Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Pathogens ; 13(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39057804

ABSTRACT

The presence of skin bacteria capable of forming biofilm, exhibiting antibiotic resistance, and displaying virulence represents a significant challenge in the field of transfusion medicine. This underscores the necessity of enhancing the microbiological safety of blood and blood components against pathogens with virulent characteristics. The aim of this work was to demonstrate bacterial inactivation in plasma by using a photoinactivation method against virulent bacteria and to evaluate coagulation factors before and after treatment. Logarithmic loads of biofilm-producing, antibiotic-resistant, and virulent bacteria isolated from skin (Enterobacter cloacae, Klebsiella ozaenae, and Staphylococcus epidermidis) were used in artificial contamination assays of fresh frozen plasma bags and subjected to photoreduction. FVIII and FI activity were evaluated before and after photoinactivation. The photoinactivation of plasma was demonstrated to be an effective method for the elimination of these bacteria. However, the efficiency of this method was found to be dependent on the bacterial load and the type of test microorganism. Conversely, decay of coagulation factors was observed with net residual activities of 61 and 69% for FVIII and FI, respectively. The photoinactivation system could have a bias in its effectiveness that is dependent on the test pathogen. These findings highlight the importance of employing technologies that increase the safety of the recipient of blood and/or blood components, especially against virulent bacteria, and show the relevance of the role of photoinactivation systems as an option in transfusion practice.

2.
Antonie Van Leeuwenhoek ; 116(11): 1139-1150, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37658955

ABSTRACT

A non-motile, novel actinobacterial strain, Kera-3T, which is a gram-positive, aerobic, rod-shaped bacterium, was isolated from human keratinocytes on 1/10 diluted R2A agar. Whole-cell hydrolysis of amino acids revealed the presence of meso-DAP, alanine, and glutamic acid. The predominant menaquinone was MK-9 (H8), whereas the primary fatty acids were C16:0 and C18:1 ω9c. The major phospholipids included diphosphatidylglycerol and aminophospholipids, along with an unidentified phosphoglycolipid and an aminophosphoglycolipid. The G+C content of the genomic DNA was 73.2%, based on the complete genome sequence. Phylogenetic analyses of the 16S rRNA gene sequence and phylogenomic analysis of 91 core genes showed that strain Kera-3T formed a new lineage in the family Iamiaceae, with the closest neighbour Rhabdothermincola sediminis SYSU G02662T having 91.19% 16S rRNA gene sequence identity. A comparative genomic study of the predicted general metabolism and carbohydrate-active enzymes supported the phylogenetic and phylogenomic data. Based on the analysis of physiological, biochemical, and genomic characteristics, strain Kera-3T can be distinguished from known genera in the family Iamiaceae and represents a novel genus and species. Therefore, the name Dermatobacter hominis gen. nov., sp. nov. was proposed, with the type strain Kera-3T (= KACC 22415T = LMG 32493T).

3.
Philos Trans R Soc Lond B Biol Sci ; 378(1882): 20220120, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37305906

ABSTRACT

The amphibian chytrid fungus, Batrachochytrium salamandrivorans (Bsal) threatens salamander biodiversity. The factors underlying Bsal susceptibility may include glucocorticoid hormones (GCs). The effects of GCs on immunity and disease susceptibility are well studied in mammals, but less is known in other groups, including salamanders. We used Notophthalmus viridescens (eastern newts) to test the hypothesis that GCs modulate salamander immunity. We first determined the dose required to elevate corticosterone (CORT; primary GC in amphibians) to physiologically relevant levels. We then measured immunity (neutrophil lymphocyte ratios, plasma bacterial killing ability (BKA), skin microbiome, splenocytes, melanomacrophage centres (MMCs)) and overall health in newts following treatment with CORT or an oil vehicle control. Treatments were repeated for a short (two treatments over 5 days) or long (18 treatments over 26 days) time period. Contrary to our predictions, most immune and health parameters were similar for CORT and oil-treated newts. Surprisingly, differences in BKA, skin microbiome and MMCs were observed between newts subjected to short- and long-term treatments, regardless of treatment type (CORT, oil vehicle). Taken together, CORT does not appear to be a major factor contributing to immunity in eastern newts, although more studies examining additional immune factors are necessary. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.


Subject(s)
Microbiota , Notophthalmus viridescens , Animals , Corticosterone/pharmacology , Glucocorticoids , Skin , Mammals
4.
Data Brief ; 47: 109003, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36915639

ABSTRACT

The metagenomic data presented in this article are related to the published research of "A Placebo-controlled double-blinded test of the biodiversity hypothesis of immune-mediated diseases: Environmental microbial diversity elicits changes in cytokines and increase in T regulatory cells in young children" This database contains 16S ribosomal RNA (rRNA) metagenomics of sandbox sand and skin and gut microbiota of children in the intervention and placebo daycares. In intervention daycares, children aged 3-5 years were exposed to playground sand enriched with microbially diverse soil. In placebo daycares, children were exposed to visually similar as in intervention daycares, but microbially poor sand colored with peat. Sand, skin and gut metagenomics were analyzed at baseline and after 14 and 28 days of intervention by high throughput sequencing of bacterial 16S rRNA gene on the Illumina MiSeq platform. This dataset shows how skin bacterial community composition, including classes Gammaproteobacteria and Bacilli, changed, and how the relative abundance of over 30 bacterial genera shifted on the skin of children in the intervention treatment, while no shifts occurred in the placebo group.

5.
BMC Complement Med Ther ; 23(1): 85, 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36934252

ABSTRACT

BACKGROUND: Cellulitis is a common skin disease encountered in medical emergencies in hospitals. It can be treated using a combination of antibiotics therapy; however, the causative agent Staphylococcus aureus has been reported to develop resistance towards the currently used antibiotics. Therefore, the search for more alternative herbal origin antimicrobial agents is critical. AIM: In this study, maceration and Soxhlet extraction of the whole plant of Cassia alata Linn. (leaves, roots, and stem) were performed using four solvents with different polarities, namely n-hexane, ethyl acetate, ethanol and distilled water. The crude extracts were screened using agar well diffusion, colorimetric broth microdilution, grid culture and bacterial growth curve analysis against Staphylococcus aureus. The phytochemicals in the crude extracts were identified using Gas Chromatography-Mass Spectrometry (GC-MS). RESULTS: Agar-well diffusion analysis revealed that extraction using ethyl acetate showed the largest inhibition zone with an average diameter of 15.30 mm (root Soxhlet extract) followed by 14.70 mm (leaf Soxhlet extract) and 13.70 mm (root maceration extract). The lowest minimum inhibitory and minimum bactericidal concentration in root Soxhlet extract using ethyl acetate was 0.313 and 0.625 µg µL-1, respectively. Our study proved that crude extract of the plant suppressed the growth of S. aureus as evidenced from a significant regression extension (p < 0.06, p = 0.00003) of lag phase for 6 h after the treatment with increased concentration. Based on the GC-MS analysis, 88 phytochemicals consist of fatty acids, esters, alkanes, phenols, fatty alcohols, sesquiterpenoids and macrocycle that possibly contributed to the antimicrobial properties were identified, 32 of which were previously characterized for their antimicrobial, antioxidant, and anti-inflammatory activities. CONCLUSION: Ethyl acetate crude extract was better than the other investigated solvents. The root and stem of C. alata showed significant antimicrobial efficacy against S. aureus in this study. The remaining 56 out of 88 phytochemicals of the plant should be intensively studied for more medicinal uses.


Subject(s)
Anti-Infective Agents , Cassia , Staphylococcus aureus , Cassia/chemistry , Plant Extracts/pharmacology , Plant Extracts/analysis , Cellulitis , Agar , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Plant Leaves/chemistry , Solvents/analysis , Phytochemicals/pharmacology , Phytochemicals/analysis
6.
Biol Open ; 12(2)2023 02 15.
Article in English | MEDLINE | ID: mdl-36745034

ABSTRACT

Bacterial assemblages on amphibian skin may play an important role in protecting hosts against infection. In hosts that occur over a range of environments, geographic variation in composition of bacterial assemblages might be due to direct effects of local factors and/or to evolved characteristics of the host. Invasive cane toads (Rhinella marina) are an ideal candidate to evaluate environmental and genetic mechanisms, because toads have evolved major shifts in physiology, morphology, and behavior during their brief history in Australia. We used samples from free-ranging toads to quantify site-level differences in bacterial assemblages and a common-garden experiment to see if those differences disappeared when toads were raised under standardised conditions at one site. The large differences in bacterial communities on toads from different regions were not seen in offspring raised in a common environment. Relaxing bacterial clustering to operational taxonomic units in place of amplicon sequence variants likewise revealed high similarity among bacterial assemblages on toads in the common-garden study, and with free-ranging toads captured nearby. Thus, the marked geographic divergence in bacterial assemblages on wild-caught cane toads across their Australian invasion appears to result primarily from local environmental effects rather than evolved shifts in the host.


Subject(s)
Introduced Species , Animals , Bufo marinus/physiology , Australia , Phenotype
7.
Animals (Basel) ; 12(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35892531

ABSTRACT

The skin is the first barrier the body has to protect itself from the environment. There are several bacteria that populate the skin, and their composition may change throughout the dog's life due to several factors, such as environmental changes and diseases. The objective of this research was to determine the skin microbiome changes due to a change in diet on healthy pet dogs. Healthy client-owned dogs (8) were fed a fresh diet for 30 days then dry foods for another 30 days after a 4-day transition period. Skin bacterial population samples were collected after each 30-day feeding period and compared to determine microbiome diversity. Alpha diversity was higher when dogs were fed the fresh diet compared to the dry foods. Additionally, feeding fresh food to dogs increased the proportion of Staphylococcus and decreased Porphyromonas and Corynebacterium. In conclusion, changing from fresh diet to dry foods promoted a relative decrease in skin microbiome in healthy pet dogs.

8.
Sci Total Environ ; 841: 156677, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35710008

ABSTRACT

Environmental contamination influences the diversity of the resident skin microbial community of amphibians, ultimately affecting the individual's immune system. Wildfires are expected to impact the skin microbiome, since post-fire runoff typically transports hazardous substances, that can affect terrestrial and aquatic ecosystems. The present study is the first to assess the effects of Eucalypt and Pine wildfire ash on cultivable bacterial isolates from the skin microbiome of amphibians, in particular the fire salamander (Salamandra salamandra), a common species in fire-prone Mediterranean ecosystems. To achieve this goal, samples of skin bacteria of adult individuals of S. salamandra were collected at a site without influence of wildfires. The bacterial isolates were tested against the pathogenic agent Aeromonas salmonicida for assessing their antimicrobial activity, before exposing them to a series of dilutions of aqueous extracts of Eucalypt and Pine ashes (AAEs) from high severity wildfires. From the 80 bacterial isolates collected, 48 (mostly Pseudomonas spp.) showed antimicrobial activity. Exposure of bacteria with antimicrobial activity to the Eucalypt and Pine AAEs at concentrations of 0, 6.25, 12.5, 25, 50, 75, and 100%, revealed that bacterial growth could be significantly inhibited, stimulated or unaffected by ash. Growth inhibition was found for Pine and Eucalypt AAEs at concentrations as low as 6.25% and 12.5%, respectively, but were more expressive at concentrations equal or above 50%. Eucalypt AAEs had a higher negative impact on bacterial growth than Pine AAEs, likely due to differences in metal concentrations between ash types. These findings raise concern about the future of amphibians in fire-prone regions since the foreseen increase in fire frequency and severity owing to climate changes are likely to alter the skin microbiome of amphibians, weaken the immune system and consequently increasing the incidence of infections or diseases, further contributing to the decline of the populations.


Subject(s)
Anti-Infective Agents , Microbiota , Pinus , Salamandra , Wildfires , Animals , Humans
9.
Int J Infect Dis ; 121: 75-84, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35533832

ABSTRACT

OBJECTIVES: Patients with severe pneumonia admitted to the intensive care unit (ICU) have a high risk of mortality, and the microbiome is likely to affect the outcome of such patients. However, the composition of the skin microbiota of ICU patients with severe pneumonia remains unclear. In this study, on the basis of 16S ribosomal ribonucleic acid sequencing, we explored the difference in skin bacterial richness and diversity between the ICU patient group (PG) with severe pneumonia and the healthy control group (CG). METHODS: The diversity index and taxonomic distribution of skin bacteria were analyzed using the Quantitative Insights Into Microbial Ecology (QIIME) bioinformatics pipeline. Blood, endotracheal aspirate, and bronchoalveolar lavage fluid samples were collected from the same PG subjects for culture. RESULTS: Compared with the CG, the diversity of skin bacteria in the PG decreased significantly. Staphylococcus, Acinetobacter, Stenotrophomonas, Enterococcus, Halomonas, and Brevibacillus were differentially abundant in the PG, and most of these bacteria were also identified in the cultures of upper respiratory tract samples of the same PG. CONCLUSION: We provide evidence that healthcare-associated infection in ICU patients with severe pneumonia is strongly associated with skin microbiota, which necessitates the prevention and control of skin bacterial pathogens for these patients.


Subject(s)
Microbiota , Pneumonia , Bacteria/genetics , Humans , Intensive Care Units , Pneumonia/microbiology , RNA, Ribosomal, 16S/genetics
10.
Life (Basel) ; 12(4)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35455029

ABSTRACT

Bacteria can bind on clothes, but the impacts of textiles leachables on cutaneous bacteria remain unknown. Here, we studied for the first time the effects of cotton and flax obtained through classical and soft ecological agriculture on the representatives S. aureus and S. epidermidis bacteria of the cutaneous microbiota. Crude flax showed an inhibitory potential on S. epidermidis bacterial lawns whereas cotton had no effect. Textile fiber leachables were produced in bacterial culture media, and these extracts were tested on S. aureus and S. epidermidis. Bacterial growth was not impacted, but investigation by the crystal violet technique and confocal microscopy showed that all extracts affected biofilm formation by the two staphylococci species. An influence of cotton and flax culture conditions was clearly observed. Flax extracts had strong inhibitory impacts and induced the formation of mushroom-like defense structures by S. aureus. Conversely, production of biosurfactant by bacteria and their surface properties were not modified. Resistance to antibiotics also remained unchanged. All textile extracts, and particularly soft organic flax, showed strong inhibitory effects on S. aureus and S. epidermidis cytotoxicity on HaCaT keratinocytes. Analysis of flax leachables showed the presence of benzyl alcohol that could partly explain the effects of flax extracts.

11.
Environ Sci Pollut Res Int ; 29(37): 56592-56605, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35338466

ABSTRACT

Lead (Pb) is a toxic heavy metal often present in the environment as a pulse in water. Traditional toxicity tests are usually carried out under conditions of continuous concentration, without considering the impact of pulse exposure on aquatic organisms. This study aimed to evaluate the effects of short-term continuous and pulse Pb exposures on the skin bacteria and histomorphological structure of Pelophylax nigromaculatus. Results showed that compared to the control (CON) and Pb continuous exposure group (CEPb), the Pb pulse exposure group (PEPb) showed the smallest size of granular glands, which would interfere with the permeability and secretory function of skin, making the individual more sensitive to external pollution. Lead exposure significantly changed the composition and diversity of skin bacteria. Compared to the CON and CEPb groups, the PEPb group showed a significant increase in the abundance of harmful bacteria (e.g., Bacteroidetes and Chryseobacterium) and a decrease in the abundance of beneficial bacteria (e.g., Pseudomonas). PICRUSt software showed that there were differences in the metabolic pathway of skin bacteria among the three groups (CON, CEPb, and PEPb). Overall, this study indicates that Pb pulse exposure can aggravate the toxicity of Pb for frog skin, providing a new framework for simulating short-term heavy metal exposure in the context of frog health.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Animals , Bacteria , Environmental Pollution , Lead/toxicity , Metals, Heavy/pharmacology , Ranidae , Water Pollutants, Chemical/analysis
12.
PeerJ ; 9: e11532, 2021.
Article in English | MEDLINE | ID: mdl-34249488

ABSTRACT

Biological invasions are on the rise, with each invader carrying a plethora of associated microbes. These microbes play important, yet poorly understood, ecological roles that can include assisting the hosts in colonization and adaptation processes or as possible pathogens. Understanding how these communities differ in an invasion scenario may help to understand the host's resilience and adaptability. The Asian common toad, Duttaphrynus melanostictus is an invasive amphibian, which has recently established in Madagascar and is expected to pose numerous threats to the native ecosystems. We characterized the skin and gut bacterial communities of D. melanostictus in Toamasina (Eastern Madagascar), and compared them to those of a co-occurring native frog species, Ptychadena mascareniensis, at three sites where the toad arrived in different years. Microbial composition did not vary among sites, showing that D. melanostictus keeps a stable community across its expansion but significant differences were observed between these two amphibians. Moreover, D. melanostictus had richer and more diverse communities and also harboured a high percentage of total unique taxa (skin: 80%; gut: 52%). These differences may reflect the combination of multiple host-associated factors including microhabitat selection, skin features and dietary preferences.

13.
Appl Environ Microbiol ; 87(10)2021 04 27.
Article in English | MEDLINE | ID: mdl-33712427

ABSTRACT

ε-Poly-l-lysine is a potent antimicrobial produced through fermentation of Streptomyces and used in many Asian countries as a food preservative. It is synthesized and excreted by a special nonribosomal peptide synthetase (NRPS)-like enzyme called Pls. In this study, we discovered a gene from cheese bacterium Corynebacterium variabile that showed high similarity to the Pls from Streptomyces in terms of domain architecture and gene context. By cloning it into Streptomyces coelicolor with a Streptomyces albulus Pls promoter, we confirmed that its product is indeed ε-poly-l-lysine. A comprehensive sequence analysis suggested that Pls genes are widely spread among coryneform actinobacteria isolated from cheese and human skin; 14 out of 15 Brevibacterium isolates and 10 out of 12 Corynebacterium isolates contain it in their genomes. This finding raises the possibility that ε-poly-l-lysine as a bioactive secondary metabolite might be produced and play a role in the cheese and skin ecosystems.IMPORTANCE Every year, microbial contamination causes billions of tons of food wasted and millions of cases of illness. ε-Poly-l-lysine has potent, wide-spectrum inhibitory activity and is heat stable and biodegradable. It has been approved for food preservation by an increasing number of countries. ε-Poly-l-lysine is produced from soil bacteria of the genus Streptomyces, also producers of various antibiotic drugs and toxins and not considered to be a naturally occurring food component. The frequent finding of pls in cheese and skin bacteria suggests that ε-poly-l-lysine may naturally exist in cheese and on our skin, and ε-poly-l-lysine producers are not limited to filamentous actinobacteria.


Subject(s)
Bacterial Proteins/genetics , Corynebacterium/enzymology , Peptide Synthases/genetics , Cheese/microbiology , Cloning, Molecular , Corynebacterium/genetics , Humans , Polylysine/metabolism , Skin/microbiology , Streptomyces/genetics , Streptomyces coelicolor/genetics
14.
FEMS Microbiol Ecol ; 97(4)2021 04 06.
Article in English | MEDLINE | ID: mdl-33580951

ABSTRACT

Amphibian skin bacteria may confer protection against the fungus Batrachochytrium dendrobatidis (Bd), but responses of skin bacteria to different Bd lineages are poorly understood. The global panzootic lineage (Bd-GPL) has caused amphibian declines and extinctions globally. However, other lineages are enzootic (Bd-Asia-2/Brazil). Increased contact rates between Bd-GPL and enzootic lineages via globalization pose unknown consequences for host-microbiome-pathogen dynamics. We conducted a laboratory experiment and used 16S rRNA amplicon-sequencing to assess: (i) whether two lineages (Bd-Asia-2/Brazil and Bd-GPL) and their recombinant, in single and mixed infections, differentially affect amphibian skin bacteria; (ii) and the changes associated with the transition to laboratory conditions. We determined no clear differences in bacterial diversity among Bd treatments, despite differences in infection intensity. However, we observed an additive effect of mixed infections on bacterial alpha diversity and a potentially antagonistic interaction between Bd genotypes. Additionally, observed changes in community composition suggest a higher ability of Bd-GPL to alter skin bacteria. Lastly, we observed a drastic reduction in bacterial diversity and a change in community structure in laboratory conditions. We provide evidence for complex interactions between Bd genotypes and amphibian skin bacteria during coinfections, and expand on the implications of experimental conditions in ecological studies.


Subject(s)
Chytridiomycota , Mycoses , Animals , Bacteria/genetics , Brazil , Chytridiomycota/genetics , RNA, Ribosomal, 16S/genetics
15.
J Wound Care ; 29(Sup4): S14-S24, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32279614

ABSTRACT

OBJECTIVE: Prevention of recurrent pressure ulcers (PU) is one of the most important challenges in wound care, furthermore, the risk factors for recurrent PUs are still not fully understood. This study aimed to explore the risk factors for recurrent PU development within two weeks, including biophysical skin properties, pro-inflammatory cytokine (tumour necrosis factor [TNF]-α) levels and bacterial species, in older patients. METHOD: This prospective study was conducted in a long-term care facility with patients whose PU had healed within two months. Biophysical skin properties were evaluated by stratum corneum hydration, pH, sebum content and transepidermal water loss. TNF-α level was measured using skin blotting. Skin bacteria were collected using tape stripping and determined by species-specific gene amplification. These parameters, along with Braden scale and interface pressure, were evaluated every two weeks for a total period of eight weeks. A penalised generalised estimating equation analysis was used to determine the risk factors for recurrent PUs. RESULTS: In total, 20 patients were included in this study, with 57 observations. Of these, recurrent PU was seen in eight observations. Elevation of pH (p=0.049; odds ratio [OR] per 1 unit=3.91, 95% confidence interval [CI]:1.01-15.15), presence of Acinetobacter spp. (p=0.039; OR versus culture-negative=6.28, 95%CI:1.10-35.86) and higher interface pressure (p=0.008; OR per 1 mmHg=1.06, 95%CI:1.01-1.10) on the healed PU were significantly related to the development of recurrent PU. CONCLUSION: Higher pH, existence of Acinetobacter spp. and higher interface pressure on the site of the healed PU were associated with the development of recurrent PUs in older patients undergoing conservative treatments.


Subject(s)
Pressure Ulcer/prevention & control , Aged , Aged, 80 and over , Female , Health Services for the Aged , Humans , Male , Pressure Ulcer/etiology , Pressure Ulcer/microbiology , Pressure Ulcer/nursing , Prospective Studies , Recurrence , Risk Factors
16.
Cell Host Microbe ; 26(6): 795-809.e5, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31784259

ABSTRACT

The host must develop tolerance to commensal microbes and protective responses to infectious pathogens, yet the mechanisms enabling a privileged relationship with commensals remain largely unknown. Skin colonization by commensal Staphylococcus epidermidis facilitates immune tolerance preferentially in neonates via induction of antigen-specific regulatory T cells (Tregs). Here, we demonstrate that this tolerance is not indiscriminately extended to all bacteria encountered in this early window. Rather, neonatal colonization by Staphylococcus aureus minimally enriches for antigen-specific Tregs and does not prevent skin inflammation upon later-life exposure. S. aureus α-toxin contributes to this response by stimulating myeloid cell production of IL-1ß, which limits S. aureus-specific Tregs. Loss of α-toxin or the IL-1 receptor increases Treg enrichment, whereas topical application of IL-1ß or α-toxin diminishes tolerogenic responses to S. epidermidis. Thus, the preferential activation of a key alarmin pathway facilitates early discrimination of microbial "foe" from "friend," thereby preventing tolerance to a common skin pathogen.


Subject(s)
Bacterial Toxins/immunology , Receptors, Interleukin-1/metabolism , Skin/microbiology , Staphylococcal Infections/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Animals, Newborn , Bacterial Toxins/metabolism , Host Microbial Interactions/immunology , Immune Tolerance , Mice , Receptors, Interleukin-1/immunology , Signal Transduction/immunology , Staphylococcus aureus/immunology , Staphylococcus epidermidis/immunology , Symbiosis/immunology , Virulence/immunology
17.
ACS Appl Bio Mater ; 2(8): 3439-3447, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-35030732

ABSTRACT

Molecularly imprinted polymers (MIPs), often dubbed "synthetic antibodies", can recognize and bind their target molecule with high affinity and selectivity, making them serious competitors with regard to biological antibodies. MIPs have gained popularity in various clinical applications and have even been applied in vivo. However, only a few studies on the biocompatibility of MIPs have been reported. Herein, we investigate on an example of a MIP that has proved its efficacy as an active agent to suppress body odors in cosmetic formulations, its effect on the viability and irritation potential of human epithelial cells. Since body odors are caused by bacteria present on the skin, bactericides are regularly added to deodorants sold on the market. However, there is growing anxiety concerning these bactericides as they can generate resistant bacteria, a problem for human and animal health. Therefore, we also assessed whether the MIP perturbs the resident skin bacteria, which were isolated from human sweat. Our results show that MIPs do not affect bacterial growth when cultured in liquid media, suggesting that they will not affect the skin flora, which protects the body from dangerous pathogens. This thorough in vitro toxicological assessment shows the biocompatibility of MIPs and constitutes a step further in their future consideration within cosmetic or pharmaceutical formulations for skin applications.

18.
PeerJ ; 6: e5960, 2018.
Article in English | MEDLINE | ID: mdl-30479906

ABSTRACT

Animal skin acts as a barrier between the organism and its environment and provides the first line of defense against invading pathogens. Thus, skin surfaces harbor communities of microbes that are interacting with both the host and its environment. Amphibian skin bacteria form distinct communities closely tied to their host species, but few studies have compared bacterial communities between amphibians and other, non-amphibian sympatric animals. Notably, skin microbes on reptiles have gained little attention. We used next-generation sequencing technology to describe bacterial communities on the skin of three lizard species and compared them to bacteria on six cohabiting frog species in the Northern Territory of Australia. We found bacterial communities had higher richness and diversity on lizards than frogs, with different community composition between reptiles and amphibians and among species. Core bacteria on the three lizard species overlapped by over 100 operational taxonomic units. The bacterial communities were similar within species of frogs and lizards, but the communities tended to be more similar between lizard species than between frog species and when comparing lizards with frogs. The diverse bacteria found on lizards invites further questions on how and how well reptiles interact with microorganisms through their scaly skin.

19.
ACS Appl Mater Interfaces ; 10(19): 16250-16259, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29693369

ABSTRACT

Commensal skin bacteria such as Staphylococcus epidermidis are currently being considered as possible components in skin-care and skin-health products. However, considering the potentially adverse effects of commensal skin bacteria if left free to proliferate, it is crucial to develop methodologies that are capable of maintaining bacteria viability while controlling their proliferation. Here, we encapsulate S. epidermidis in shells of increasing thickness using layer-by-layer assembly, with either a pair of synthetic polyelectrolytes or a pair of oppositely charged polysaccharides. We study the viability of the cells and their delay of growth depending on the composition of the shell, its thickness, the charge of the last deposited layer, and the degree of aggregation of the bacteria which is varied using different coating procedures-among which is a new scalable process that easily leads to large amounts of nonaggregated bacteria. We demonstrate that the growth of bacteria is not controlled by the mechanical properties of the shell but by the bacteriostatic effect of the polyelectrolyte complex, which depends on the shell thickness and charge of its outmost layer, and involves the diffusion of unpaired amine sites through the shell. The lag times of growth are sufficient to prevent proliferation for daily topical applications.


Subject(s)
Staphylococcus epidermidis , Microbial Viability
20.
Front Microbiol ; 9: 465, 2018.
Article in English | MEDLINE | ID: mdl-29593698

ABSTRACT

Emerging infectious disease is a growing threat to global health, and recent discoveries reveal that the microbiota dwelling on and within hosts can play an important role in health and disease. To understand the capacity of skin bacteria to protect amphibian hosts from the fungal disease chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd), we isolated 192 bacterial morphotypes from the skin of 28 host species of frogs (families Bufonidae, Centrolenidae, Hemiphractidae, Hylidae, Leptodactylidae, Strabomantidae, and Telmatobiidae) collected from the eastern slopes of the Peruvian Andes (540-3,865 m a.s.l.) in the Kosñipata Valley near Manu National Park, a site where we previously documented the collapse of montane frog communities following chytridiomycosis epizootics. We obtained isolates through agar culture from skin swabs of wild frogs, and identified bacterial isolates by comparing 16S rRNA sequences against the GenBank database using BLAST. We identified 178 bacterial strains of 38 genera, including 59 bacterial species not previously reported from any amphibian host. The most common bacterial isolates were species of Pseudomonas, Paenibacillus, Chryseobacterium, Comamonas, Sphingobacterium, and Stenotrophomonas. We assayed the anti-fungal abilities of 133 bacterial isolates from 26 frog species. To test whether cutaneous bacteria might inhibit growth of the fungal pathogen, we used a local Bd strain isolated from the mouthparts of stream-dwelling tadpoles (Hypsiboas gladiator, Hylidae). We quantified Bd-inhibition in vitro with co-culture assays. We found 20 bacterial isolates that inhibited Bd growth, including three isolates not previously known for such inhibitory abilities. Anti-Bd isolates occurred on aquatic and terrestrial breeding frogs across a wide range of elevations (560-3,695 m a.s.l.). The inhibitory ability of anti-Bd isolates varied considerably. The proportion of anti-Bd isolates was lowest at mid-elevations (6%), where amphibian declines have been steepest, and among hosts that are highly susceptible to chytridiomycosis (0-14%). Among non-susceptible species, two had the highest proportion of anti-Bd isolates (40 and 45%), but one common and non-susceptible species had a low proportion (13%). In conclusion, we show that anti-Bd bacteria are widely distributed elevationally and phylogenetically across frog species that have persisted in a region where chytridiomycosis emerged, caused a devastating epizootic and continues to infect amphibians.

SELECTION OF CITATIONS
SEARCH DETAIL