Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 16(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38475293

ABSTRACT

Surface wrinkling provides an approach to fabricate micron and sub-micron-level biomaterial topographies that can mimic features of the dynamic, in vivo cell environment and guide cell adhesion, alignment, and differentiation. Most wrinkling research to date has used planar, two-dimensional (2D) substrates, and wrinkling work on three-dimensional (3D) structures has been limited. To enable wrinkle formation on architecturally complex, biomimetic 3D structures, here, we report a simple, low-cost experimental wrinkling approach that combines natural silk fibroin films with a recently developed advanced manufacturing technique for programming strain in complex 3D shape-memory polymer (SMP) scaffolds. By systematically investigating the influence of SMP programmed strain magnitude, silk film thickness, and aqueous media on wrinkle morphology and stability, we reveal how to generate and tune silk wrinkles on the micron and sub-micron scale. We find that increasing SMP programmed strain magnitude increases wavelength and decreases amplitudes of silk wrinkled topographies, while increasing silk film thickness increases wavelength and amplitude. Silk wrinkles persist after 24 h in cell culture medium. Wrinkled topographies demonstrate high cell viability and attachment. These findings suggest the potential for fabricating biomimetic cellular microenvironments that can advance understanding and control of cell-material interactions in engineering tissue constructs.

2.
Polymers (Basel) ; 15(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37836078

ABSTRACT

Nature has always been a source of inspiration for the development of novel materials and devices. In particular, polymer actuators that mimic the movements and functions of natural organisms have been of great interest due to their potential applications in various fields, such as biomedical engineering, soft robotics, and energy harvesting. During recent years, the development and actuation performance of electrospun fibrous meshes with the advantages of high permeability, surface area, and easy functional modification, has received extensive attention from researchers. This review covers the recent progress in the state-of-the-art electrospun actuators based on commonly used polymers such as stimuli-sensitive hydrogels, shape-memory polymers (SMPs), and electroactive polymers. The design strategies inspired by nature such as hierarchical systems, layered structures, and responsive interfaces to enhance the performance and functionality of these actuators, including the role of biomimicry to create devices that mimic the behavior of natural organisms, are discussed. Finally, the challenges and future directions in the field, with a focus on the development of more efficient and versatile electrospun polymer actuators which can be used in a wide range of applications, are addressed. The insights gained from this review can contribute to the development of advanced and multifunctional actuators with improved performance and expanded application possibilities.

3.
Materials (Basel) ; 16(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37241438

ABSTRACT

Reports have pointed out that nearly 50% of the global total energy demand for buildings is used for daily heating and cooling. Therefore, it is very important to develop various high-performance thermal management techniques with low energy consumption. In this work, we present an intelligent shape memory polymers (SMPs)-based device with programmable anisotropic thermal conductivity fabricated by a 4D printing technique to assist in thermal management with net zero energy. Highly thermal conductive BN nanosheets were textured in a poly (lactic acid) (PLA) matrix by 3D printing, and the printed composites lamina exhibited significant anisotropic thermal conductivity. The direction of heat flow in devices could be switched programmably, accompanying the light-activated deformation controlled by grayscale of composite, which was demonstrated by the "windows" arrays composed of in-plate thermal conductivity facets and SMPs-based hinge joints, achieving the programmable movement of opening and closing under different light conditions. Based on solar radiation-dependent SMPs coupled with the adjustment of heat flow along anisotropic thermal conductivity, the 4D printed device has been proved in concept for potential applications in thermal management in a building envelop for dynamic climate adaptation, taking place automatically based on the environment.

4.
Polymers (Basel) ; 14(18)2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36145945

ABSTRACT

Shape-memory polymers (SMPs) have gradually emerged in the mechanism and biomedical fields and facilitate the upgrading of industrial mechanisms and the breakthrough of technical bottlenecks. However, most of the SMPs are infeasible in harsh environments, such as aerospace, due to the low glass transition temperature. There are still some works that remain in creating truly portable or non-contacting actuators that can match the performances and functions of traditional metal structures. Polyether-ether-ketone (PEEK) with a high glass transition temperature of 143 °C is endowed with outstanding high-temperature resistance and radiation-resistant properties and shape memory behavior. Thus, we explore the shape-memory properties and actuation performances of high-temperature PEEK in bending behaviors. The shape-recovery ratio, actuation speed and force under different programming conditions and structure parameters are summarized to complete the actuation capacities. Meanwhile, a metallic ball transported by shape-memory PEEK and deployed drag sail with thermo-responsive composite joints were shown to verify the potential in aerospace.

5.
Int J Mol Sci ; 23(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35163218

ABSTRACT

Shape-Memory Polymers (SMPs) are considered a kind of smart material able to modify size, shape, stiffness and strain in response to different external (heat, electric and magnetic field, water or light) stimuli including the physiologic ones such as pH, body temperature and ions concentration. The ability of SMPs is to memorize their original shape before triggered exposure and after deformation, in the absence of the stimulus, and to recover their original shape without any help. SMPs nanofibers (SMPNs) have been increasingly investigated for biomedical applications due to nanofiber's favorable properties such as high surface area per volume unit, high porosity, small diameter, low density, desirable fiber orientation and nanoarchitecture mimicking native Extra Cellular Matrix (ECM). This review focuses on the main properties of SMPs, their classification and shape-memory effects. Moreover, advantages in the use of SMPNs and different biomedical application fields are reported and discussed.


Subject(s)
Nanofibers/therapeutic use , Polymers/pharmacology , Smart Materials/chemistry , Animals , Biocompatible Materials/chemistry , Biomedical Engineering/methods , Biomedical Engineering/trends , Humans , Nanofibers/chemistry , Polymers/chemistry , Polymers/therapeutic use , Smart Materials/pharmacology , Smart Materials/therapeutic use , Tissue Scaffolds/chemistry
6.
Molecules ; 22(8)2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28796171

ABSTRACT

The presented paper concerns scientific research on processing a poly(lactide-co-glycolide-co-trimethylene carbonate) copolymer (PLLAGLTMC) with thermally induced shape memory and a transition temperature around human body temperature. The material in the literature called terpolymer was used to produce smart, nonwoven fabric with the melt blowing technique. Bioresorbable and biocompatible terpolymers with shape memory have been investigated for its medical applications, such as cardiovascular stents. There are several research studies on shape memory in polymers, but this phenomenon has not been widely studied in textile products made from shape memory polymers (SMPs). The current research aims to explore the characteristics of the PLLAGLTMC nonwoven fabric in detail and the mechanism of its shape memory behavior. In this study, the nonwoven fabric was subjected to thermo-mechanical, morphological, and shape memory analysis. The thermo-mechanical and structural properties were investigated by means of differential scanning calorimetry, dynamic mechanical analysis, scanning electron microscopic examination, and mercury porosimetry measurements. Eventually, the gathered results confirmed that the nonwoven fabric possessed characteristics that classified it as a smart material with potential applications in medicine.


Subject(s)
Polyesters/chemistry , Biocompatible Materials , Humans , Materials Testing/methods , Porosity , Temperature , Textiles , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL