Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 230
Filter
1.
Open Vet J ; 14(7): 1701-1707, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39175973

ABSTRACT

Background: In 2021, Vietnam experienced an outbreak of Lumpy skin disease (LSD), which infected 207,687 cattle and buffaloes, as officially reported, and resulted in the culling of 29,182 animals. Aim: In this study, samples from cattle that died and showed typical signs of LSD in the Ha Tinh province of Vietnam were confirmed by three World Organization for Animal Health (WOAH)-recommended methods and further studied to compare the Vietnam and China reference strains to the new clinical cases. Methods: Three methods recommended by WOAH for agent detection (PCR, virus isolation, and transmission electron microscopy) were used to confirm this clinical LSD case. The sequence analysis of three well-known markers (P32, RPO30, and GPCR genes) has been utilized in Vietnam to understand this circulating pathogen better. Results: Our findings showed that the CX01 LSDV strain is 100% identical to the Vietnam reference strain HL01 and China reference strains based on P32 and RPO30 genes. Interestingly, analysis of the nucleotide sequence of the GPCR gene showed that the CX01 strain belongs to the same cluster as the reference strains, but it has branches different from those of both the HL01 and China LSDV strains. The nucleotide identification between the CX01 strain and these reference virus strains ranked 99.65%-99.91%, suggesting that it is a new variant of LSDV. Conclusion: This finding is new and indicates that at least two variants of the LSD virus were circulating in Vietnam based on analysis of the GPCR gene. Additionally, these results suggest that the sequence analysis of the GPCR gene is a great tool for subgrouping LSDV circulating in Vietnam.


Subject(s)
Lumpy Skin Disease , Lumpy skin disease virus , Vietnam/epidemiology , Animals , Lumpy Skin Disease/virology , Lumpy Skin Disease/epidemiology , Lumpy skin disease virus/genetics , Lumpy skin disease virus/isolation & purification , Cattle , Phylogeny , Receptors, G-Protein-Coupled/genetics , Disease Outbreaks/veterinary , Sequence Analysis, DNA/veterinary
2.
J Invest Dermatol ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-39177545

ABSTRACT

Whether childhood obesity or weight gain leads to the development of pediatric immune-mediated skin diseases remains unclear. We aimed to determine the associations between body mass index or body mass index changes and the development of 3 main immune-mediated skin diseases-alopecia areata, atopic dermatitis (AD), and psoriasis-by analyzing a longitudinal cohort of 2,161,900 Korean children from 2009 to 2020. The findings indicated that children who were obese had a higher risk of pediatric immune-mediated skin diseases than those with normal weight (P for trend < .01). An increase in body mass index was associated with a higher risk of AD, whereas a decrease in body mass index was correlated with a reduced risk of AD. Children who gained weight, transitioning from normal to overweight, exhibited a higher AD risk than those who maintained a normal weight (adjusted hazard ratio = 1.15, 95% confidence interval = 1.11-1.20). However, those who shifted from being overweight to achieving a normal weight (adjusted hazard ratio = 0.87, 95% confidence interval = 0.81-0.94) had a lower AD risk than children who were overweight who maintained their weight. In summary, early childhood obesity may increase the risk of pediatric immune-mediated skin diseases. Weight gain may increase AD risk, whereas weight loss may lower the risk.

3.
J Clin Aesthet Dermatol ; 17(8): 29-40, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39148960

ABSTRACT

Clindamycin is a lincosamide antibiotic that has been used as a topical, oral, or injectable formulation for over five decades. It exhibits a narrow spectrum of microbiologic activity, primarily against gram-positive and anaerobic bacteria. In dermatology, clindamycin has been used primarily as a topical agent, usually for the treatment of acne vulgaris. Despite questions surrounding antibiotic resistance and/or its relative contribution to antibiotic treatment efficacy, a large body of data support the therapeutic value of topical clindamycin for acne vulgaris. As a systemic agent, clindamycin is used orally to treat a variety of cutaneous bacterial infections, and sometimes for acne vulgaris, with oral treatment for the latter less common in more recent years. The modes of action of clindamycin are supported by data showing both its anti-inflammatory and antibiotic mechanisms, which are discussed here along with pharmacokinetic profiles and structure-activity relationships. The diverse applications of clindamycin for multiple disease states, its efficacy, and safety considerations are also reviewed here, including for both topical and systemic formulations. Emphasis is placed on uses in dermatology, but other information on clindamycin relevant to clinicians is also discussed.

4.
J Med Virol ; 96(8): e29829, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39109810

ABSTRACT

Lumpy skin disease virus (LSDV), a double-stranded DNA virus from the Capripoxvirus genus, primarily affects Bos indicus, Bos taurus breeds, and water buffalo. Arthropod vectors, including mosquitoes and biting flies, are the main LSDV transmitters. Although LSDV is not zoonotic, this study unexpectedly detected LSDV reads in the upper respiratory tract microbiome of humans from rural and urban areas in Maharashtra, India. Nasopharyngeal and oropharyngeal swab samples collected for SARS-CoV-2 surveillance underwent whole-genome metagenomics sequencing, revealing LSDV reads in 25% of samples. Split kmer analysis provided insights into sample relatedness despite the low coverage of LSDV reads with the reference genome. Our findings, which include the detection of LSDV contigs aligning to specific locations on the reference genome, suggest a common source for LSDV reads, potentially shared water sources, or milk/milk products. Further investigation is needed to ascertain the mode of transmission and reason for the detection of LSDV reads in human upper respiratory tract.


Subject(s)
Lumpy skin disease virus , Metagenomics , Microbiota , Humans , Microbiota/genetics , Metagenomics/methods , Lumpy skin disease virus/isolation & purification , Lumpy skin disease virus/genetics , Lumpy skin disease virus/classification , Oropharynx/virology , Oropharynx/microbiology , Animals , India , Genome, Viral/genetics , Nasopharynx/virology , Nasopharynx/microbiology , Respiratory System/microbiology , Respiratory System/virology , Male , Whole Genome Sequencing , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/classification , Female , Adult , COVID-19/diagnosis , COVID-19/virology , Lumpy Skin Disease/virology
6.
Trop Anim Health Prod ; 56(7): 237, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110359

ABSTRACT

This study describes the first outbreak of Lumpy Skin Disease (LSD) in cattle in the Bengkalis region, Indonesia, and vaccination to control the epidemic. Data on the outbreak and vaccination was obtained from the local veterinary authority of the Bengkalis region, Indonesia. Climatological data was provided by the Meteorological, Climatological, and Geophysical Agency of Riau Province. Over the 5.5 months, the outbreak caused 10.4% (94/906) morbidity and 0.6% (6/906) mortality of cattle on infected farms. Temporally, three epidemic waves occurred during the outbreak period. Villages with cattle populations of > 150 animals (n = 36) were 5.3 times more likely to be infected with LSD compared to villages with smaller cattle populations (n = 107) (CI: 2.56-10.90, P < 0.01). The vaccination campaign covered 43.8% of cattle in villages within a 10 km radius of the cases. However, vaccination in villages with larger cattle populations (n = 29) was 0.63 less likely to cover 50% of the cattle populations compared to villages with smaller cattle populations (n = 41) (CI: 0.39-1.02, P = 0.05). By the time the first two and the major waves ceased, vaccination had covered only 0.0% (n = 6036), 27.8% (n = 6,036) and 9.7% (n = 5,697) of the cattle in the 10 km radius of the respective spatial clusters. The outbreak was statistically associated with rainfall and its interaction with temperature (F(2, 13) = 5.822, R2 = 0.47, P = 0.016). This study indicates that the LSD outbreak had low morbidity and mortality. Despite the low vaccination rate, the outbreak ceased, possibly due to plummeting of the abundance of insect vectors.


Subject(s)
Disease Outbreaks , Lumpy Skin Disease , Lumpy skin disease virus , Vaccination , Animals , Indonesia/epidemiology , Lumpy Skin Disease/epidemiology , Disease Outbreaks/veterinary , Cattle , Vaccination/veterinary
8.
Lupus ; : 9612033241273023, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39098049

ABSTRACT

OBJECTIVE: Skin involvement is common in systemic lupus erythematosus (SLE), but may be resistant to conventional treatment. We sought to evaluate the efficacy of anifrolumab (ANI) in refractory cutaneous manifestations of SLE. METHODS: Case series of patients with refractory cutaneous SLE from three Rheumatology Departments in Greece. Outcome measures were improvement in Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K), physician global assessment (PGA) and Cutaneous Lupus Erythematosus Disease Area and Severity Index (CLASI). Clinically relevant improvement in skin was defined as decrease ≥50% (CLASI50) from baseline values. RESULTS: Eighteen patients received ANI; all had active skin involvement at baseline. Mean (SD) SLEDAI and PGA at ANI initiation were 7.4 (2.7) and 1.4 (0.5), respectively, with a mean prednisone dose 4.9 (4.5) mg/day. Mean CLASI (Activity/Damage) at baseline was 13.9 (9.7)/2.9 (4.6). Patients were refractory to a mean 6.3 (1.5) immunomodulatory agents (including hydroxychloroquine and glucocorticoids) before the initiation of ANI. After a mean 8.5 (4.6) months, 89% (n = 16/18) of patients demonstrated significant improvement in general lupus and cutaneous disease activity, and glucocorticoid tapering. Mean SLEDAI and mean CLASI at last visit were 3.4 (1.9) and 2.1 (2.4)/1.4 (2.2), respectively, and mean daily prednisone dose decreased to 2.4 (2.2). Of note, in this group of highly refractory patients CLASI50 was achieved in 16/18 (89%) patients. One patient discontinued ANI after 4 infusions due to a varicella-zoster virus infection and one patient, who initially responded to treatment with ANI, experienced a skin flare due to temporary discontinuation due to Covid 19 infection. DORIS remission and LLDAS were attained in two (11.1%) and eleven (61.1%) patients, respectively. CONCLUSION: Anifrolumab is highly effective in various skin manifestations of SLE, even after prior failure to multiple treatments.

9.
Trop Anim Health Prod ; 56(7): 226, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093442

ABSTRACT

Since 2019, Lumpy skin disease (LSD) has suddenly spread in many Asian countries, including India. LSD primarily occurs in cattle. However, recent LSD outbreaks in India have also revealed significant morbidity and production losses in buffaloes. This has raised concerns about the role of buffaloes in the epidemiology and transmission of LSD and necessitates the inclusion of buffaloes in the mass vaccination program for the prevention and control of the disease in the country. However, there is no significant data on the immune response in buffaloes following vaccination with the LSD vaccine. In this study, we evaluated antibody- and cell-mediated immune responses following vaccination with a newly developed live-attenuated LSD vaccine (Lumpi-ProVacInd). The detectable amount of anti-LSDV antibodies was observed at 1-2 months following vaccination, with a peak antibody titer at 3 months. Upon stimulation of the peripheral blood mononuclear cells (PBMCs) with the UV-inactivated LSDV antigen, there was a significant increase in CD8 + T cell counts in vaccinated animals as compared to the unvaccinated animals. Besides, vaccinated animals also showed a significant increase in IFN-γ levels upon antigenic stimulation of their PBMCs with LSDV antigen. In conclusion, the buffaloes also mount a potent antibody- and cell-mediated immune response following vaccination with Lumpi-ProVacInd.


Subject(s)
Buffaloes , Lumpy Skin Disease , Lumpy skin disease virus , Vaccines, Attenuated , Viral Vaccines , Animals , Buffaloes/immunology , Lumpy Skin Disease/prevention & control , Lumpy Skin Disease/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Lumpy skin disease virus/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , India , Immunity, Cellular , Antibodies, Viral/blood , Vaccination/veterinary , Leukocytes, Mononuclear/immunology , Female
10.
Biomed Eng Lett ; 14(4): 877-889, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38946819

ABSTRACT

Due to the difficulty in obtaining clinical samples and the high cost of labeling, rare skin diseases are characterized by data scarcity, making training deep neural networks for classification challenging. In recent years, few-shot learning has emerged as a promising solution, enabling models to recognize unseen disease classes by limited labeled samples. However, most existing methods ignored the fine-grained nature of rare skin diseases, resulting in poor performance when generalizing to highly similar classes. Moreover, the distributions learned from limited labeled data are biased, severely impairing the model's generalizability. This paper proposes a self-supervision distribution calibration network (SS-DCN) to address the above issues. Specifically, SS-DCN adopts a multi-task learning framework during pre-training. By introducing self-supervised tasks to aid in supervised learning, the model can learn more discriminative and transferable visual representations. Furthermore, SS-DCN applied an enhanced distribution calibration (EDC) strategy, which utilizes the statistics of base classes with sufficient samples to calibrate the bias distribution of novel classes with few-shot samples. By generating more samples from the calibrated distribution, EDC can provide sufficient supervision for subsequent classifier training. The proposed method is evaluated on three public skin disease datasets(i.e., ISIC2018, Derm7pt, and SD198), achieving significant performance improvements over state-of-the-art methods.

12.
Exp Dermatol ; 33(7): e15135, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39021278

ABSTRACT

Autoimmune skin disease is a kind of heterogeneous disease with complicated pathogenesis. Many factors such as genetic, infectious, environmental and even psychological factors may interact together to trigger a synergistic effect for the development of abnormal innate and adaptive immune responses. Although the exact mechanisms remain unclear, recent evidence suggests that pyroptosis plays a pivotal role in the development of autoimmune skin disease. The feature of pyroptosis is the first formation of pores in cellular membranes, then cell rupture and the release of intracellular substances and pro-inflammatory cytokines, such as interleukin-1 beta (IL-1ß) and IL-18. This hyperactive inflammatory programmed cell death damages the homeostasis of the immune system and advances autoimmunity. This review briefly summarises the molecular regulatory mechanisms of pyrin domain-containing protein 3 (NLRP3) inflammasome and gasdermin family, as well as the molecular mechanisms of pyroptosis, highlights the latest progress of pyroptosis in autoimmune skin disease, including systemic lupus erythematosus, psoriasis, atopic dermatitis and systemic scleroderma and attempts to identify its potential advantages as a therapeutic target or prognostic biomarker for these diseases.


Subject(s)
Autoimmune Diseases , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Humans , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Skin Diseases/immunology , Animals , Phosphate-Binding Proteins/metabolism , Interleukin-1beta/metabolism , Scleroderma, Systemic/immunology , Lupus Erythematosus, Systemic/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Psoriasis/immunology , Psoriasis/metabolism , Autoimmunity , Interleukin-18/metabolism , Dermatitis, Atopic/immunology
13.
Cureus ; 16(6): e61652, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38966437

ABSTRACT

Bullous pemphigoid (BP) is an autoimmune skin disorder that causes fluid-filled blisters to appear on various body parts, often preceded by urticaria and pruritis. This case report describes the perifollicular melanocyte regeneration within diseased areas in a skin of color patient with BP. By reviewing the various pathologies that can result in melanocyte destruction and the basic science of melanocyte regeneration, we can better identify and explain this phenomenon to patients and lead to earlier diagnoses. Furthermore, due to the lack of published information on skin conditions in skin of color patients, this report can assist in raising awareness of an atypical BP presentation in the dermatological community.

14.
Cureus ; 16(6): e61679, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38966442

ABSTRACT

Pemphigus vulgaris is a rare autoimmune disorder characterized by the formation of intraepithelial blisters that clinically appear as erosions and flaccid bullae on the skin and mucus membranes. Herein, we report a case of pemphigus vulgaris in an elderly male. He was initially misdiagnosed by his primary care provider and given topical lidocaine and acetaminophen with hydrocodone, without improvement in symptoms. This delay in treatment caused a worsening of his condition. The patient presented to our dermatology office two months after his primary care visit and reported worsening blisters and pain. Clinically he presented with flaccid bullae, crusted erosions, and erythematous plaques on the chest, back, abdomen, arms, and legs, and a tender oral ulcer. Two punch biopsies were obtained and sent for direct immunofluorescence and routine histology. The biopsy results confirmed the diagnosis of pemphigus vulgaris. Our patient achieved clearance after four weeks of oral prednisone and maintained clearance after a slow prednisone taper and the addition of mycophenolate mofetil 1g twice daily. We aim to bring awareness of the clinical presentation and treatment regimen of pemphigus vulgaris to prevent misdiagnosis and delayed care.

15.
Cureus ; 16(6): e61620, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38966458

ABSTRACT

Background There is great variation in the etiology, predisposing organisms, incidence, clinical characteristics, severity, and consequences of skin and/or subcutaneous tissue infections. Extensive necrosis of the subcutaneous tissues and fascia is a characteristic of necrotizing soft tissue infections, which are frequently deadly. To change the course of treatment, this study highlights the need to find a tool that can quickly and accurately identify patients with necrotizing fasciitis (NF) and assist in making an early treatment decision. Methodology A prospective evaluation of 30 individuals with soft tissue infections was conducted using the laboratory risk indicator for necrotizing fasciitis (LRINEC). The patients were classified as low, intermediate, and high risk for the start of NF based on their LRINEC score. To assess the importance of the LRINEC score in forecasting the start of NF and its clinical consequences, patients in each group underwent appropriate management and statistical analysis. Results This study included 28 males (93.3%) and two females (6.7%). The associated p-value, recorded as 0.039, signifies statistical significance in the observed area under the receiver operating characteristic (ROC) curve. The p-value in risk categorization was found to be 0.296, which suggests that LRINEC helps in risk categorization with 100% sensitivity when used as a screening tool. Conclusion The early detection of necrotizing soft tissue infections, such as NF, is vital. The LRINEC score, based on routine lab tests, accurately distinguishes these infections. With high sensitivity and significant p-values, it helps stratify patients, guiding timely interventions and saving lives.

16.
Vaccines (Basel) ; 12(7)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39066443

ABSTRACT

Capripoxviruses are the causative agents of sheeppox, goatpox, and lumpy skin disease (LSD) in cattle, which cause economic losses to the livestock industry in Africa and Asia. Capripoxviruses are currently controlled using several live attenuated vaccines. It was previously demonstrated that a lumpy skin disease virus (LSDV) field isolate from Warmbaths (WB) South Africa, ORF 005 (IL-10) gene-deleted virus (LSDV WB005KO), was able to protect sheep and goats against sheeppox and goatpox. Subsequently, genes encoding the protective antigens for peste des petits ruminants (PPR) and Rift Valley fever (RVF) viruses have been inserted in the LSDV WB005KO construct in three different antigen forms (native, secreted, and fusion). These three multivalent vaccine candidates were evaluated for protection against PPR using a single immunization of 104 TCID50 in sheep. The vaccine candidates with the native and secreted antigens protected sheep against PPR clinical disease and decreased viral shedding, as detected using real-time RT-PCR in oral and nasal swabs. An anamnestic antibody response, measured using PPR virus-neutralizing antibody response production, was observed in sheep following infection. The vaccine candidates with the antigens expressed in their native form were evaluated for protection against RVF using a single immunization with doses of 104 or 105 TCID50 in sheep and goats. Following RVF virus infection, sheep and goats were protected against clinical disease and no viremia was detected in serum compared to control animals, where viremia was detected one day following infection. Sheep and goats developed RVFV-neutralizing antibodies prior to infection, and the antibody responses increased following infection. These results demonstrate that an LSD virus-vectored vaccine candidate can be used in sheep and goats to protect against multiple viral infections.

17.
JID Innov ; 4(4): 100279, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39006317

ABSTRACT

A subgroup of patients with atopic dermatitis (AD) suffers from recurrent, disseminated herpes simplex virus skin infection, termed eczema herpeticum. To determine the transcriptional mechanisms of the skin and immune system pathobiology that underlie development of AD with eczema herpeticum (ADEH), we performed RNA-sequencing analysis of nonlesional skin (epidermis, dermis) from AD patients with and without a history of ADEH (ADEH+, n = 15; ADEH-, n = 13) along with healthy controls (n = 15). We also performed RNA sequencing on participants' plasmacytoid dendritic cells infected in vitro with herpes simplex virus 1. ADEH+ patients exhibited dysregulated gene expression, limited in the dermis (14 differentially expressed genes) and more widespread in the epidermis (129 differentially expressed genes). ADEH+-upregulated epidermal differentially expressed genes were enriched in type 2 cytokine (IL4R , CCL22, CRLF2, IL7R), interferon (CXCL10, ICAM1, IFI44, IRF7), and IL-36γ (IL36G) inflammatory gene pathways. All ADEH+ participants exhibited type 2 cytokine and inteferon endotypes, and 87% were IL36G-high. In contrast, these endotypes were more variably expressed among ADEH- participants. ADEH+ skin also had dysregulated epidermal differentiation complex gene expression of the late-cornified envelope, S100A, and small proline-rich gene families, which are involved in skin barrier function and antimicrobial activities. Plasmacytoid dendritic cell transcriptional responses to herpes simplex virus 1 infection were unaltered by ADEH status. The study concluded that the pathobiology underlying ADEH+ risk is associated with a unique, multifaceted epidermal inflammation that accompanies dysregulation of epidermal differentiation complex genes. These findings will help direct future studies that define how these inflammatory patterns may drive risk of eczema herpeticum in AD.

18.
Curr Med Imaging ; 20(1): e15734056313837, 2024.
Article in English | MEDLINE | ID: mdl-39039669

ABSTRACT

INTRODUCTION: This study introduces SkinLiTE, a lightweight supervised contrastive learning model tailored to enhance the detection and typification of skin lesions in dermoscopic images. The core of SkinLiTE lies in its unique integration of supervised and contrastive learning approaches, which leverages labeled data to learn generalizable representations. This approach is particularly adept at handling the challenge of complexities and imbalances inherent in skin lesion datasets. METHODS: The methodology encompasses a two-phase learning process. In the first phase, SkinLiTE utilizes an encoder network and a projection head to transform and project dermoscopic images into a feature space where contrastive loss is applied, focusing on minimizing intra-class variations while maximizing inter-class differences. The second phase freezes the encoder's weights, leveraging the learned representations for classification through a series of dense and dropout layers. The model was evaluated using three datasets from Skin Cancer ISIC 2019-2020, covering a wide range of skin conditions. RESULTS: SkinLiTE demonstrated superior performance across various metrics, including accuracy, AUC, and F1 scores, particularly when compared with traditional supervised learning models. Notably, SkinLiTE achieved an accuracy of 0.9087 using AugMix augmentation for binary classification of skin lesions. It also showed comparable results with the state-of-the-art approaches of ISIC challenge without relying on external data, underscoring its efficacy and efficiency. The results highlight the potential of SkinLiTE as a significant step forward in the field of dermatological AI, offering a robust, efficient, and accurate tool for skin lesion detection and classification. Its lightweight architecture and ability to handle imbalanced datasets make it particularly suited for integration into Internet of Medical Things environments, paving the way for enhanced remote patient monitoring and diagnostic capabilities. CONCLUSION: This research contributes to the evolving landscape of AI in healthcare, demonstrating the impact of innovative learning methodologies in medical image analysis.


Subject(s)
Dermoscopy , Skin Neoplasms , Supervised Machine Learning , Humans , Dermoscopy/methods , Skin Neoplasms/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Skin/diagnostic imaging
19.
Photodiagnosis Photodyn Ther ; 48: 104292, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39069204

ABSTRACT

INTRODUCTION: Melanocytic nevi (MN), warts, seborrheic keratoses (SK), and psoriasis are four common types of skin surface lesions that typically require dermatoscopic examination for definitive diagnosis in clinical dermatology settings. This process is labor-intensive and resource-consuming. Traditional methods for diagnosing skin lesions rely heavily on the subjective judgment of dermatologists, leading to issues in diagnostic accuracy and prolonged detection times. OBJECTIVES: This study aims to introduce a multispectral imaging (MSI)-based method for the early screening and detection of skin surface lesions. By capturing image data at multiple wavelengths, MSI can detect subtle spectral variations in tissues, significantly enhancing the differentiation of various skin conditions. METHODS: The proposed method utilizes a pixel-level mosaic imaging spectrometer to capture multispectral images of lesions, followed by reflectance calibration and standardization. Regions of interest were manually extracted, and the spectral data were subsequently exported for analysis. An improved one-dimensional convolutional neural network is then employed to train and classify the data. RESULTS: The new method achieves an accuracy of 96.82 % on the test set, demonstrating its efficacy. CONCLUSION: This multispectral imaging approach provides a non-contact and non-invasive method for early screening, effectively addressing the subjective identification of lesions by dermatologists and the prolonged detection times associated with conventional methods. It offers enhanced diagnostic accuracy for a variety of skin lesions, suggesting new avenues for dermatological diagnostics.


Subject(s)
Deep Learning , Keratosis, Seborrheic , Skin Diseases , Humans , Skin Diseases/diagnosis , Skin Diseases/diagnostic imaging , Keratosis, Seborrheic/diagnosis , Keratosis, Seborrheic/diagnostic imaging , Psoriasis/diagnostic imaging , Psoriasis/diagnosis , Dermoscopy/methods , Warts/diagnostic imaging , Warts/diagnosis , Nevus, Pigmented/diagnosis , Nevus, Pigmented/diagnostic imaging , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/diagnosis , Early Diagnosis
20.
Arch Dermatol Res ; 316(7): 455, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967656

ABSTRACT

Tirbanibulin 1% ointment is a synthetic antiproliferative agent approved in 2021 by the European Union for treating actinic keratoses (AK). Topical tirbanibulin has clinically resolved HPV-57 ( +) squamous cell carcinoma (SCC), HPV-16 ( +) vulvar high-grade squamous intraepithelial lesion, epidermodysplasia verruciformis, and condyloma. We examined how tirbanibulin might affect HPV oncoprotein expression and affect other cellular pathways involved in cell proliferation and transformation. We treated the HeLa cell line, containing integrated HPV-18, with increasing doses of tirbanibulin to determine the effects on cell proliferation. Immunoblotting was performed with antibodies against the Src canonical pathway, HPV 18 E6 and E7 transcription regulation, apoptosis, and invasion and metastasis pathways. Cell proliferation assays with tirbanibulin determined the half-maximal inhibitory concentration (IC50) of HeLa cells to be 31.49 nmol/L. Increasing concentrations of tirbanibulin downregulates the protein expression of Src (p < 0.001), phospho-Src (p < 0.001), Ras (p < 0.01), c-Raf (p < 0.001), ERK1 (p < 0.001), phospho-ERK1 (p < 0.001), phospho-ERK2 (p < 0.01), phospho-Mnk1 (p < 0.001), eIF4E (p < 0.01), phospho-eIF4E (p < 0.001), E6 (p < 0.01), E7 (p < 0.01), Rb (p < 0.01), phospho-Rb (p < 0.001), MDM2 (p < 0.01), E2F1 (p < 0.001), phospho-FAK (p < 0.001), phospho-p130 Cas (p < 0.001), Mcl-1 (p < 0.01), and Bcl-2 (p < 0.001), but upregulates cPARP (p < 0.001), and cPARP/fPARP (p < 0.001). These results demonstrate that tirbanibulin may impact expression of HPV oncoproteins via the Src- MEK- pathway. Tirbanibulin significantly downregulates oncogenic proteins related to cell cycle regulation and cell proliferation while upregulating apoptosis pathways.


Tirbanibulin is Promising Novel Therapy for Human Papillomavirus (HPV)-associated Diseases.Tirbanibulin 1% ointment is an approved synthetic topical ointment for treating actinic keratoses (AK), a precancer of skin cancer. Topical tirbanibulin has previously been reported to clinically resolve human papillomavirus (HPV)-( +) diseases.In this study, we examine how tirbanibulin may affect the HPV and pathways associated with cancer.We treated the HeLa cell line to determine the effects on HPV cell proliferation. Increasing the concentration of tirbanibulin statistically significantly affected numerous cellular pathways often associated with cancer.These results demonstrate that tirbanibulin may impact expression of HPV oncoproteins and thereby kill cancer cells.


Subject(s)
Cell Proliferation , Down-Regulation , Human papillomavirus 18 , Oncogene Proteins, Viral , Humans , HeLa Cells , Cell Proliferation/drug effects , Oncogene Proteins, Viral/metabolism , Down-Regulation/drug effects , Papillomavirus Infections/virology , Papillomavirus Infections/drug therapy , Papillomavirus E7 Proteins/metabolism , Apoptosis/drug effects , Repressor Proteins/metabolism , Repressor Proteins/genetics , Signal Transduction/drug effects , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , src-Family Kinases/metabolism , src-Family Kinases/antagonists & inhibitors , Female , Human Papillomavirus Viruses , DNA-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL