromorphological data that support the identification and quality control of G. viburnoides.

2.
J Clin Pharmacol ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39223994

ABSTRACT

This study aimed to assess the incidence of post-discharge nausea and vomiting (PDNV) following sedation with nalbuphine and etomidate and to evaluate the prophylactic effects of scopolamine in reducing PDNV. A two-stage prospective clinical trial was conducted. The first part involved an observational study of 77 subjects to assess the PDNV incidence post-sedation with nalbuphine, etomidate, and propofol. The second part compared the effectiveness of palonosetron 0.075 mg (P group), scopolamine 0.1 mg (S group), and their combination (PS group) in reducing PDNV. The primary endpoint was the incidence of PDNV within 8 h post-sedation. Secondary outcomes included PDNV frequency and severity at 8-24, 0-24, and 24-48 h and side effects of medications. The incidence of PDNV within 8 h post-sedation was 37.66% (29/77). The PS group showed a significantly lower PDNV rate of 2.56% within 8 h, compared to the P group (35.71%, P < .001), S group (19.64%, P < .001), and control group (38.39%, P < .001), respectively. The S group (19.64%) also had a lower rate than the P group (35.71%, P = .007) and the control group (38.39%, P = .002). Subgroup analysis suggested a potential differential effect of palonosetron in reducing vomiting among male patients undergoing gastrointestinal procedures. The combination therapy was also associated with fewer cases of mild or no nausea and vomiting. In summary, the incidence of PDNV following sedation with nalbuphine and etomidate was notably high. The combination of scopolamine and palonosetron was more effective in preventing PDNV, with implications for improved post-sedation care.

3.
Acta Otolaryngol ; : 1-10, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225593

ABSTRACT

BACKGROUND: Scopolamine has been demonstrated to relieve motion sickness. However, repeated significance testing may increase false-positive results. OBJECTIVES: Review the efficacy and safety of scopolamine in the prevention of motion sickness by performing a meta-analysis with Trial Sequential Analysis (TSA). MATERIAL AND METHODS: Randomized controlled trials (RCTs) compared scopolamine with other medications or placebo were included. Primary outcomes were nausea reported and head movement time. RESULTS: Twenty studies with 753 participants were included. Scopolamine had a greater reported reduction in nausea than placebo (relative risk [RR] 0.35; 95% confidence interval [CI] 0.24 to 0.52; p<0.00001; I2 = 45%), while TSA showed the included sample size exceeded the required information size (RIS). There is no difference in head movement time between scopolamine and placebo (mean difference [MD] 2.02; 95% CI -1.2 to 5.25; p = 0.6; I2 = 0%), while the included sample size did not reach RIS. CONCLUSION: Scopolamine is effective for motion sickness nausea compared to placebo. The TSA recommends conducting more head movement trials to validate the objective efficacy of scopolamine. SIGNIFICANCE: Clarifying the efficacy of scopolamine for motion sickness, the TSA highlights the need for more prospective studies using head movement as an outcome.

4.
Biomolecules ; 14(8)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39199395

ABSTRACT

One aspect of reproducibility in preclinical research that is frequently overlooked is the physical condition in which physiological, pharmacological, or behavioural recordings are conducted. In this study, the physical conditions of mice were altered through the attachments of wireless electrophysiological recording devices (Neural Activity Tracker-1, NAT-1). NAT-1 devices are miniaturised multichannel devices with onboard memory for direct high-resolution recording of brain activity for >48 h. Such devices may limit the mobility of animals and affect their behavioural performance due to the added weight (total weight of approximately 3.4 g). The mice were additionally treated with saline (control), N-methyl-D-aspartate (NMDA) receptor antagonist MK801 (0.85 mg/kg), or the muscarinic acetylcholine receptor blocker scopolamine (0.65 mg/kg) to allow exploration of the effect of NAT-1 attachments in pharmacologically treated mice. We found only minimal differences in behavioural outcomes with NAT-1 attachments in standard parameters of locomotor activity widely reported for the open field test between the drug treatments. Hypoactivity was globally observed as a consistent outcome in the MK801-treated mice and hyperactivity in scopolamine groups regardless of NAT-1 attachments. These data collectively confirm the reproducibility for combined behavioural, pharmacological, and physiological endpoints even in the presence of lightweight wireless data loggers. The NAT-1 therefore constitutes a pertinent tool for investigating brain activity in, e.g., drug discovery and models of neuropsychiatric and/or neurodegenerative diseases with minimal effects on pharmacological and behavioural outcomes.


Subject(s)
Dizocilpine Maleate , Electroencephalography , Exploratory Behavior , Scopolamine , Animals , Scopolamine/pharmacology , Dizocilpine Maleate/pharmacology , Mice , Male , Exploratory Behavior/drug effects , Behavior, Animal/drug effects , Open Field Test/drug effects
5.
Int J Mol Sci ; 25(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39201791

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder, marked by cognitive impairment. Currently, the available treatment provides only symptomatic relief and there is a great need to design and formulate new drugs to stabilize AD. In the search for a new anti-Alzheimer's drug, 3,5-bis(2-hydroxyethyl)-1,3,5-thiadiazinane-2-thione (THTT), a tetrahydro-2H-1,3,5-thiadiazine-2-thione derivative, was investigated against a scopolamine-induced Alzheimer's model. The selected test compound was administered intraperitoneally in three doses (15 mg/kg, 30 mg/kg, and 45 mg/kg). The test compound exhibited an IC50 value of 69.41 µg/mL, indicating its ability to inhibit the acetylcholinesterase enzyme. An antioxidant DPPH assay revealed that the IC50 value of the test compound was 97.75 µg/mL, which shows that the test compound possesses antioxidant activity. The results of behavior tests including the Y-maze and elevated plus maze (EPM) show that the test compound improved short-term memory and spatial memory, respectively. Furthermore, in the Morris water maze (MWM) and light/dark model, the test compound shows improvements in learning and memory. Moreover, the results of histological studies show that the test compound can protect the brain against the harmful effects of scopolamine. Overall, the findings of our investigation suggest that our chosen test compound has disease-modifying and neuroprotective activities against the scopolamine-induced Alzheimer's model. The test compound may be beneficial, subject to further elaborate investigation for anti-amyloid disease-modifying properties in AD.


Subject(s)
Alzheimer Disease , Maze Learning , Scopolamine , Thiadiazines , Alzheimer Disease/drug therapy , Alzheimer Disease/chemically induced , Animals , Thiadiazines/pharmacology , Thiadiazines/therapeutic use , Male , Maze Learning/drug effects , Disease Models, Animal , Mice , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Acetylcholinesterase/metabolism , Thiones/pharmacology , Thiones/chemistry , Thiones/therapeutic use , Rats
6.
J Toxicol Environ Health A ; : 1-14, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39185961

ABSTRACT

Dry eye disease (DED) is an ophthalmic disease associated with poor quality and quantity of tears, and the number of patients is steadily increasing. The aim of this study was to determine plasma and urine metabolites obtained from DED scopolamine animal model where dry eye conditions (DRY) are induced. It was also of interest to examine whether DED (scopolamine) rat model was exacerbated by treatment with benzalkonium chloride (BAC). Subsequently, plasma and urine metabolites were analyzed using liquid chromatography (LC) and gas chromatography (GC)-mass spectrometry (MS), respectively. Data demonstrated that DED indicators such as tear volume, tear breakup time (TBUT), and corneal damage in the DED groups (DRY and BAC group) differed from those of control (CON). Similar results were noted in inflammatory factors such as interleukin (IL-1ß), IL-6, and tumor necrosis factor (TNF)-α. In the partial least squares-discriminant analysis (PLS-DA) score plots, the three groups were distinctly separated from each other. In addition, the related metabolites were also associated with these distinct separations as evidenced by 9 and 14 in plasma and urine, respectively. Almost all of the selected metabolites were decreased in the DRY group compared to CON, and the BAC group was lower than the DRY. In plasma and urine, lysophosphatidylcholine/lysophosphatidylethanolamine, organic acids, amino acids, and sugars varied between three groups, and these metabolites were related to inflammation and oxidative stress. Data suggest that treatment with scopolamine with/without BAC-induced DED and affected the level of systemic metabolites involved in inflammation and oxidative stress.

7.
Res Pharm Sci ; 19(2): 167-177, 2024 Apr.
Article in English | MEDLINE | ID: mdl-39035579

ABSTRACT

Background and purpose: Alzheimer's disease (AD) is a neurodegenerative disease specified by chronic and irreversible destruction of neurons. This study aimed to evaluate the effects of different extracts (aqueous, hydroalcoholic, hexane, and ethyl acetate) and manna of Echinops cephalotes (EC) on impaired cognitive function induced by scopolamine in mice. EC is shown to have anti-cholinesterase-butyrylcholinesterase activities. Experimental approach: In this study, aqueous and hydroalcoholic extracts, hexane and ethyl acetate fractions of EC (25, 50, 100 mg/kg, i.p.), and the manna (25, 50, 100 mg/kg, gavage) were administered for 14 days alongside scopolamine (0.7 mg/kg, i.p.). Rivastigmine (reference drug) was administered for 2 weeks i.p. Mice were tested for their memory function using two behavioral models, object recognition test (ORT) and passive avoidance test (PAT). Findings/Results: Administration of scopolamine significantly impaired memory function in both behavioral models. In the PAT model, all extracts at 50 and 100 mg/kg significantly reversed the effect of memory destruction caused by scopolamine. At a lower dose of 25 mg/kg, however, none of the extracts were able to significantly change the step-through latency time. In the ORT model, however, administration of all extracts at 50 and 100 mg/kg, significantly increased the recognition index. Only the manna and the aqueous extract at 25 mg/kg were able to reverse scopolamine-induced memory impairment. Conclusions and implications: These results suggest that all forms of EC extracts improve memory impairment induced by scopolamine comparably to rivastigmine. Whether the effects are sustained over a longer period remains to be tested in future work.

8.
Article in English | MEDLINE | ID: mdl-39039682

ABSTRACT

Alzheimer's Disease (AD) is a neurodegenerative disorder mainly characterized by dementia and cognitive decline. AD is essentially associated with the presence of aggregates of the amyloid-ß peptide and the hyperphosphorylated microtubule-associated protein tau. The available AD therapies can only alleviate the symptoms; therefore, the development of natural treatments that exhibit neuroprotective effects and correct the behavioral impairment is a critical requirement. The present review aims to collect the natural substances that have been evaluated for their neuroprotective profile against AD-like behaviors induced in zebrafish (Danio rerio) by scopolamine. We focused on articles retrieved from the PubMed database via preset searching strings from 2010 to 2023. Our review assembled 21 studies that elucidated the activities of 28 various natural substances, including bioactive compounds, extracts, fractions, commercial compounds, and essential oils. The listed compounds enhanced cognition and showed several mechanisms of action, namely antioxidant potential, acetylcholinesterase's inhibition, and reduction of lipid peroxidation. Additional studies should be achieved to demonstrate their preventive and therapeutic activities in cellular and rodent models. Further clinical trials would be extremely solicited to support more insight into the neuroprotective effects of the most promising drugs in an AD context.

9.
CNS Neurosci Ther ; 30(7): e14891, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39056330

ABSTRACT

BACKGROUND: The prevalence of dementia around the world is increasing, and these patients are more likely to have cognitive impairments, mood and anxiety disorders (depression, anxiety, and panic disorder), and attention deficit disorders over their lifetime. Previous studies have proven that melatonin could improve memory loss, but its specific mechanism is still confused. METHODS: In this study, we used in vivo and in vitro models to examine the neuroprotective effect of melatonin on scopolamine (SCOP)-induced cognitive dysfunction. The behavioral tests were performed. 18F-FDG PET imaging was used to assess the metabolism of the brain. Protein expressions were determined through kit detection, Western blot, and immunofluorescence. Nissl staining was conducted to reflect neurodegeneration. MTT assay and RNAi transfection were applied to perform the in vitro experiments. RESULTS: We found that melatonin could ameliorate SCOP-induced cognitive dysfunction and relieve anxious-like behaviors or HT22 cell damage. 18F-FDG PET-CT results showed that melatonin could improve cerebral glucose uptake in SCOP-treated mice. Melatonin restored the cholinergic function, increased the expressions of neurotrophic factors, and ameliorated oxidative stress in the brain of SCOP-treated mice. In addition, melatonin upregulated the expression of silent information regulator 1 (SIRT1), which further relieved endoplasmic reticulum (ER) stress by decreasing the expression of phosphorylate inositol-requiring enzyme (p-IRE1α) and its downstream, X-box binding protein 1 (XBP1). CONCLUSIONS: These results indicated that melatonin could ameliorate SCOP-induced cognitive dysfunction through the SIRT1/IRE1α/XBP1 pathway. SIRT1 might be the critical target of melatonin in the treatment of dementia.


Subject(s)
Cognitive Dysfunction , Melatonin , Scopolamine , Signal Transduction , Sirtuin 1 , X-Box Binding Protein 1 , Melatonin/pharmacology , Melatonin/therapeutic use , Animals , Sirtuin 1/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , X-Box Binding Protein 1/metabolism , Mice , Male , Signal Transduction/drug effects , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Maze Learning/drug effects
10.
Pharmacol Rep ; 76(5): 1001-1011, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39042346

ABSTRACT

BACKGROUND: The cholinergic system has been increasingly linked to the pathophysiology of mood disorders such as depression, with the potential involvement of nicotinic and/or muscarinic receptors. Conventional antidepressants usually require weeks of daily dosing to achieve a full antidepressant response. In contrast, clinical studies have shown that scopolamine, a nonselective muscarinic acetylcholine receptor antagonist, can induce potent and rapid antidepressant effects, requiring only a few days of treatment. This study aimed to examine the suitability of the unpredictable chronic mild stress (UCMS) model of depression to reproduce the above scopolamine antidepressant activity patterns. METHODS: Rapid and sustained antidepressant-like effects were assessed by using the splash test, sucrose preference test (SPT), tail suspension test (TST), and forced swimming test (FST) in animals undergoing the UCMS procedure and stress-naïve C57BL/6J mice. Western Blotting was used to measure tropomyosin receptor kinase B (TrkB), mammalian target of rapamycin (mTOR), eukaryotic elongation factor (eEF2) and postsynaptic density protein 95 (PSD95) levels. RESULTS: Scopolamine induced antidepressant-like effects in a dose-dependent manner only after subchronic, but not single, administration in the UCMS model of depression in C57BL/6J mice without affecting locomotor activity. Specifically, scopolamine administered at a dose of 0.3 mg/kg for four consecutive days significantly reversed the UCMS-induced depressive-like behavior, such as apathy, anhedonia, and behavioral despair, while scopolamine, given at the same dose but only once, did not relieve the above symptoms. Scopolamine treatment was accompanied by eEF2 protein dephosphorylation and its subsequent reactivation in the prefrontal cortex (PFC). CONCLUSION: Subchronic administration of scopolamine is needed to ameliorate UCMS-induced depressive-like behavior. The suggested mechanism of scopolamine action covers eEF2 protein activity in the PFC.


Subject(s)
Antidepressive Agents , Behavior, Animal , Depression , Disease Models, Animal , Mice, Inbred C57BL , Scopolamine , Stress, Psychological , Animals , Scopolamine/pharmacology , Mice , Male , Antidepressive Agents/pharmacology , Antidepressive Agents/administration & dosage , Depression/drug therapy , Depression/metabolism , Phosphorylation/drug effects , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Behavior, Animal/drug effects , TOR Serine-Threonine Kinases/metabolism , Disks Large Homolog 4 Protein/metabolism , Dose-Response Relationship, Drug , Receptor, trkB/metabolism , Peptide Elongation Factor 2/metabolism , Swimming , Muscarinic Antagonists/pharmacology , Muscarinic Antagonists/administration & dosage , Hindlimb Suspension
11.
Cell Biochem Biophys ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990419

ABSTRACT

BACKGROUND: The neuroprotective effects of Dehydroepiandrosterone (DHEA) and Hericium erinaceus (H. erinaceus) mushroom extract against scopolamine-induced Alzheimer's disease-like symptoms in male Wistar rats were investigated. METHODS: Sixty-four male Wistar rats were divided into eight groups (n = 8). Scopolamine (SCO) was intraperitoneally injected at a dose of 1 mg/kg/day for 10 days. The treatment groups orally received DHEA (250 mg/kg/day) and/or H. erinaceus (300 mg/kg/day) for 14 days. Afterward, the Morris water maze (MWM) and novel object recognition tests were implemented. Then, animals were anesthetized and the brain tissue samples were separated. Levels of lipid peroxidation (LPO), total antioxidant capacity (TAC), catalase activity (CAT), and brain-derived neurotrophic factor (BDNF) were determined. Also, histopathological studies were evaluated in the brain tissue samples. RESULTS: Administration of SCO significantly decreased spatial and cognitive memory (p < 0.001). Not only did SCO injection significantly increase the levels of the LPO but also the SCO markedly reduced the levels of the TAC, CAT activity, and the BDNF in the brain tissue. On the other hand, a combination of the DHEA and H. erinaceus showed higher efficacy than the DHEA or H. erinaceus in attenuating behavioral anomalies and improving the antioxidant defense system and BDNF levels. Histological examination was well correlated with biochemical findings regarding SCO neurodegeneration and DHEA and/or H. erinaceus neuroprotection. CONCLUSION: Interestingly, ADHE and/or H. erinaceus may due to their potential neurotrophic properties be used as a new and beneficial concurrent therapy in the treatment of Alzheimer's disease-like symptoms caused by SCO.

12.
Biomed Rep ; 21(3): 130, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39070112

ABSTRACT

Pinostrobin, a key bioactive compound found in the medicinal plant Boesenbergia rotunda (L.), has been noted for its beneficial biological properties including antioxidant, anti-inflammation, anti-cancer and anti-amnesia activities. In view of this, the present study purposed to evaluate the neuroprotective potential of pinostrobin in reversing scopolamine-induced cognitive impairment involving oxidative stress and cholinergic function in rats. A total of 30 male Wistar rats were randomly divided into five groups (n=6): Group 1 received vehicle as a control, group 2 received vehicle + scopolamine (3 mg/kg, i.p.), group 3 received pinostrobin (20 mg/kg, p.o.) + scopolamine, group 4 received pinostrobin (40 mg/kg, p.o.) + scopolamine and group 5 received donepezil (5 mg/kg, p.o.) + scopolamine. Treatments were administered orally to the rats for 14 days. During the final 7 days of treatment, a daily injection of scopolamine was administered. Scopolamine impaired learning and memory performance, as measured by the novel object recognition test and the Y-maze test. Additionally, oxidative stress marker levels, acetylcholinesterase (AChE) activity, choline acetyltransferase (ChAT) and glutamate receptor 1 (GluR1) expression were determined. Consequently, the findings demonstrated that the administration of pinostrobin (20 and 40 mg/kg) markedly improved cognitive function as indicated by an increase in recognition index and by spontaneous alternation behaviour. Pinostrobin also modulated the levels of oxidative stress by causing a decrease in malondialdehyde levels accompanied by increases in superoxide dismutase and glutathione activities. Similarly, pinostrobin markedly enhanced cholinergic function by decreasing AChE activity and promoting ChAT immunoreactivity in the hippocampus. Additionally, the reduction in GluR1 expression due to scopolamine was diminished by treatment with pinostrobin. The findings indicated that pinostrobin exhibited a significant restoration of scopolamine-induced memory impairment by regulating oxidative stress and cholinergic system function. Thus, pinostrobin could serve as a potential therapeutic agent for the management of neurodegenerative diseases such as Alzheimer's disease.

13.
Front Pharmacol ; 15: 1384070, 2024.
Article in English | MEDLINE | ID: mdl-39050750

ABSTRACT

Introduction: Drotaverine, paracetamol, and peppermint oil are often prescribed for the treatment of gastrointestinal spasm and pain. This study aimed to evaluate the effect of these drugs alone and combined with the well-known antispasmodic hyoscine butylbromide on the human colon. Methods: Colon samples were obtained from macroscopically normal regions of 68 patients undergoing surgery and studied in muscle bath. Drotaverine, paracetamol, and peppermint oil were tested alone and in combination with hyoscine butylbromide on (1) spontaneous contractility induced by isometric stretch (in the presence of 1 µM tetrodotoxin) and (2) contractility induced by 10-5 M carbachol and after (3) electrical field stimulation-induced selective stimulation of excitatory (in the presence of 1 mM Nω-nitro-L-arginine and 10 µM MRS2179) and (4) inhibitory (under non-adrenergic, non-cholinergic conditions) pathways. (5) Drotaverine alone was also tested on cAMP-dependent pathway activated by forskolin. Results: Compared with the vehicle, drotaverine and paracetamol (10-9-10-5 M) did not modify spontaneous contractions, carbachol-induced contractions, and responses attributed to selective activation of excitatory pathways. The addition of hyoscine butylbromide (10-7-10-5 M), concentration-dependently reduced myogenic contractions and carbachol- and electrical field stimulation-induced contractile responses. The association of paracetamol (10-4 M) and hyoscine butylbromide (10-7-10-5 M) was not different from hyoscine butylbromide alone (10-7-10-5 M). At higher concentrations (10-3M-3*10-3 M), paracetamol decreased myogenic and carbachol-induced contractions. The adenylate cyclase activator, forskolin, concentration-dependently reduced contractility, leading to smooth muscle relaxation. The effect of forskolin 10-7 M was concentration-dependently enhanced by drotaverine (10-6M-10-5M). Discussion: Peppermint oil reduced myogenic activity and carbachol- and electrical field stimulation-induced contractions. The association of hyoscine butylbromide and peppermint oil was synergistic since the interaction index measured with the isobologram was lower than 1. No effect was seen on the neural-mediated inhibitory responses with any of the drugs studied although peppermint oil reduced the subsequent off-contraction. Drotaverine and hyoscine butylbromide have a complementary effect on human colon motility as one stimulates the cAMP inhibitory pathway and the other inhibits the excitatory pathway. Peppermint oil is synergic with hyoscine butylbromide suggesting that a combination therapy may be more effective in treating patients. In contrast, at therapeutic concentrations, paracetamol does not modify colonic contractility, suggesting that the association of paracetamol and hyoscine butylbromide has independent analgesic and antispasmodic properties.

14.
Avicenna J Phytomed ; 14(2): 177-188, 2024.
Article in English | MEDLINE | ID: mdl-38966625

ABSTRACT

Objective: The present study examined effects of resistance training (RT) and resveratrol (RES) alone and together on acrylamide (AC)-induced memory impairment in rats. Materials and Methods: Animals were divided into 6 groups: (1) Control group which received normal saline intraperitoneally (ip) daily for 8 weeks; (2) Scopolamine (SCO) group which received SCO (1 mg/kg/day, ip) for 8 weeks; (3) AC group which received AC (5 mg/kg/day, ip) for 8 weeks; (4) AC + RT group which received AC (5 mg/kg/day, ip) for 8 weeks and performed RT (5 days a week for 8 weeks); (5) AC + RES group which received AC (5 mg/kg/day, ip) and RES (1 mg/kg/day, ip) for 8 weeks; and (6) AC + RT + RES group which received AC (5 mg/kg/day, ip) and RES (1 mg/kg/day, ip) for 8 weeks and performed RT (5 days a week for 8 weeks). On day 53, animal training began in the Morris Water Maze (MWM) and 24 hr after the last training, the probe test was performed. Results: RT and RES alone did not significantly affect escape latency or traveled distance increased by AC. However, concomitant RES and RT treatment significantly reduced these parameters compared to the AC group. Co-treatment with RES and RT also significantly increased the time spent in the target quadrant compared to the AC group. Lipid peroxidation was reduced in the AC+RES and AC+RT+RES groups compared to the AC group. Conclusion: It seems that daily co-treatment with RES and RT for 8 weeks ameliorates the memory-impairing effects of AC.

15.
Biomed Pharmacother ; 177: 117000, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38941895

ABSTRACT

Alzheimer's disease (AD) is characterized by cognitive impairment, loss of learning and memory, and abnormal behaviors. Scopolamine (SCOP) is a non-selective antagonist of muscarinic acetylcholine receptors that exhibits the behavioral and molecular hallmarks of AD. Vanillic acid (VA), a phenolic compound, is obtained from the roots of a traditional plant called Angelica sinensis, and has several pharmacologic effects, including antimicrobial, anti-inflammatory, anti-angiogenic, anti-metastatic, and antioxidant properties. Nevertheless, VA's neuroprotective potential associated with the memory has not been thoroughly investigated. Therefore, this study investigated whether VA treatment has an ameliorative effect on the learning and memory impairment induced by SCOP in rats. Behavioral experiments were utilized to assess the learning and memory performance associated with the hippocampus. Using western blotting analysis and assay kits, the neuronal damage, oxidative stress, and acetylcholinesterase activity responses of hippocampus were evaluated. Additionally, the measurement of long-term potentiation was used to determine the function of synaptic plasticity in organotypic hippocampal slice cultures. In addition, the synaptic vesicles' density and the length and width of the postsynaptic density were evaluated using electron microscopy. Consequently, the behavioral, biochemical, electrophysiological, and ultrastructural analyses revealed that VA treatment prevents learning and memory impairments caused by SCOP in rats. The study's findings suggest that VA has a neuroprotective effect on SCOP-induced learning and memory impairment linked to the hippocampal cholinergic system, oxidative damage, and synaptic plasticity. Therefore, VA may be a prospective therapeutic agent for treating AD.


Subject(s)
Hippocampus , Memory Disorders , Neuronal Plasticity , Neuroprotective Agents , Oxidative Stress , Scopolamine , Vanillic Acid , Animals , Oxidative Stress/drug effects , Vanillic Acid/pharmacology , Male , Neuronal Plasticity/drug effects , Rats , Memory Disorders/drug therapy , Memory Disorders/chemically induced , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Neuroprotective Agents/pharmacology , Rats, Wistar , Maze Learning/drug effects , Memory/drug effects , Antioxidants/pharmacology , Rats, Sprague-Dawley
16.
Food Res Int ; 188: 114439, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823829

ABSTRACT

Tropane alkaloids (TAs) are secondary metabolites from weeds that can contaminate cereals and vegetables during harvest. Due to their toxicity, the Regulation (EC) 2023/915 sets maximum levels for atropine and scopolamine in cereal-based foods for infants containing millet, sorghum, buckwheat or their derived products. The aim of this study was to evaluate the effect of pH and temperature on the stability of TAs, as possible parameters in thermal processing to mitigate this chemical hazard in cereal-based infant food. The effect of pH (4 and 7) and temperature (80 °C and 100 °C) was assessed in buffer solutions. Also, treatment at 180 °C was performed in spiked and naturally incurred millet flour to assess the effect of high temperature, simulating cooking or drying, on the stability of TAs in the cereal matrix. The fate of 24 TAs was assessed by UHPLC-MS/MS. TAs showed high thermostability, although it was variable depending on the specific compound, pH, temperature and treatment time. In buffer solutions, higher degradation was found at 100 °C and pH 7. In spiked millet flour at 180 °C for 10 min, scopolamine and atropine contents decreased by 25 % and 22 %, similarly to other TAs which also showed a slow thermal degradation. Atropine, scopolamine, anisodamine, norscopolamine, scopine and scopoline were found in naturally contaminated millet flour. Interestingly, naturally incurred atropine was more thermostable than when spiked, showing a protective effect of the cereal matrix on TAs degradation. The present results highlight the need for an accurate monitorization of TAs in raw materials, as this chemical hazard may remain in infant cereal-based food even after intense thermal processing.


Subject(s)
Edible Grain , Food Contamination , Infant Food , Tandem Mass Spectrometry , Edible Grain/chemistry , Hydrogen-Ion Concentration , Infant Food/analysis , Food Contamination/prevention & control , Tropanes/chemistry , Tropanes/analysis , Temperature , Alkaloids/analysis , Humans , Food Handling/methods , Hot Temperature , Atropine/analysis , Atropine/chemistry , Infant , Chromatography, High Pressure Liquid
17.
Plants (Basel) ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931080

ABSTRACT

Petitgrain essential oil (PGEO) is derived from the water distillation process on mandarin (Citrus reticulata) leaves. The chemical constituents of PGEO were analyzed by gas chromatography/mass spectrometry (GC/MS) method which revealed the presence of six compounds (100%). The major peaks were for methyl-N-methyl anthranilate (89.93%) and γ-terpinene (6.25%). Over 19 days, zebrafish (Tubingen strain) received PGEO (25, 150, and 300 µL/L) before induction of cognitive impairment with scopolamine immersion (SCOP, 100 µM). Anxiety-like behavior and memory of the zebrafish were assessed by a novel tank diving test (NTT), Y-maze test, and novel object recognition test (NOR). Additionally, the activity of acetylcholinesterase (AChE) and the extent of the brain's oxidative stress were explored. In conjunction, in silico forecasts were used to determine the pharmacokinetic properties of the principal compounds discovered in PGEO, employing platforms such as SwissADME, Molininspiration, and pKCSM. The findings provided evidence that PGEO possesses the capability to enhance memory by AChE inhibition, alleviate SCOP-induced anxiety during behavioral tasks, and diminish brain oxidative stress.

18.
Cureus ; 16(5): e60855, 2024 May.
Article in English | MEDLINE | ID: mdl-38910692

ABSTRACT

In this case report, we present the case of a 60-year-old Caucasian male with a history of depression, anxiety, opioid dependence, and idiopathic polyneuropathy, admitted to an inpatient psychiatric unit for suicidal ideation. The patient's symptoms were characterized by months of intractable nausea, severe anxiety, suicidal ideation (SI), and significant unintentional weight loss in the context of methadone-assisted treatment. Over nine days in the hospital, a treatment strategy was developed and refined, which eventually achieved sustained relief from nausea and significant improvement in anxiety. The most effective pharmacological interventions included mirtazapine, scopolamine, and gabapentin.

19.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38931476

ABSTRACT

Memory is one of the most important abilities of our brain. The process of memory and learning is necessary for the proper existence of humans in the surrounding environment. However, sometimes there are unfavourable changes in the functioning of the brain and memory deficits occur, which may be associated with various diseases. Disturbances in the cholinergic system lead to abnormalities in memory functioning and are an essential part of clinical symptoms of many neurodegenerative diseases. However, their treatment is difficult and still unsatisfactory; thus, it is necessary to search for new drugs and their targets, being an alternative method of mono- or polypharmacotherapy. One of the possible strategies for the modulation of memory-related cognitive disorders is connected with the endocannabinoid system (ECS). The aim of the present study was to determine for the first time the effect of administration of natural cannabinoid compound (cannabidiol, CBD) and rivastigmine alone and in combination on the memory disorders connected with cholinergic dysfunctions in mice, provoked by using an antagonist of muscarinic cholinergic receptor-scopolamine. To assess and understand the memory-related effects in animals, we used the passive avoidance (PA) test, commonly used to examine the different stages of memory. An acute administration of CBD (1 mg/kg) or rivastigmine (0.5 mg/kg) significantly affected changes in scopolamine-induced disturbances in three different memory stages (acquisition, consolidation, and retrieval). Interestingly, co-administration of CBD (1 mg/kg) and rivastigmine (0.5 mg/kg) also attenuated memory impairment provoked by scopolamine (1 mg/kg) injection in the PA test in mice, but at a much greater extent than administered alone. The combination therapy of these two compounds, CBD and rivastigmine, appears to be more beneficial than substances administered alone in reducing scopolamine-induced cognitive impairment. This polytherapy seems to be favourable in the pharmacotherapy of various cognitive disorders, especially those in which cholinergic pathways are implicated.

20.
Metab Brain Dis ; 39(6): 1051-1063, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896206

ABSTRACT

Oxidative stress from generation of increased reactive oxygen species or has been reported to play an important role in dementia. Oxidative stress due to free radicals of oxygen or reactive oxygen species could be precipitating factors in the etiology of dementia. Apomorphine has been reported to have neuroprotective effects. To monitor memory enhancing and neuroprotective effects of apomorphine, we determined the antioxidant enzymes activities, lipid peroxidation, acetylcholine esterase (AChE) activity in brain and plasma, following repetitive administration of apomorphine in rat model of dementia. Biogenic amine levels were also monitored in hippocampus. Repeated administration of scopolamine was taken as an animal model of dementia. Decreased glutathione peroxidase, superoxide dismutase and catalase activities were observed in these animal models of dementia. While increased lipid peroxidation was also observed in the brain and plasma samples. The results showed significant effects of apomorphine. The activities of antioxidant enzymes displayed increased activities in both brain and plasma. Glutathione peroxidase and catalase activities were found to be significantly higher in brain and plasma of apomorphine treated rats. Superoxide dismutase (SOD) was significantly decreased in plasma of scopolamine injected rats; and a decreased tendency (non-significant) of SOD in brain was also observed. AChE activity in brain and plasma was significantly decreased in scopolamine treated rats. Learning and memory of rats in the present study was assessed by Morris Water Maze (MWM). Short-term memory and long-term memory was impaired significantly in scopolamine treated rats, which was prevented by apomorphine. Moreover, a marked decrease in biogenic amines was also found in the brain of scopolamine treated rats and was reverted in apomorphine treated rats. Results showed that scopolamine-treatment induced memory impairment and induced oxidative stress in rats as compared to saline-treated controls. These impairments were significantly restored by apomorphine administration. In conclusion, our data suggests that apomorphine at the dose of 1 mg/kg could be a potential therapeutic agent to treat dementia and related disorders.


Subject(s)
Apomorphine , Dementia , Disease Models, Animal , Memory , Neuroprotective Agents , Rats, Wistar , Scopolamine , Animals , Apomorphine/pharmacology , Rats , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Male , Dementia/drug therapy , Dementia/metabolism , Dementia/prevention & control , Memory/drug effects , Oxidative Stress/drug effects , Brain/metabolism , Brain/drug effects , Catalase/metabolism , Superoxide Dismutase/metabolism , Lipid Peroxidation/drug effects , Acetylcholinesterase/metabolism , Glutathione Peroxidase/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL