Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117.012
Filter
1.
J Environ Sci (China) ; 147: 294-309, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003048

ABSTRACT

Endocrine-disrupting chemicals (EDCs) are compounds, either natural or man-made, that interfere with the normal functioning of the endocrine system. There is increasing evidence that exposure to EDCs can have profound adverse effects on reproduction, metabolic disorders, neurological alterations, and increased risk of hormone-dependent cancer. Stem cells (SCs) are integral to these pathological processes, and it is therefore crucial to understand how EDCs may influence SC functionality. This review examines the literature on different types of EDCs and their effects on various types of SCs, including embryonic, adult, and cancer SCs. Possible molecular mechanisms through which EDCs may influence the phenotype of SCs are also evaluated. Finally, the possible implications of these effects on human health are discussed. The available literature demonstrates that EDCs can influence the biology of SCs in a variety of ways, including by altering hormonal pathways, DNA damage, epigenetic changes, reactive oxygen species production and alterations in the gene expression patterns. These disruptions may lead to a variety of cell fates and diseases later in adulthood including increased risk of endocrine disorders, obesity, infertility, reproductive abnormalities, and cancer. Therefore, the review emphasizes the importance of raising broader awareness regarding the intricate impact of EDCs on human health.


Subject(s)
Endocrine Disruptors , Stem Cells , Endocrine Disruptors/toxicity , Humans , Stem Cells/drug effects , Environmental Pollutants/toxicity , Environmental Exposure
2.
An. bras. dermatol ; 99(4): 568-577, Jul.-Aug. 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1563708

ABSTRACT

Abstract Chronic ulcers significantly affect the quality of life of patients and impose a high cost on the healthcare system. The therapeutic management should be comprehensive, taking into consideration the etiological diagnosis of the wound and the characteristics of the wound bed when deciding on a therapeutic proposal appropriate to the healing phase, correcting factors that delay healing. During the epithelialization phase, repair techniques with grafts are recommended to shorten re-epithelialization time, improve the quality of scar tissue, and achieve adequate pain management. Currently, due to the reported benefits of skin appendages, the technique of follicular unit auto-grafting obtained with a scalp punch is among the chosen strategies for wound repair. This is a minimally invasive, outpatient practice, whose technique has advantages over the donor site, patients recovery and well-being.

3.
Int J Dermatol ; 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39097931

ABSTRACT

Curly textured hair presents unique diagnostic and therapeutic challenges because of its distinct properties. In the September issue of the Journal, we explore recent advancements in understanding and treating various hair disorders, focusing on the specific challenges and treatments for curly hair. We discuss whether glucagon-like peptide-1 agonists contribute to or alleviate hair loss and highlight a promising, innovative therapy using adipose stem cell-derived exosomes to promote hair growth. Additionally, we examine therapeutic options for managing filler-induced alopecia and treating folliculitis decalvans.

4.
Rinsho Ketsueki ; 65(7): 622-627, 2024.
Article in Japanese | MEDLINE | ID: mdl-39098011

ABSTRACT

Relapsed and/or refractory (R/R) primary central nervous system lymphoma (PCNSL) has a poor prognosis. A 57-year-old man diagnosed with PCNSL achieved a complete response by high-dose methotrexate-based chemotherapy followed by autologous hematopoietic stem cell transplantation (ASCT). The disease was not cured, so he was treated with the anti-CD19 chimeric antigen receptor (CAR) T-cell therapy tisagenlecleucel after the third relapse. However, the disease relapsed again 28 days after CAR T-cell therapy. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) was attempted as curative therapy after bridging with second ASCT and tirabrutinib monotherapy. Although a temporary response was achieved, the disease relapsed 98 days after allo-HSCT. While receiving tirabrutinib for relapse after allo-HSCT, the patient developed acute respiratory failure due to transplant-related toxicity and post-transplant thrombotic microangiopathy. He died 175 days after allo-HSCT. Although various treatments for PCNSL have been investigated in recent years, the treatment strategy for R/R PCNSL has not been established. Further studies are warranted to improve the outcomes of patients with R/R PCNSL.


Subject(s)
Central Nervous System Neoplasms , Hematopoietic Stem Cell Transplantation , Recurrence , Transplantation, Homologous , Humans , Central Nervous System Neoplasms/therapy , Antigens, CD19/immunology , Middle Aged , Male , Lymphoma/therapy , Receptors, Chimeric Antigen
5.
Arch Med Res ; 55(7): 103061, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39098111

ABSTRACT

BACKGROUND AND AIM: Several microRNAs (miRNAs) are differentially expressed and serve as tumor suppressors in glioblastoma (GBM). The present study aimed to elucidate the function of exosomal microRNA-4731-5p (miR-4731-5p) from adipose tissue-derived mesenchymal stem cells (AD-MSCs) in the activity of human GBM cell lines. METHOD: First, GBM-related miRNAs, their expression, and potential target genes and cytokines of miR-4731-5p were identified using bioinformatic datasets. Subsequently, purified AD-MSCs were transfected with a miRNA-4731-5p expression plasmid, and exosomes were isolated and characterized. Next, the transfection process was confirmed and the 50% inhibitory concentration (IC50) of the overexpressed exosomal miRNA-4731-5p was inhibited for cancer cells. The probable anticancer action of exosomal miRNA-4731-5p on U-87 and U-251 GBM cell lines was verified by flow cytometry, DAPI staining, cell cycle, real-time PCR, and wound healing assays. RESULTS: A concentration of 50 ng/mL of miRNA-4731-5p-transfected exosomes was the safe dose for anticancer settings. The results showed that the exosomal miR-4731-5p exerted an inhibitory effect on the cell cycle and migration and induced apoptosis in GBM cell lines by regulating the phosphoinositide-3-kinase-AKT (PI3K-AKT) and nuclear factor-kB (NF-kB) signaling pathways. CONCLUSION: This study reveals that the expression of exosomal miRNA-4731-5p has favorable antitumor properties for the treatment of GBM cell lines and may be a fundamental therapeutic option for this type of brain tumor.

6.
Transfus Apher Sci ; 63(5): 103983, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098276

ABSTRACT

Adequate stem cell harvesting is required for autologous hematopoietic transplantation. In deficient mobilizer patients, the collection of stem cells can be challenging because of the impossibility of achieving satisfactory CD34 cell counts with GCSF + - chemotherapy. Plerixafor is a potent and expensive drug that promotes the release of stem cells from the medullary niche to the peripheral blood and allows satisfactory harvests. We performed a retrospective analysis of 370 patients with myeloma and lymphoma harvested at our institution. 99 % of patients achieved satisfactory apheresis using Plerixafor in 45 %. Satisfactory harvests were obtained in patients mobilized with GCSF or plerixafor. In patients who used plerixafor, it was necessary to perform fewer apheresis procedures (P = 0.05). In multivariate analysis, the only factor that predicted the need for plerixafor was the presence of less than 30,000 CD34 / ul on the day of apheresis (OR 0.3. p < 0.001). Since we adopted the plerixafor protocol guided by CD34 counts, the number of patients with harvest failure has decreased. In conclusion, the rational and standardized use of plerixafor favors satisfactory harvest in patients who require autologous transplantation in South-American patients.

7.
Best Pract Res Clin Haematol ; 37(2): 101551, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39098795

ABSTRACT

Biobanking provides benefit for future generations by facilitating medical research and subsequent translation and application of research findings. Long-term storage and research involving biological material and associated data necessitate the proper implementation of ethical and legal standards. A key principle includes recognizing informed consent as a crucial element for legitimizing the collection of biological material and data. Furthermore, any collected material and data must be employed exclusively for the research framework that aligns with the explicit consent provided by the participants. Last but not least, data privacy and security are essential in biobanking. This review elucidates chances and limitations of biobanking in the field of allogeneic hematopoietic cell transplantation. We discuss the practical implementation of the requirements, illustrated by the Collaborative Biobank, a collaborative research platform for research in blood cancer.


Subject(s)
Biological Specimen Banks , Hematopoietic Stem Cell Transplantation , Humans , Tissue Donors , Informed Consent , Allografts
8.
Br J Haematol ; 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39099079

ABSTRACT

The objective of this study was to identify independent prognostic factors of viral encephalitis (VE) after allogeneic haematopoietic stem cell transplantation (allo-HSCT) and establish a prognostic model to identify post-transplant VE patients with a greater likelihood of mortality. Among 5380 patients in our centre from 2014 to 2022, 211 patients who developed VE after allo-HSCT were reviewed in this retrospective study. Prognostic factors were selected, and a prognostic model was constructed using Cox regression analysis. The model was subsequently validated and estimated using the area under the receiver operating characteristic curve (AUC), a calibration plot and decision curve analysis (DCA). Glasgow Coma Scale score <9, lesions >3 lobes on magnetic resonance imaging and severe thrombocytopenia were identified as independent prognostic risk factors for VE patients who underwent allo-HSCT. The prognostic model GTM (GTM is an abbreviation for a model composed of three risk factors: GCS score <9, severe thrombocytopenia [platelet count <20 000 per microliter], and lesions >3 lobes on MRI) was established according to the regression coefficients. The validated internal AUC was 0.862 (95% confidence interval [CI], 0.773-0.950), and the external AUC was 0.815 (95% CI, 0.708-0.922), indicating strong discriminatory ability. Furthermore, we constructed calibration plots that demonstrated good consistency between the predicted outcomes and the observed outcomes. DCA exhibited high accuracy in this system, leading to potential benefits for patients.

9.
Cell Biol Int ; 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39099163

ABSTRACT

Telocytes (TCs), a novel type of mesenchymal or interstitial cell with specific, very long and thin cellular prolongations, have been found in various mammalian organs and have potential biological functions. However, their existence during lung development is poorly understood. This study aimed to investigate the existence, morphological features, and role of CD34+ SCs/TCs in mouse lungs from foetal to postnatal life using primary cell culture, double immunofluorescence, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The immunofluorescence double staining profiles revealed positive expression of CD34 and PDGFR-α, Sca-1 or VEGFR-3, and the expression of these markers differed among the age groups during lung development. Intriguingly, in the E18.5 stage of development, along with the CD34+ SCs/TCs, haematopoietic stem cells and angiogenic factors were also significantly increased in number compared with those in the E14.5, E16.5, P0 and P7. Subsequently, TEM confirmed that CD34+ SCs/TCs consisted of a small cell body with long telopodes (Tps) that projected from the cytoplasm. Tps consisted of alternating thin and thick segments known as podomers and podoms. TCs contain abundant endoplasmic reticulum, mitochondria and secretory vesicles and establish close connections with neighbouring cells. Furthermore, SEM revealed characteristic features, including triangular, oval, spherical, or fusiform cell bodies with extensive cellular prolongations, depending on the number of Tps. Our findings provide evidence for the existence of CD34+ SCs/TCs, which contribute to vasculogenesis, the formation of the air‒blood barrier, tissue organization during lung development and homoeostasis.

10.
Immunopharmacol Immunotoxicol ; : 1-9, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39099224

ABSTRACT

INTRODUCTION: Bone marrow mesenchymal stem cell (BMMSC) transplantation is beneficial in treating Systemic lupus erythematosus (SLE); however, the underlying mechanism remains elusive. This study investigates the role of BMMSCs in regulating lymphocyte proliferation and cell cycle progression during SLE and delves into the contribution of BMMSC-produced galectin-1. METHODS: BMMSCs were co-cultured with T lymphocytes to assess their impact on suppressing CD4+ T cells in SLE patients. Proliferation and cell cycle distribution of CD4+ T cells were analyzed using flow cytometry. The expression of cell cycle-related proteins, including p21, p27, and cyclin-dependent kinase 2 (CDK2), was investigated through western blotting. Extracellular and intracellular galectin-1 levels were determined via ELISA and flow cytometry. The role of galectin-1 in CD4+ T cell proliferation and cell cycle was evaluated through RNAi-mediated galectin-1 expression disruption in BMMSCs. RESULTS AND DISCUSSION: BMMSCs effectively inhibited CD4+ T cell proliferation and impeded their cell cycle progression in SLE patients, concurrently resulting in a reduction in CDK2 levels and an increase in p21 and p27 expression. Moreover, BMMSCs expressed a high level of galectin-1 in the co-culture system. Galectin-1 was found to be critical in maintaining the suppressive activity of BMMSCs and restoring the cell cycle of CD4+ T cells. CONCLUSION: This study demonstrates that BMMSCs suppress the proliferation and influence the cell cycle of CD4+ T cells in SLE patients, an effect mediated by the upregulation of galectin-1 in BMMSCs.

11.
Adv Sci (Weinh) ; : e2405975, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39099416

ABSTRACT

Lactate plays a critical role as an energy substrate, metabolite, and signaling molecule in hepatocellular carcinoma (HCC). Intracellular lactate-derived protein lysine lactylation (Kla) is identified as a contributor to the progression of HCC. Liver cancer stem cells (LCSCs) are believed to be the root cause of phenotypic and functional heterogeneity in HCC. However, the impact of Kla on the biological processes of LCSCs remains poorly understood. Here enhanced glycolytic metabolism, lactate accumulation, and elevated levels of lactylation are observed in LCSCs compared to HCC cells. H3K56la was found to be closely associated with tumourigenesis and stemness of LCSCs. Notably, a comprehensive examination of the lactylome and proteome of LCSCs and HCC cells identified the ALDOA K230/322 lactylation, which plays a critical role in promoting the stemness of LCSCs. Furthermore, this study demonstrated the tight binding between aldolase A (ALDOA) and dead box deconjugate enzyme 17 (DDX17), which is attenuated by ALDOA lactylation, ultimately enhancing the regulatory function of DDX17 in maintaining the stemness of LCSCs. This investigation highlights the significance of Kla in modulating the stemness of LCSCs and its impact on the progression of HCC. Targeting lactylation in LCSCs may offer a promising therapeutic approach for treating HCC.

12.
Adv Healthc Mater ; : e2401904, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101289

ABSTRACT

Immunogenic cell death (ICD) could activate anti-tumor immune responses, which is highly attractive for improving cancer treatment effectiveness. Here, this work reports a multifunctional arsenic(III) allosteric inhibitor Mech02, which induces excessive accumulation of 1O2 through sensitized biocatalytic reactions, leading to cell pyroptosis and amplified ICD effect. After Mech02 is converted to Mech03, it could actualize stronger binding effects on the allosteric pocket of pyruvate kinase M2, further interfering with the anaerobic glycolysis pathway of tumors. The enhanced DNA damage triggered by Mech02 and the pyroptosis of cancer stem cells provide assurance for complete tumor clearance. In vivo experiments prove nanomicelle Mech02-HA NPs is able to activate immune memory effects and raise the persistence of anti-tumor immunity. In summary, this study for the first time to introduce the arsenic(III) pharmacophore as an enhanced ICD effect initiator into nitrogen mustard, providing insights for the development of efficient multimodal tumor therapy agents.

13.
Bioessays ; : e2400105, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101295

ABSTRACT

Organoids are quickly becoming an accepted model for understanding human biology and disease. Pluripotent stem cells (PSC) provide a starting point for many organs and enable modeling of the embryonic development and maturation of such organs. The foundation of PSC-derived organoids can be found in elegant developmental studies demonstrating the remarkable ability of immature cells to undergo histogenesis even when taken out of the embryo context. PSC-organoids are an evolution of earlier methods such as embryoid bodies, taken to a new level with finer control and in some cases going beyond tissue histogenesis to organ-like morphogenesis. But many of the discoveries that led to organoids were not necessarily planned, but rather the result of inquisitive minds with freedom to explore. Protecting such curiosity-led research through flexible funding will be important going forward if we are to see further ground-breaking discoveries.

14.
Kaohsiung J Med Sci ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101328

ABSTRACT

This study aimed to investigate the therapeutic potential of human adipose-derived mesenchymal stem cells (hADSCs) modified with recombinant adeno-associated virus (rAAV) carrying the vascular endothelial growth factor 165 (VEGF165) gene in peripheral nerve injury (PNI). The hADSCs were categorized into blank, control (transduced with rAAV control vector), and VEGF165 (transduced with rAAV VEGF165 vector) groups. Subsequently, Schwann cell differentiation was induced, and Schwann cell markers were assessed. The sciatic nerve injury mouse model received injections of phosphate-buffered saline (PBS group), PBS containing hADSCs (hADSCs group), rAAV control vector (control-hADSCs group), or rAAV VEGF165 vector (VEGF165-hADSCs group) into the nerve defect site. Motor function recovery, evaluated through the sciatic function index (SFI), and nerve regeneration, assessed via toluidine blue staining along with scrutiny of Schwann cell markers and neurotrophic factors, were conducted. Modified hADSCs exhibited enhanced Schwann cell differentiation and elevated expression of Schwann cell markers [S100 calcium-binding protein B (S100B), NGF receptor (NGFR), and glial fibrillary acidic protein (GFAP)]. Mice in the VEGF165-hADSCs group demonstrated improved motor function recovery compared to those in the other three groups, accompanied by increased fiber diameter, axon diameter, and myelin thickness, as well as elevated expression of Schwann cell markers (S100B, NGFR, and GFAP) and neurotrophic factors [mature brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF)] in the distal nerve segment. rAAV-VEGF165 modification enhances hADSC potential in PNI, promoting motor recovery and nerve regeneration. Elevated Schwann cell markers and neurotrophic factors underscore therapy benefits, providing insights for nerve injury strategies.

15.
Regen Med ; : 1-17, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101556

ABSTRACT

The paper highlights how significant characteristics of liver can be modeled in tissue-engineered constructs using unconventional scaffolds. Hepatic lobular organization and metabolic zonation can be mimicked with decellularized plant structures with vasculature resembling a native-hepatic lobule vascular arrangement or silk blend scaffolds meticulously designed for guided cellular arrangement as hepatic patches or metabolic activities. The functionality of hepatocytes can be enhanced and maintained for long periods in naturally fibrous structures paving way for bioartificial liver development. The phase I enzymatic activity in hepatic models can be raised exploiting the microfibrillar structure of paper to allow cellular stacking creating hypoxic conditions to induce in vivo-like xenobiotic metabolism. Lastly, the paper introduces amalgamation of carbon-based nanomaterials into existing scaffolds in liver tissue engineering.


Unconventional scaffolds have the potential to meet the current challenges in liver tissue engineering- loss of hepatic morphology and functions over long-term culture, absence of native-like cell-cell and cell-matrix interactions, organization of hepatocytes into lobular structures exhibiting metabolic variations-which hinder pharmaceutical analysis, regenerative therapies and artificial organ development. Paper with cellulose microfibril network develops cellular aggregates with hypoxic conditions that influence enzymes of xenobiotic metabolism proving to be a better scaffold for hepatotoxicity testing compared with conventional monolayers in tissue culture plates. Decellularized plant stems provide already-built vasculature to be exploited for the development of intricate vessel networks that exist in hepatic lobules aiding in regenerative medicine for hepatic pathologies. Fibrous plant structures are excellent materials for the immobilization of hepatocytes and improve albumin secretion enabling their use in bioartificial liver development. Biomimicry of metabolic zonation in hepatic lobules can be achieved with perfusion culture using silk blend scaffolds with varying proportions of the liver matrix that orchestrate cellular function. The mechanical properties of silk allow the fabrication of structures that resemble liver anatomy to generate native-like hepatic lobules. Nanomaterials have immense potential as a component of composite material development for scaffolds to achieve improved predictive ability in pharmacokinetics. Most of these unconventional scaffolds have the added advantage of being readily available, accessible, affordable and sustainable for liver tissue engineering applications. Conclusively, the shift of attention away from conventional scaffolds poses a promising future in the field of tissue engineering.

16.
Regen Med ; : 1-10, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101612

ABSTRACT

Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from non-academic institutions in May 2024.

17.
Transpl Infect Dis ; : e14350, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101669

ABSTRACT

Among patients with hematopoietic stem cell transplants, infections, particularly multidrug-resistant infections, pose a grave threat. In this setting, penicillin allergy labels are both common and harmful. Though the majority of patients who report penicillin allergy can actually tolerate penicillin, penicillin allergy labels are associated with use of alternative antibiotics, which are often more broad spectrum, less effective, and more toxic. In turn, they are associated with more severe infections, multidrug-resistant infections, Clostridium difficile, and increased mortality. Evaluating penicillin allergy labels can immediately expand access to preferred therapeutic options, which are critical to care in patients with recent hematopoietic stem cell transplants. Point-of-care assessment and clinical decision tools now exist to aid the nonallergist in assessment of penicillin allergy. This can aid in expanding use of other beta-lactam antibiotics and assist in risk-stratifying patients to determine a testing strategy. In patients with low-risk reaction histories, direct oral challenges can be employed to efficiently delabel patients across clinical care settings. We advocate for multidisciplinary efforts to evaluate patients with penicillin allergy labels prior to transplantation.

18.
Vet Q ; 44(1): 1-11, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39086189

ABSTRACT

Mare endometrosis is a major reproductive problem associated with low fertility and is characterized by persistent inflammation, TGFß-1 signaling, and consequently, extracellular matrix deposition, which compromises endometrial glands. Mesenchymal stem cell-based products (MSCs), such as extracellular vesicles (EVs), have gained attention due to the regulatory effects exerted by their miRNA cargo. Here, we evaluated the impact of preconditioning equine adipose mesenchymal stem cells with TGFß-1 for short or long periods on the anti-fibrotic properties of secreted extracellular vesicles. MSCs were isolated from six healthy horses and exposed to TGFß-1 for 4, 24, and 0 h. The expression of anti-fibrotic and pro-fibrotic miRNAs and mRNAs in treated cells and miRNAs in the cargo of secreted extracellular vesicles was measured. The resulting EVs were added for 48 h to endometrial stromal cells previously induced to a fibrotic status. The expression of anti-fibrotic and pro-fibrotic genes and miRNAs was evaluated in said cells using qPCR and next-generation sequencing. Preconditioning MSCs with TGFß-1 for 4 h enriched the anti-fibrotic miRNAs (mir29c, mir145, and mir200) in cells and EVs. Conversely, preconditioning the cells for 24 h leads to a pro-fibrotic phenotype overexpressing mir192 and mir433. This finding might have implications for developing an EV-based protocol to treat endometrial fibrosis in mares.


Subject(s)
Endometrium , Extracellular Vesicles , Fibrosis , Mesenchymal Stem Cells , MicroRNAs , Transforming Growth Factor beta1 , Animals , Horses , Female , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Endometrium/metabolism , Endometrium/cytology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Stromal Cells/metabolism , Stromal Cells/drug effects , Horse Diseases , Gene Expression Regulation/drug effects , Endometriosis/veterinary , Endometriosis/metabolism , Endometriosis/genetics
19.
BMC Genomics ; 25(1): 751, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090588

ABSTRACT

BACKGROUND: Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is an important disease of barley and wheat. A diverse sexual Pgt population from the Pacific Northwest (PNW) region of the US contains a high proportion of individuals with virulence on the barley stem rust resistance (R) gene, Rpg1. However, the evolutionary mechanisms of this virulence on Rpg1 are mysterious considering that Rpg1 had not been deployed in the region and the gene had remained remarkably durable in the Midwestern US and prairie provinces of Canada. METHODS AND RESULTS: To identify AvrRpg1 effectors, genome wide association studies (GWAS) were performed using 113 Pgt isolates collected from the PNW (n = 89 isolates) and Midwest (n = 24 isolates) regions of the US. Disease phenotype data were generated on two barley lines Morex and the Golden Promise transgenic (H228.2c) that carry the Rpg1 gene. Genotype data was generated by whole genome sequencing (WGS) of 96 isolates (PNW = 89 isolates and Midwest = 7 isolates) and RNA sequencing (RNAseq) data from 17 Midwestern isolates. Utilizing ~1.2 million SNPs generated from WGS and phenotype data (n = 96 isolates) on the transgenic line H228.2c, 53 marker trait associations (MTAs) were identified. Utilizing ~140 K common SNPs generated from combined analysis of WGS and RNAseq data, two significant MTAs were identified using the cv Morex phenotyping data. The 55 MTAs defined two distinct avirulence loci, on supercontig 2.30 and supercontig 2.11 of the Pgt reference genome of Pgt isolate CRL 75-36-700-3. The major avirulence locus designated AvrRpg1A was identified with the GWAS using both barley lines and was delimited to a 35 kb interval on supercontig 2.30 containing four candidate genes (PGTG_10878, PGTG_10884, PGTG_10885, and PGTG_10886). The minor avirulence locus designated AvrRpg1B identified with cv Morex contained a single candidate gene (PGTG_05433). AvrRpg1A haplotype analysis provided strong evidence that a dominant avirulence gene underlies the locus. CONCLUSIONS: The association analysis identified strong candidate AvrRpg1 genes. Further analysis to validate the AvrRpg1 genes will fill knowledge gaps in our understanding of rust effector biology and the evolution and mechanism/s of Pgt virulence on Rpg1.


Subject(s)
Disease Resistance , Genome-Wide Association Study , Hordeum , Plant Diseases , Puccinia , Hordeum/microbiology , Hordeum/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Puccinia/pathogenicity , Puccinia/genetics , Virulence/genetics , Chromosome Mapping , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Genes, Plant , Phenotype
20.
BMC Biol ; 22(1): 157, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39090637

ABSTRACT

BACKGROUND: The remarkable regenerative abilities observed in planarians and cnidarians are closely linked to the active proliferation of adult stem cells and the precise differentiation of their progeny, both of which typically deteriorate during aging in low regenerative animals. While regeneration-specific genes conserved in highly regenerative organisms may confer regenerative abilities and long-term maintenance of tissue homeostasis, it remains unclear whether introducing these regenerative genes into low regenerative animals can improve their regeneration and aging processes. RESULTS: Here, we ectopically express highly regenerative species-specific JmjC domain-encoding genes (HRJDs) in Drosophila, a widely used low regenerative model organism. Surprisingly, HRJD expression impedes tissue regeneration in the developing wing disc but extends organismal lifespan when expressed in the intestinal stem cell lineages of the adult midgut under non-regenerative conditions. Notably, HRJDs enhance the proliferative activity of intestinal stem cells while maintaining their differentiation fidelity, ameliorating age-related decline in gut barrier functions. CONCLUSIONS: These findings together suggest that the introduction of highly regenerative species-specific genes can improve stem cell functions and promote a healthy lifespan when expressed in aging animals.


Subject(s)
Regeneration , Animals , Regeneration/genetics , Regeneration/physiology , Aging/genetics , Aging/physiology , Species Specificity , Drosophila/genetics , Drosophila/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Drosophila melanogaster/growth & development , Stem Cells/metabolism , Intestines/physiology , Cell Differentiation/genetics , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL