Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 690
Filter
1.
Adv Sci (Weinh) ; : e2400064, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981007

ABSTRACT

Microglia play a crucial role in synaptic elimination by engulfing dystrophic neurons via triggering receptors expressed on myeloid cells 2 (TREM2). They are also involved in the clearance of beta-amyloid (Aß) plaques in Alzheimer's disease (AD); nonetheless, the driving force behind TREM2-mediated phagocytosis of beta-amyloid (Aß) plaques remains unknown. Here, using advanced 2D/3D/4D co-culture systems with loss-of-function mutations in TREM2 (a frameshift mutation engineered in exon 2) brain organoids/microglia/assembloids, it is identified that the clearance of Aß via TREM2 is accelerated by externalized phosphatidylserine (ePtdSer) generated from dystrophic neurons surrounding the Aß plaques. Moreover, it is investigated whether microglia from both sporadic (CRISPR-Cas9-based APOE4 lines) and familial (APPNL-G-F/MAPT double knock-in mice) AD models show reduced levels of TREM2 and lack of phagocytic activity toward ePtdSer-positive Aß plaques. Herein new insight is provided into TREM2-dependent microglial phagocytosis of Aß plaques in the context of the presence of ePtdSer during AD progression.

2.
J Neuroinflammation ; 21(1): 166, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956653

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) and obstructive sleep apnea (OSA) are mutual risk factors, with both conditions inducing cognitive impairment and anxiety. However, whether OSA exacerbates cognitive impairment and anxiety in patients with T2DM remains unclear. Moreover, TREM2 upregulation has been suggested to play a protective role in attenuating microglia activation and improving synaptic function in T2DM mice. The aim of this study was to explore the regulatory mechanisms of TREM2 and the cognitive and anxiety-like behavioral changes in mice with OSA combined with T2DM. METHODS: A T2DM with OSA model was developed by treating mice with a 60% kcal high-fat diet (HFD) combined with intermittent hypoxia (IH). Spatial learning memory capacity and anxiety in mice were investigated. Neuronal damage in the brain was determined by the quantity of synapses density, the number and morphology of brain microglia, and pro-inflammatory factors. For mechanism exploration, an in vitro model of T2DM combined with OSA was generated by co-treating microglia with high glucose (HG) and IH. Regulation of TREM2 on IFNAR1-STAT1 pathway was determined by RNA sequencing and qRT-PCR. RESULTS: Our results showed that HFD mice exhibited significant cognitive dysfunction and anxiety-like behavior, accompanied by significant synaptic loss. Furthermore, significant activation of brain microglia and enhanced microglial phagocytosis of synapses were observed. Moreover, IH was found to significantly aggravate anxiety in the HFD mice. The mechanism of HG treatment may potentially involve the promotion of TREM2 upregulation, which in turn attenuates the proinflammatory microglia by inhibiting the IFNAR1-STAT1 pathway. Conversely, a significant reduction in TREM2 in IH-co-treated HFD mice and HG-treated microglia resulted in the further activation of the IFNAR1-STAT1 pathway and consequently increased proinflammatory microglial activation. CONCLUSIONS: HFD upregulated the IFNAR1-STAT1 pathway and induced proinflammatory microglia, leading to synaptic damage and causing anxiety and cognitive deficits. The upregulated TREM2 inT2DM mice brain exerted a negative regulation of the IFNAR1-STAT1 pathway. Mice with T2DM combined with OSA exacerbated anxiety via the downregulation of TREM2, causing heightened IFNAR1-STAT1 pathway activation and consequently increasing proinflammatory microglia.


Subject(s)
Anxiety , Diabetes Mellitus, Type 2 , Diet, High-Fat , Hypoxia , Membrane Glycoproteins , Mice, Inbred C57BL , Receptor, Interferon alpha-beta , Receptors, Immunologic , Signal Transduction , Animals , Mice , Diet, High-Fat/adverse effects , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Anxiety/etiology , Anxiety/metabolism , Signal Transduction/physiology , Signal Transduction/drug effects , Hypoxia/metabolism , Hypoxia/complications , Male , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/psychology , Receptor, Interferon alpha-beta/metabolism , Receptor, Interferon alpha-beta/genetics , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Microglia/metabolism , STAT1 Transcription Factor/metabolism , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism , Sleep Apnea, Obstructive/psychology
3.
Sci Rep ; 14(1): 15318, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961148

ABSTRACT

Understanding the exact pathophysiological mechanisms underlying the involvement of triggering receptor expressed on myeloid cells 2 (TREM2) related microglia activation is crucial for the development of clinical trials targeting microglia activation at different stages of Alzheimer's disease (AD). Given the contradictory findings in the literature, it is imperative to investigate the longitudinal alterations in cerebrospinal fluid (CSF) soluble TREM2 (sTREM2) levels as a marker for microglia activation, and its potential association with AD biomarkers, in order to address the current knowledge gap. In this study, we aimed to assess the longitudinal changes in CSF sTREM2 levels within the framework of the A/T/N classification system for AD biomarkers and to explore potential associations with AD pathological features, including the presence of amyloid-beta (Aß) plaques and tau aggregates. The baseline and longitudinal (any available follow-up visit) CSF sTREM2 levels and processed tau-PET and Aß-PET data of 1001 subjects were recruited from the ADNI database. The participants were classified into four groups based on the A/T/N framework: A+ /TN+ , A+ /TN- , A- /TN+ , and A- /TN- . Linear regression analyses were conducted to assess the relationship between CSF sTREM2 with cognitive performance, tau and Aß-PET adjusting for age, gender, education, and APOE ε4 status. Based on our analysis there was a significant difference in baseline and rate of change of CSF sTREM2 between ATN groups. While there was no association between baseline CSF sTREM2 and cognitive performance (ADNI-mem), we found that the rate of change of CSF sTREM2 is significantly associated with cognitive performance in the entire cohort but not the ATN groups. We found that the baseline CSF sTREM2 is significantly associated with baseline tau-PET and Aß-PET rate of change only in the A+ /TN+ group. A significant association was found between the rate of change of CSF sTREM2 and the tau- and Aß-PET rate of change only in the A+ /TN- group. Our study suggests that the TREM2-related microglia activation and their relations with AD markers and cognitive performance vary the in presence or absence of Aß and tau pathology. Furthermore, our findings revealed that a faster increase in the level of CSF sTREM2 might attenuate future Aß plaque formation and tau aggregate accumulation only in the presence of Aß pathology.


Subject(s)
Alzheimer Disease , Biomarkers , Membrane Glycoproteins , Receptors, Immunologic , tau Proteins , Humans , Alzheimer Disease/cerebrospinal fluid , Membrane Glycoproteins/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Female , Male , Aged , Longitudinal Studies , tau Proteins/cerebrospinal fluid , Neuroimaging/methods , Aged, 80 and over , Amyloid beta-Peptides/cerebrospinal fluid , Positron-Emission Tomography , Plaque, Amyloid/pathology , Microglia/metabolism , Microglia/pathology
4.
J Neurosci ; 44(29)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38830764

ABSTRACT

Human genetics and preclinical studies have identified key contributions of TREM2 to several neurodegenerative conditions, inspiring efforts to modulate TREM2 therapeutically. Here, we characterize the activities of three TREM2 agonist antibodies in multiple mixed-sex mouse models of Alzheimer's disease (AD) pathology and remyelination. Receptor activation and downstream signaling are explored in vitro, and active dose ranges are determined in vivo based on pharmacodynamic responses from microglia. For mice bearing amyloid-ß (Aß) pathology (PS2APP) or combined Aß and tau pathology (TauPS2APP), chronic TREM2 agonist antibody treatment had limited impact on microglia engagement with pathology, overall pathology burden, or downstream neuronal damage. For mice with demyelinating injuries triggered acutely with lysolecithin, TREM2 agonist antibodies unexpectedly disrupted injury resolution. Likewise, TREM2 agonist antibodies limited myelin recovery for mice experiencing chronic demyelination from cuprizone. We highlight the contributions of dose timing and frequency across models. These results introduce important considerations for future TREM2-targeting approaches.


Subject(s)
Alzheimer Disease , Membrane Glycoproteins , Microglia , Multiple Sclerosis , Receptors, Immunologic , Animals , Receptors, Immunologic/agonists , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Membrane Glycoproteins/agonists , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Mice , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Female , Male , Microglia/drug effects , Microglia/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Mice, Transgenic , Antibodies/pharmacology , Humans , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism
5.
Front Aging Neurosci ; 16: 1407980, 2024.
Article in English | MEDLINE | ID: mdl-38841103

ABSTRACT

Objective: Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) is a potential neuroinflammatory biomarker linked to the pathogenesis of Alzheimer's disease (AD) and mild cognitive impairment (MCI). Previous studies have produced inconsistent results regarding sTREM2 levels in various clinical stages of AD. This study aims to establish the correlation between sTREM2 levels and AD progression through a meta-analysis of sTREM2 levels in cerebrospinal fluid (CSF) and blood. Methods: Comprehensive searches were conducted in PubMed, Embase, Web of Science, and the Cochrane Library to identify observational studies reporting CSF and blood sTREM2 levels in AD patients, MCI patients, and healthy controls. A random effects meta-analysis was used to calculate the standardized mean difference (SMD) and 95% confidence intervals (CIs). Results: Thirty-six observational studies involving 3,016 AD patients, 3,533 MCI patients, and 4,510 healthy controls were included. CSF sTREM2 levels were significantly higher in both the AD [SMD = 0.28, 95% CI (0.15, 0.41)] and MCI groups [SMD = 0.30, 95% CI (0.13, 0.47)] compared to the healthy control group. However, no significant differences in expression were detected between the AD and MCI groups [SMD = 0.09, 95% CI (-0.09, 0.26)]. Furthermore, increased plasma sTREM2 levels were associated with a higher risk of AD [SMD = 0.42, 95% CI (0.01, 0.83)]. Conclusion: CSF sTREM2 levels are positively associated with an increased risk of AD and MCI. Plasma sTREM2 levels were notably higher in the AD group than in the control group and may serve as a promising biomarker for diagnosing AD. However, sTREM2 levels are not effective for distinguishing between different disease stages of AD. Further investigations are needed to explore the longitudinal changes in sTREM2 levels, particularly plasma sTREM2 levels, during AD progression. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024514593.

6.
Glia ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837837

ABSTRACT

The nervous and the immune systems undergo a continuous cross talk, starting from early development and continuing throughout adulthood and aging. Defects in this cross talk contribute to neurodevelopmental and neurodegenerative diseases. Microglia are the resident immune cells in the brain that are primarily involved in this bidirectional communication. Among the microglial genes, trem2 is a key player, controlling the functional state of microglia and being at the forefront of many processes that require interaction between microglia and other brain components, such as neurons and oligodendrocytes. The present review focuses on the early developmental window, describing the early brain processes in which TREM2 is primarily involved, including the modulation of synapse formation and elimination, the control of neuronal bioenergetic states as well as the contribution to myelination processes and neuronal circuit formation. By causing imbalances during these early maturation phases, dysfunctional TREM2 may have a striking impact on the adult brain, making it a more sensitive target for insults occurring during adulthood and aging.

7.
Alzheimers Res Ther ; 16(1): 121, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38831312

ABSTRACT

BACKGROUND: Beta-amyloid (Aß) deposition in the brain parenchyma is a crucial initiating step in the amyloid cascade hypothesis of Alzheimer's disease (AD) pathology. Furthermore, dysfunction of plaque-associated microglia, also known as disease-associated microglia (DAM) has been reported to accelerate Aß deposition and cognitive impairment. Our previous research demonstrated that intermittent hypoxia training (IHT) improved AD pathology by upregulating autophagy in DAM, thereby enhancing oligomeric Aß (oAß) clearance. Considering that oAß internalization is the initial stage of oAß clearance, this study focused on the IHT mechanism involved in upregulating Aß uptake by DAM. METHODS: IHT was administered to 8-month-old APP/PS1 mice or 6-month-old microglial vacuolar protein sorting 35 (VPS35) knockout mice in APP/PS1 background (MG VPS35 KO: APP/PS1) for 28 days. After the IHT, the spatial learning-memory capacity of the mice was assessed. Additionally, AD pathology was determined by estimating the nerve fiber and synapse density, Aß plaque deposition, and Aß load in the brain. A model of Aß-exposed microglia was constructed and treated with IHT to explore the related mechanism. Finally, triggering receptor expressed on myeloid cells 2 (TREM2) intracellular recycling and Aß internalization were measured using a fluorescence tracing technique. RESULTS: Our results showed that IHT ameliorated cognitive function and Aß pathology. In particular, IHT enhanced Aß endocytosis by augmenting the intracellular transport function of microglial TREM2, thereby contributing to Aß clearance. Furthermore, IHT specifically upregulated VPS35 in DAM, the primary cause for the enhanced intracellular recycling of TREM2. IHT lost ameliorative effect on Aß pathology in MG VPS35 KO: APP/PS1 mice brain. Lastly, the IHT mechanism of VPS35 upregulation in DAM was mediated by the transcriptional regulation of VPS35 by transcription factor EB (TFEB). CONCLUSION: IHT enhances Aß endocytosis in DAM by upregulating VPS35-dependent TREM2 recycling, thereby facilitating oAß clearance and mitigation of Aß pathology. Moreover, the transcriptional regulation of VPS35 by TFEB demonstrates a close link between endocytosis and autophagy in microglia. Our study further elucidates the IHT mechanism in improving AD pathology and provides evidence supporting the potential application of IHT as a complementary therapy for AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Endocytosis , Membrane Glycoproteins , Microglia , Plaque, Amyloid , Receptors, Immunologic , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Microglia/metabolism , Mice , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Amyloid beta-Peptides/metabolism , Endocytosis/physiology , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Mice, Transgenic , Hypoxia/metabolism , Mice, Knockout , Disease Models, Animal , Male , Brain/metabolism , Brain/pathology , Mice, Inbred C57BL
8.
Res Sq ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38854033

ABSTRACT

A comprehensive understanding of the intricate cellular and molecular changes governing the complex interactions between cells within acne lesions is currently lacking. Herein, we analyzed early papules from six subjects with active acne vulgaris, utilizing single-cell and high-resolution spatial RNA sequencing. We observed significant changes in signaling pathways across seven different cell types when comparing lesional skin samples (LSS) to healthy skin samples (HSS). Using CellChat, we constructed an atlas of signaling pathways for the HSS, identifying key signal distributions and cell-specific genes within individual clusters. Further, our comparative analysis revealed changes in 49 signaling pathways across all cell clusters in the LSS- 4 exhibited decreased activity, whereas 45 were upregulated, suggesting that acne significantly alters cellular dynamics. We identified ten molecules, including GRN, IL-13RA1 and SDC1 that were consistently altered in all donors. Subsequently, we focused on the function of GRN and IL-13RA1 in TREM2 macrophages and keratinocytes as these cells participate in inflammation and hyperkeratinization in the early stages of acne development. We evaluated their function in TREM2 macrophages and the HaCaT cell line. We found that GRN increased the expression of proinflammatory cytokines and chemokines, including IL-18, CCL5, and CXCL2 in TREM2 macrophages. Additionally, the activation of IL-13RA1 by IL-13 in HaCaT cells promoted the dysregulation of genes associated with hyperkeratinization, including KRT17, KRT16, and FLG. These findings suggest that modulating the GRN-SORT1 and IL-13-IL-13RA1 signaling pathways could be a promising approach for developing new acne treatments.

9.
Immunotargets Ther ; 13: 287-304, 2024.
Article in English | MEDLINE | ID: mdl-38881647

ABSTRACT

Alzheimer's disease (AD) is a fatal neurodegenerative disease with a subtle and progressive onset and is the most common type of dementia. However, its etiology and pathogenesis have not yet been fully elucidated. The common pathological manifestations of AD include extraneuronal ß-amyloid deposition (Aß), intraneuronal tau protein phosphorylation leading to the formation of 'neurofibrillary tangles' (NFTs), neuroinflammation, progressive loss of brain neurons/synapses, and glucose metabolism disorders. Current treatment approaches for AD primarily focus on the 'Aß cascade hypothesis and abnormal aggregation of hyperphosphorylation of tau proteins', but have shown limited efficacy. Therefore, there is an ongoing need to identify more effective treatment targets for AD. The central nervous system (CNS) inflammatory response plays a key role in the occurrence and development of AD. Neuroinflammation is an immune response activated by glial cells in the CNS that usually occurs in response to stimuli such as nerve injury, infection and toxins or in response to autoimmunity. Neuroinflammation ranks as the third most prominent pathological feature in AD, following Aß and NFTs. In recent years, the focus on the role of neuroinflammation and microglia in AD has increased due to the advancements in genome-wide association studies (GWAS) and sequencing technology. Furthermore, research has validated the pivotal role of microglia-mediated neuroinflammation in the progression of AD. Therefore, this article reviews the latest research progress on the role of neuroinflammation triggered by microglia in AD in recent years, aiming to provide a new theoretical basis for further exploring the role of neuroinflammation in the process of AD occurrence and development.

10.
Front Aging Neurosci ; 16: 1420731, 2024.
Article in English | MEDLINE | ID: mdl-38912524

ABSTRACT

Soluble Triggering Receptor Expressed on Myeloid Cells 2 (sTREM2) plays a crucial role in the pathogenesis of Alzheimer's disease (AD). This review comprehensively examines sTREM2's involvement in AD, focusing on its regulatory functions in microglial responses, neuroinflammation, and interactions with key pathological processes. We discuss the dynamic changes in sTREM2 levels in cerebrospinal fluid and plasma throughout AD progression, highlighting its potential as a therapeutic target. Furthermore, we explore the impact of genetic variants on sTREM2 expression and its interplay with other AD risk genes. The evidence presented in this review suggests that modulating sTREM2 activity could influence AD trajectory, making it a promising avenue for future research and drug development. By providing a holistic understanding of sTREM2's multifaceted role in AD, this review aims to guide future studies and inspire novel therapeutic strategies.

11.
Mol Genet Genomic Med ; 12(6): e2476, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888203

ABSTRACT

BACKGROUND: The Triggering Receptor Expressed on Myeloid Cells 2 protein (TREM2) plays a crucial role in various biological processes, including osteoclast differentiation, and disease-associated microglia (DAM) activation to regulate neuroinflammation, and phagocytosis in the brain. Genetic variations in TREM2 are implicated in neurodegenerative disorders, such as Nasu-hakola disease (NHD), characterized by bone lesions, neuropsychiatric disorders, and early-onset dementia. METHODS: We studied 3 siblings with suspected NHD. Whole-exome sequencing was conducted on the proband to identify the possible genetic cause(s) and by Sanger sequencing to validate the identified variants in the two other affected siblings, a healthy sister, and the parents. RESULTS: We identified a novel homozygous deletion (c.549del; p.(Leu184Serfs*5)) in TREM2. Our literature review reveals 16 TREM2 mutations causing early-onset dementia and bone lesions. CONCLUSION: These findings, alongside previous research, elucidate the clinical spectrum of TREM2-related diseases, aiding accurate diagnosis and patient care. This knowledge is vital for understanding TREM2-dependent DAM and its involvement in the pathogenesis of neurodevelopmental disorders which can help to develop targeted therapies and improve outcomes for TREM2-affected individuals.


Subject(s)
Homozygote , Lipodystrophy , Membrane Glycoproteins , Osteochondrodysplasias , Receptors, Immunologic , Siblings , Subacute Sclerosing Panencephalitis , Female , Humans , Consanguinity , Lipodystrophy/genetics , Lipodystrophy/pathology , Membrane Glycoproteins/genetics , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Pedigree , Receptors, Immunologic/genetics , Subacute Sclerosing Panencephalitis/genetics , Subacute Sclerosing Panencephalitis/pathology
12.
Neuropharmacology ; 255: 110006, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38763325

ABSTRACT

Currently, there are no effective therapeutic agents available to treat Alzheimer's disease (AD). However, edaravone dexborneol (EDB), a novel composite agent used to treat acute ischemic stroke, has recently been shown to exert efficacious neuroprotective effects. However, whether EDB can ameliorate cognitive deficits in AD currently remains unclear. To this end, we explored the effects of EDB on AD and its potential mechanisms using an AD animal model (male APP/PS1 mice) treated with EDB for 10 weeks starting at 6 months of age. Subsequent analyses revealed that EDB-treated APP/PS1 mice exhibited improved cognitive abilities compared to untreated APP/PS1 mice. Administration of EDB in APP/PS1 mice further alleviated neuropathological alterations of the hippocampus, including Aß deposition, pyramidal cell karyopyknosis, and oxidative damage, and significantly decreased the levels of inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and COX-2 in the hippocampus of APP/PS1 mice. Transcriptome sequencing analysis demonstrated the critical role of the inflammatory reaction in EDB treatment in APP/PS1 mice, indicating that the alleviation of the inflammatory reaction by EDB in the hippocampus of APP/PS1 mice was linked to the action of the TREM2/TLR4/MAPK signaling pathway. Further in vitro investigations showed that EDB suppressed neuroinflammation in LPS-stimulated BV2 cells by inhibiting the TLR4/MAPK signaling pathway and upregulating TREM2 expression. Thus, the findings of the present study demonstrate that EDB is a promising therapeutic agent for AD-related cognitive dysfunction.


Subject(s)
Cognitive Dysfunction , Edaravone , Membrane Glycoproteins , Receptors, Immunologic , Toll-Like Receptor 4 , Up-Regulation , Animals , Toll-Like Receptor 4/metabolism , Mice , Male , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Edaravone/pharmacology , Edaravone/therapeutic use , Up-Regulation/drug effects , Mice, Transgenic , Neuroprotective Agents/pharmacology , MAP Kinase Signaling System/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Mice, Inbred C57BL , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Disease Models, Animal , Presenilin-1/genetics
13.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1924-1931, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812205

ABSTRACT

The Chinese medical mechanism of Huanglian Jieduo Decoction on treating Alzheimer's disease(AD) characterized by "toxin damaging brain collateral" is still unclear. This study aims to explore the mechanism of Huanglian Jieduo Decoction on regulating triggering receptor expressed on myeloid cells 2(TREM2)/protein kinase B(Akt)/glycogen synthase kinase 3ß(GSK3ß) pathway to improve the cognitive deficit in APP/PS1 transgenic mice. APP/PS1 mice of approximately nine months old were randomly divided into the model group, the low, medium, and high(2.5, 5, and 10 g·kg~(-1)) groups of Huanglian Jiedu Decoction, and 0.75 mg·kg~(-1) donepezil hydrochloride group, and the C57BL/6J mice with the same age were taken as the normal group. After one month of continuous oral administration, a Morris water maze was performed to detect the learning and memory ability of mice. Hematoxylin-eosin(HE) staining was applied to observe the morphology of neuronal cells in the cortical area of mice. Immunofluorescence was used to detect the protein expressions of ß-amyloid(Aß_(1-42)), CD86, and arginase 1(Arg1). The mRNA levels of interleukin(IL)-1ß, IL-6, and IL-10 in the cortex of mice were detected by real-time fluorescence quantitative polymerase chain reaction(RT-qPCR). The protein expressions of TREM2, phosphoinositide-3 kinase(PI3K), Akt, GSK3ß, and beta-catenin(ß-catenin) in mouse cortex were determined by Western blot. The results indicated that the escape latency of the model group was significantly prolonged, and the residence time in the target quadrant and the number of crossing the platform were significantly reduced compared with the normal group. Mice in the model group had a significantly lower number of neurons in the cortex and showed nuclear pyknosis and a significant increase in the expressions of Aß_(1-42) and CD86. The mRNA levels of IL-1ß and IL-6 in tissue were significantly increased, IL-10 were increased, while Arg1 were significantly decreased. The expression of TREM2, p-PI3K(Y607), p-Akt(T308), p-GSK3ß(Ser9), and ß-catenin in the cortex were significantly down-regulated. Compared with the model group, the escape latency of the mice in the administration group was significantly shortened, and the number of crossing the platform and the residence time in the target quadrant were significantly increased. Furthermore, the number of neurons in the cortex of mice was increased, and nuclear pyknosis was improved. Aß_(1-42) deposition was decreased significantly. The mRNA levels of IL-1ß, IL-6 and CD86 were significantly decreased, while IL-10 and Arg1 levels were significantly increased. The expression of TREM2, p-PI3K(Y607), p-Akt(T308), p-GSK3ß(Ser9), and ß-catenin protein in the cortex of each administration group was significantly up-regulated compared with the model group. In conclusion, Huanglian Jiedu Decoction reduced the expression of Aß_(1-42) and neuroinflammation to a neuro-protective effect, thereby improving the learning and memory ability in APP/PS1 mice, which may be related to the TREM2/Akt/GSK3ß signaling pathway.


Subject(s)
Alzheimer Disease , Cerebral Cortex , Drugs, Chinese Herbal , Glycogen Synthase Kinase 3 beta , Membrane Glycoproteins , Mice, Inbred C57BL , Mice, Transgenic , Proto-Oncogene Proteins c-akt , Receptors, Immunologic , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Mice , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Male , Signal Transduction/drug effects , Humans
14.
Cancer Cell ; 42(6): 968-984.e9, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38788719

ABSTRACT

Glioblastomas (GBM) are incurable central nervous system (CNS) cancers characterized by substantial myeloid cell infiltration. Whether myeloid cell-directed therapeutic targets identified in peripheral non-CNS cancers are applicable to GBM requires further study. Here, we identify that the critical immunosuppressive target in peripheral cancers, triggering receptor expressed on myeloid cells-2 (TREM2), is immunoprotective in GBM. Genetic or pharmacological TREM2 deficiency promotes GBM progression in vivo. Single-cell and spatial sequencing reveals downregulated TREM2 in GBM-infiltrated myeloid cells. TREM2 negatively correlates with immunosuppressive myeloid and T cell exhaustion signatures in GBM. We further demonstrate that during GBM progression, CNS-enriched sphingolipids bind TREM2 on myeloid cells and elicit antitumor responses. Clinically, high TREM2 expression in myeloid cells correlates with better survival in GBM. Adeno-associated virus-mediated TREM2 overexpression impedes GBM progression and synergizes with anti-PD-1 therapy. Our results reveal distinct functions of TREM2 in CNS cancers and support organ-specific myeloid cell remodeling in cancer immunotherapy.


Subject(s)
Glioblastoma , Membrane Glycoproteins , Receptors, Immunologic , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Humans , Animals , Mice , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/metabolism , Myeloid Cells/metabolism , Central Nervous System Neoplasms/metabolism , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/pathology , Cell Line, Tumor , Mice, Inbred C57BL , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism
15.
Int J Biol Macromol ; 269(Pt 2): 132179, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723817

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a prevalent neurodegenerative disorder, marked by the degeneration of dopamine (DA) neurons in the substantia nigra (SN). Current evidence strongly suggests that neuroinflammation, primarily mediated by microglia, contributes to PD pathogenesis. Triggering receptor expressed on myeloid cells 2 (TREM2) might serve as a promising therapeutic target for PD due to its ability to suppress neuroinflammation. Dihydroquercetin (DHQ) is an important natural dihydroflavone and confers apparent anti-inflammatory, antioxidant and anti-fibrotic effects. Recently, DHQ-mediated neuroprotection was exhibited. However, the specific mechanisms of its neuroprotective effects remain incompletely elucidated. METHODS: In this study, rat models were utilized to induce damage to DA neurons using lipopolysaccharide (LPS) and 6-hydroxydopamine (6-OHDA) to assess the impacts of DHQ on the loss of DA neurons. Furthermore, DA neuronal MN9D cells and microglial BV2 cells were employed to investigate the function of TREM2 in DHQ-mediated DA neuroprotection. Finally, TREM2 knockout mice were used to investigate whether the neuroprotective effects mediated by DHQ through a mechanism dependent on TREM2. RESULTS: The main findings demonstrated that DHQ effectively protected DA neurons against neurotoxicity induced by LPS and 6-OHDA and inhibited microglia-elicited neuroinflammation. Meanwhile, DHQ promoted microglial TREM2 signaling activation. Notably, DHQ failed to reduce inflammatory cytokines release and further present neuroprotection from DA neurotoxicity upon TREM2 silencing. Similarly, DHQ didn't exert DA neuroprotection in TREM2 knockout mice. CONCLUSIONS: These findings suggest that DHQ exerted DA neuroprotection by regulating microglia TREM2 activation.


Subject(s)
Dopaminergic Neurons , Membrane Glycoproteins , Microglia , Neuroprotective Agents , Quercetin , Receptors, Immunologic , Animals , Male , Mice , Rats , Cell Line , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Lipopolysaccharides , Membrane Glycoproteins/metabolism , Mice, Knockout , Microglia/drug effects , Microglia/metabolism , Neuroprotective Agents/pharmacology , Oxidopamine , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Quercetin/pharmacology , Quercetin/analogs & derivatives , Rats, Sprague-Dawley , Receptors, Immunologic/metabolism , Mice, Inbred C57BL
16.
J Proteomics ; 302: 105198, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38777089

ABSTRACT

Understanding microglial states in the aging brain has become crucial, especially with the discovery of numerous Alzheimer's disease (AD) risk and protective variants in genes such as INPP5D and TREM2, which are essential to microglia function in AD. Here we present a thorough examination of microglia-like cells and primary mouse microglia at the proteome and transcriptome levels to illuminate the roles these genes and the proteins they encode play in various cell states. First, we compared the proteome profiles of wildtype and INPP5D (SHIP1) knockout primary microglia. Our findings revealed significant proteome alterations only in the homozygous SHIP1 knockout, revealing its impact on the microglial proteome. Additionally, we compared the proteome and transcriptome profiles of commonly used in vitro microglia BV2 and HMC3 cells with primary mouse microglia. Our results demonstrated a substantial similarity between the proteome of BV2 and mouse primary cells, while notable differences were observed between BV2 and human HMC3. Lastly, we conducted targeted lipidomic analysis to quantify different phosphatidylinositols (PIs) species, which are direct SHIP1 targets, in the HMC3 and BV2 cells. This in-depth omics analysis of both mouse and human microglia enhances our systematic understanding of these microglia models. SIGNIFICANCE: Given the growing urgency of comprehending microglial function in the context of neurodegenerative diseases and the substantial therapeutic implications associated with SHIP1 modulation, we firmly believe that our study, through a rigorous and comprehensive proteomics, transcriptomics and targeted lipidomic analysis of microglia, contributes to the systematic understanding of microglial function in the context of neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Microglia , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , Proteome , Microglia/metabolism , Animals , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Mice , Proteome/metabolism , Proteome/analysis , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Mice, Knockout , Transcriptome , Phosphatidylinositols/metabolism , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Proteomics/methods
17.
Cell Rep ; 43(6): 114253, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38781074

ABSTRACT

Diabetic kidney disease (DKD), the most common cause of kidney failure, is a frequent complication of diabetes and obesity, and yet to date, treatments to halt its progression are lacking. We analyze kidney single-cell transcriptomic profiles from DKD patients and two DKD mouse models at multiple time points along disease progression-high-fat diet (HFD)-fed mice aged to 90-100 weeks and BTBR ob/ob mice (a genetic model)-and report an expanding population of macrophages with high expression of triggering receptor expressed on myeloid cells 2 (TREM2) in HFD-fed mice. TREM2high macrophages are enriched in obese and diabetic patients, in contrast to hypertensive patients or healthy controls in an independent validation cohort. Trem2 knockout mice on an HFD have worsening kidney filter damage and increased tubular epithelial cell injury, all signs of worsening DKD. Together, our studies suggest that strategies to enhance kidney TREM2high macrophages may provide therapeutic benefits for DKD.


Subject(s)
Diabetic Nephropathies , Diet, High-Fat , Kidney , Macrophages , Membrane Glycoproteins , Mice, Knockout , Obesity , Receptors, Immunologic , Animals , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Macrophages/metabolism , Obesity/metabolism , Obesity/pathology , Obesity/complications , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Mice , Kidney/pathology , Kidney/metabolism , Humans , Male , Mice, Inbred C57BL , Female
18.
Alzheimers Dement ; 20(6): 4126-4146, 2024 06.
Article in English | MEDLINE | ID: mdl-38735056

ABSTRACT

INTRODUCTION: MODEL-AD (Model Organism Development and Evaluation for Late-Onset Alzheimer's Disease) is creating and distributing novel mouse models with humanized, clinically relevant genetic risk factors to capture the trajectory and progression of late-onset Alzheimer's disease (LOAD) more accurately. METHODS: We created the LOAD2 model by combining apolipoprotein E4 (APOE4), Trem2*R47H, and humanized amyloid-beta (Aß). Mice were subjected to a control diet or a high-fat/high-sugar diet (LOAD2+HFD). We assessed disease-relevant outcome measures in plasma and brain including neuroinflammation, Aß, neurodegeneration, neuroimaging, and multi-omics. RESULTS: By 18 months, LOAD2+HFD mice exhibited sex-specific neuron loss, elevated insoluble brain Aß42, increased plasma neurofilament light chain (NfL), and altered gene/protein expression related to lipid metabolism and synaptic function. Imaging showed reductions in brain volume and neurovascular uncoupling. Deficits in acquiring touchscreen-based cognitive tasks were observed. DISCUSSION: The comprehensive characterization of LOAD2+HFD mice reveals that this model is important for preclinical studies seeking to understand disease trajectory and progression of LOAD prior to or independent of amyloid plaques and tau tangles. HIGHLIGHTS: By 18 months, unlike control mice (e.g., LOAD2 mice fed a control diet, CD), LOAD2+HFD mice presented subtle but significant loss of neurons in the cortex, elevated levels of insoluble Ab42 in the brain, and increased plasma neurofilament light chain (NfL). Transcriptomics and proteomics showed changes in gene/proteins relating to a variety of disease-relevant processes including lipid metabolism and synaptic function. In vivo imaging revealed an age-dependent reduction in brain region volume (MRI) and neurovascular uncoupling (PET/CT). LOAD2+HFD mice also demonstrated deficits in acquisition of touchscreen-based cognitive tasks.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , tau Proteins , Animals , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Mice , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , tau Proteins/genetics , Mice, Transgenic , Brain/pathology , Brain/metabolism , Synapses/pathology , Synapses/metabolism , Male , Female , Humans
19.
Cell Commun Signal ; 22(1): 272, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750472

ABSTRACT

BACKGROUND: In the tumor immune microenvironment (TIME), triggering receptor expressed on myeloid cells 2 (trem2) is widely considered to be a crucial molecule on tumor-associated macrophages(TAMs). Multiple studies have shown that trem2 may function as an immune checkpoint in various malignant tumors, mediating tumor immune evasion. However, its specific molecular mechanisms, especially in glioma, remain elusive. METHODS: Lentivirus was transfected to establish cells with stable knockdown of trem2. A Transwell system was used for segregated coculture of glioma cells and microglia. Western blotting, quantitative real-time polymerase chain reaction (qRT‒PCR), and immunofluorescence (IF) were used to measure the expression levels of target proteins. The proliferation, invasion, and migration of cells were detected by colony formation, cell counting kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU) and transwell assays. The cell cycle, apoptosis rate and reactive oxygen species (ROS) level of cells were assessed using flow cytometry assays. The comet assay and tube formation assay were used to detect DNA damage in glioma cells and angiogenesis activity, respectively. Gl261 cell lines and C57BL/6 mice were used to construct the glioma orthotopic transplantation tumor model. RESULTS: Trem2 was highly overexpressed in glioma TAMs. Knocking down trem2 in microglia suppressed the growth and angiogenesis activity of glioma cells in vivo and in vitro. Mechanistically, knockdown of trem2 in microglia promoted proinflammatory microglia and inhibited anti-inflammatory microglia by activating jak2/stat1 and inhibiting the NF-κB p50 signaling pathway. The proinflammatory microglia produced high concentrations of nitric oxide (NO) and high levels of the proinflammatory cytokines TNF-α, IL-6, and IL-1ß, and caused further DNA damage and promoted the apoptosis rate of tumor cells. CONCLUSIONS: Our findings revealed that trem2 in microglia plays a significant role in the TIME of gliomas. Knockdown of trem2 in microglia might help to improve the efficiency of inhibiting glioma growth and delaying tumor progression and provide new ideas for further treatment of glioma.


Subject(s)
Glioma , Janus Kinase 2 , Membrane Glycoproteins , Microglia , NF-kappa B , Receptors, Immunologic , STAT3 Transcription Factor , Signal Transduction , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Microglia/metabolism , Microglia/pathology , Animals , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , NF-kappa B/metabolism , Mice , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Signal Transduction/genetics , Cell Line, Tumor , Mice, Inbred C57BL , Gene Knockdown Techniques , Cell Proliferation/genetics , Humans , Inflammation/genetics , Inflammation/pathology , Apoptosis/genetics , Disease Progression , Cell Movement/genetics
20.
J Cell Mol Med ; 28(10): e18280, 2024 May.
Article in English | MEDLINE | ID: mdl-38758159

ABSTRACT

Acute lung injury (ALI) is featured with a robust inflammatory response. Angiopoietin-like protein 2 (ANGPTL2), a pro-inflammatory protein, is complicated with various disorders. However, the role of ANGPTL2 in ALI remains to be further explored. The mice and MH-S cells were administrated with lipopolysaccharide (LPS) to evoke the lung injury in vivo and in vitro. The role and mechanism of ANGPTL was investigated by haematoxylin-eosin, measurement of wet/dry ratio, cell count, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling, reverse transcription quantitative polymerase chain reaction, immunofluorescence, enzyme-linked immunosorbent assay, detection of autophagic flux and western blot assays. The level of ANGPTL2 was upregulated in lung injury. Knockout of ANGPTL2 alleviated LPS-induced pathological symptoms, reduced pulmonary wet/dry weight ratio, the numbers of total cells and neutrophils in BALF, apoptosis rate and the release of pro-inflammatory mediators, and modulated polarization of alveolar macrophages in mice. Knockdown of ANGPTL2 downregulated the level of pyroptosis indicators, and elevated the level of autophagy in LPS-induced MH-S cells. Besides, downregulation of ANGPTL2 reversed the LPS-induced the expression of leukocyte immunoglobulin (Ig)-like receptor B2 (LILRB2) and triggering receptor expressed on myeloid cells 2 (TREM2), which was reversed by the overexpression of LILRB2. Importantly, knockdown of TREM2 reversed the levels of autophagy- and pyroptosis-involved proteins, and the contents of pro-inflammatory factors in LPS-induced MH-S cells transfected with si ANGPTL2, which was further inverted with the treatment of rapamycin. Therefore, ANGPTL2 silencing enhanced autophagy to alleviate alveolar macrophage pyroptosis via reducing LILRB2-mediated inhibition of TREM2.


Subject(s)
Acute Lung Injury , Angiopoietin-Like Protein 2 , Autophagy , Lipopolysaccharides , Macrophages, Alveolar , Membrane Glycoproteins , Pyroptosis , Receptors, Immunologic , Animals , Pyroptosis/genetics , Pyroptosis/drug effects , Autophagy/genetics , Mice , Macrophages, Alveolar/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Acute Lung Injury/metabolism , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Acute Lung Injury/chemically induced , Gene Knockdown Techniques , Male , Mice, Inbred C57BL , Angiopoietin-like Proteins/metabolism , Angiopoietin-like Proteins/genetics , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...