Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Language
Publication year range
1.
Cells ; 10(9)2021 09 18.
Article in English | MEDLINE | ID: mdl-34572115

ABSTRACT

OBJECTIVES: Tissue architecture and cell morphology suffer profound alterations during oral cancer and are important markers for its progression and outcome. For precise visualization of tissue architecture in oral cancer, we used confocal microscopy to examine the staining pattern of wheat germ agglutinin, a lectin that binds membrane glycoproteins, and the staining patterns of structural proteins. MATERIALS AND METHODS: Paraffin sections of oral squamous cell carcinoma were stained with fluorescently labeled wheat germ agglutinin and with antibodies against structural proteins, which were revealed by immunohistochemistry with tyramide signal amplification. RESULTS: Membrane localization of wheat germ agglutinin was markedly decreased in the basal layers and in regions of tumor invasion, accompanied by cytoplasmic redistribution of E-cadherin, ß-actin and syndecan-1. Wheat germ agglutinin staining clearly identified tumor clusters within the surrounding stroma, and tumor cells with elongated morphology. CONCLUSIONS: Our results suggest that the wheat germ agglutinin staining pattern is indicative of the degree of cell cohesion in oral squamous cell carcinoma, which decreases in basal layers and invasive tumor clusters with more migratory morphologies. Wheat germ agglutinin staining in combination with confocal microscopy could constitute, therefore, a valuable tool for the study of tissue architecture in oral cancer.


Subject(s)
Carcinoma, Squamous Cell/pathology , Membrane Glycoproteins/metabolism , Mouth Neoplasms/pathology , Wheat Germ Agglutinins/metabolism , Carcinoma, Squamous Cell/metabolism , Humans , Immunohistochemistry , Microscopy, Confocal , Mouth Neoplasms/metabolism , Paraffin Embedding , Staining and Labeling
2.
Cells ; 10(7)2021 07 01.
Article in English | MEDLINE | ID: mdl-34359825

ABSTRACT

MicroRNAs (miRNAs) have a prominent role in virtually every aspect of cell biology. Due to the small size of mature miRNAs, the high degree of similarity between miRNA family members, and the low abundance of miRNAs in body fluids, miRNA expression profiling is technically challenging. Biosensors based on electrochemical detection for nucleic acids are a novel category of inexpensive and very sensitive diagnostic tools. On the other hand, after recognizing the target sequence, specific CRISPR-associated proteins, including orthologues of Cas12, Cas13, and Cas14, exhibit collateral nonspecific catalytic activities that can be employed for specific and ultrasensitive nucleic acid detection from clinically relevant samples. Recently, several platforms have been developed, connecting the benefits of enzyme-assisted signal amplification and enzyme-free amplification biosensing technologies with CRISPR-based approaches for miRNA detection. Together, they provide high sensitivity, precision, and fewer limitations in diagnosis through efficient sensors at a low cost and a simple miniaturized readout. This review provides an overview of several CRISPR-based biosensing platforms that have been developed and successfully applied for ultrasensitive and specific miRNA detection.


Subject(s)
CRISPR-Cas Systems/genetics , MicroRNAs/analysis , Animals , Biosensing Techniques , Colorimetry , Electrochemistry , Genetic Engineering , Humans , MicroRNAs/genetics
3.
Molecules ; 25(15)2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32756410

ABSTRACT

Nanobioconjugates are hybrid materials that result from the coalescence of biomolecules and nanomaterials. They have emerged as a strategy to amplify the signal response in the biosensor field with the potential to enhance the sensitivity and detection limits of analytical assays. This critical review collects a myriad of strategies for the development of nanobioconjugates based on the conjugation of proteins, antibodies, carbohydrates, and DNA/RNA with noble metals, quantum dots, carbon- and magnetic-based nanomaterials, polymers, and complexes. It first discusses nanobioconjugates assembly and characterization to focus on the strategies to amplify a biorecognition event in biosensing, including molecular-, enzymatic-, and electroactive complex-based approaches. It provides some examples, current challenges, and future perspectives of nanobioconjugates for the amplification of signals in electrochemical biosensing.


Subject(s)
Biosensing Techniques/methods , Nanostructures/chemistry , Nucleic Acids/chemistry , Proteins/chemistry , Aptamers, Nucleotide/chemistry , Biomarkers/analysis , Electrochemical Techniques , Humans , Polymers/chemistry , Toxins, Biological/analysis
4.
Sensors (Basel) ; 17(12)2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29186024

ABSTRACT

Although several researchers had reported on methodologies for surface plasmon resonance (SPR) signal amplification based on the use of nanoparticles (NPs), the majority addressed the sandwich technique and low protein concentration. In this work, a different approach for SPR signal enhancement based on the use of gold NPs was evaluated. The method was used in the detection of two lectins, peanut agglutinin (PNA) and concanavalin A (ConA). Gold NPs were functionalized with antibodies anti-PNA and anti-ConA, and these NPs were used as protein scavengers in a solution. After being incubated with solutions of PNA or ConA, the gold NPs coupled with the collected lectins were injected on the sensor containing the immobilized antibodies. The signal amplification provided by this method was compared to the signal amplification provided by the direct coupling of PNA and ConA to gold NPs. Furthermore, both methods, direct coupling and gold NPs as protein scavengers, were compared to the direct detection of PNA and ConA in solution. Compared to the analysis of free protein, the direct coupling of PNA and ConA to gold NPs resulted in a signal amplification of 10-40-fold and a 13-fold decrease of the limit of detection (LOD), whereas the use of gold NPs as protein scavengers resulted in an SPR signal 40-50-times higher and an LOD 64-times lower.

5.
J Comp Neurol ; 525(11): 2514-2534, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28256705

ABSTRACT

The avian centrifugal visual system, which projects from the brain to the retina, has been intensively studied in several Neognathous birds that have a distinct isthmo-optic nucleus (ION). However, birds of the order Palaeognathae seem to lack a proper ION in histologically stained brain sections. We had previously reported in the palaeognathous Chilean Tinamou (Nothoprocta perdicaria) that intraocular injections of Cholera Toxin B subunit retrogradely label a considerable number of neurons, which form a diffuse isthmo-optic complex (IOC). In order to better understand how this IOC-based centrifugal visual system is organized, we have studied its major components by means of in vivo and in vitro tracing experiments. Our results show that the IOC, though structurally less organized than an ION, possesses a dense core region consisting of multipolar neurons. It receives afferents from neurons in L10a of the optic tectum, which are distributed with a wider interneuronal spacing than in Neognathae. The tecto-IOC terminals are delicate and divergent, unlike the prominent convergent tecto-ION terminals in Neognathae. The centrifugal IOC terminals in the retina are exclusively divergent, resembling the terminals from "ectopic" centrifugal neurons in Neognathae. We conclude that the Tinamou's IOC participates in a comparable general IOC-retina-TeO-IOC circuitry as the neognathous ION. However, the connections between the components are structurally different and their divergent character suggests a lower spatial resolution. Our findings call for further comparative studies in a broad range of species for advancing our understanding of the evolution, plasticity and functional roles of the avian centrifugal visual system.


Subject(s)
Palaeognathae/physiology , Retina/physiology , Superior Colliculi/physiology , Visual Pathways/physiology , Animals , Birds , Chile , Female , Male , Palaeognathae/anatomy & histology , Retina/cytology , Species Specificity , Superior Colliculi/cytology , Visual Pathways/cytology
6.
Mem. Inst. Oswaldo Cruz ; 112(2): 140-145, Feb. 2017. graf
Article in English | LILACS | ID: biblio-841762

ABSTRACT

BACKGROUND Fluorescence in situ hybridisation (FISH) associated with Tyramide Signal Amplification (TSA) using oligonucleotides labeled with non-radioactive fluorophores is a promising technique for detection and differentiation of fungal species in environmental or clinical samples, being suitable for microorganisms which are difficult or even impossible to culture. OBJECTIVE In this study, we aimed to standardise an in situ hybridisation technique for the differentiation between the pathogenic species Paracoccidioides brasiliensis and Paracoccidioides lutzii, by using species-specific DNA probes targeting the internal transcribed spacer-1 (ITS-1) of the rRNA gene. METHODS Yeast and mycelial phase of each Paracoccidioides species, were tested by two different detection/differentiation techniques: TSA-FISH for P. brasiliensis with HRP (Horseradish Peroxidase) linked to the probe 5’ end; and FISH for P. lutzii with the fluorophore TEXAS RED-X® also linked to the probe 5’ end. After testing different protocols, the optimised procedure for both techniques was accomplished without cross-positivity with other pathogenic fungi. FINDINGS The in silico and in vitro tests show no reaction with controls, like Candida and Cryptococcus (in silico) and Histoplasma capsulatum and Aspergillus spp. (in vitro). For both phases (mycelial and yeast) the in situ hybridisation showed dots of hybridisation, with no cross-reaction between them, with a lower signal for Texas Red probe than HRP-TSA probe. The dots of hybridisation was confirmed with genetic material marked with 4’,6-diamidino-2-phenylindole (DAPI), visualised in a different filter (WU) on fluorescent microscopic. MAIN CONCLUSION Our results indicated that TSA-FISH and/or FISH are suitable for in situ detection and differentiation of Paracoccidioides species. This approach has the potential for future application in clinical samples for the improvement of paracoccidioidomycosis patients prognosis.


Subject(s)
Paracoccidioides/classification , Paracoccidioides/genetics , DNA, Fungal , DNA, Ribosomal Spacer , Species Specificity , Oligonucleotide Probes , In Situ Hybridization, Fluorescence , Fluorescence , Fluorescent Dyes
SELECTION OF CITATIONS
SEARCH DETAIL