Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Neuron ; 112(11): 1778-1794.e7, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38417436

ABSTRACT

Highly penetrant autosomal dominant Alzheimer's disease (ADAD) comprises a distinct disease entity as compared to the far more prevalent form of AD in which common variants collectively contribute to risk. The downstream pathways that distinguish these AD forms in specific cell types have not been deeply explored. We compared single-nucleus transcriptomes among a set of 27 cases divided among PSEN1-E280A ADAD carriers, sporadic AD, and controls. Autophagy genes and chaperones clearly defined the PSEN1-E280A cases compared to sporadic AD. Spatial transcriptomics validated the activation of chaperone-mediated autophagy genes in PSEN1-E280A. The PSEN1-E280A case in which much of the brain was spared neurofibrillary pathology and harbored a homozygous APOE3-Christchurch variant revealed possible explanations for protection from AD pathology including overexpression of LRP1 in astrocytes, increased expression of FKBP1B, and decreased PSEN1 expression in neurons. The unique cellular responses in ADAD and sporadic AD require consideration when designing clinical trials.


Subject(s)
Alzheimer Disease , Presenilin-1 , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Presenilin-1/genetics , Male , Female , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Sequence Analysis, RNA/methods , Autophagy/genetics , Transcriptome , Aged , Neurons/metabolism , Neurons/pathology , Middle Aged , Astrocytes/metabolism , Astrocytes/pathology , Brain/metabolism , Brain/pathology , Tacrolimus Binding Proteins/genetics , Aged, 80 and over , Single-Cell Analysis
2.
Int J Mol Sci ; 22(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34948421

ABSTRACT

Spatial transcriptomics (ST) is transforming the way we can study gene expression and its regulation through position-specific resolution within tissues. However, as in bulk RNA-Seq, transposable elements (TEs) are not being studied due to their highly repetitive nature. In recent years, TEs have been recognized as important regulators of gene expression, and thus, TE expression analysis in a spatially resolved manner could further help to understand their role in gene regulation within tissues. We present SpatialTE, a tool to analyze TE expression from ST datasets and show its application in somatic and diseased tissues. The results indicate that TEs have spatially regulated expression patterns and that their expression profiles are spatially altered in ALS disease, indicating that TEs might perform differential regulatory functions within tissue organs. We have made SpatialTE publicly available as open-source software under an MIT license.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Computational Biology/methods , DNA Transposable Elements , Software , Transcriptome , Animals , Brain , Disease Models, Animal , Gene Expression Regulation , Kidney , Mice , Mice, Knockout , Mice, Transgenic , Spinal Cord , Superoxide Dismutase-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL