Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 571
Filter
1.
Biomed Pharmacother ; 178: 117260, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39116788

ABSTRACT

The five-year survival rate for patients with hepatocellular carcinoma (HCC) is only 20 %, highlighting the urgent need to identify new therapeutic targets and develop potential therapeutic options to improve patient prognosis. One promising approach is inhibiting autophagy as a strategy for HCC treatment. In this study, we established a virtual docking conformation of the autophagy promoter ULK1 binding XST-14 derivatives. Based on this conformation, we designed and synthesized four series of derivatives. By evaluating their affinity and anti-HCC effects, we confirmed that these compounds exert anti-HCC activity by inhibiting ULK1. The structure-activity relationship was summarized, with derivative A4 showing 10 times higher activity than XST-14 and superior efficacy to sorafenib against HCC. A4 has excellent effect on reducing tumor growth and enhancing sorafenib activity in HepG2 and HCCLM3 cells. Moreover, we verified the therapeutic effect of A4 in sorafenib-resistant HCC cells both in vivo and in vitro. These results suggest that inhibiting ULK1 to regulate autophagy may become a new treatment method for HCC and that A4 will be used as a lead drug for HCC in further research. Overall, A4 shows good drug safety and efficacy, offering hope for prolonging the survival of HCC patients.


Subject(s)
Antineoplastic Agents , Autophagy-Related Protein-1 Homolog , Autophagy , Carcinoma, Hepatocellular , Drug Design , Indoles , Liver Neoplasms , Molecular Docking Simulation , Protein Kinase Inhibitors , Sorafenib , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Autophagy-Related Protein-1 Homolog/antagonists & inhibitors , Autophagy-Related Protein-1 Homolog/metabolism , Indoles/pharmacology , Indoles/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Sorafenib/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Animals , Autophagy/drug effects , Hep G2 Cells , Mice, Nude , Cell Line, Tumor , Mice, Inbred BALB C , Xenograft Model Antitumor Assays , Mice , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Cell Proliferation/drug effects
2.
J Leukoc Biol ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39183699

ABSTRACT

T cells are crucial for the normal functioning of the immune system. The development and response of these cells to foreign antigens involve many complex stages and interactions between various types of cells. However, many details of these processes are still unclear. Our research revealed a key role for a protein called ULK1, a serine/threonine protein kinase, in regulating T-cell development and function. During T-cell maturation, the absence of Ulk1 (as in Ulk1-/- mice) leads to an increase in a cell type called DN3 in the thymus. We also found a reduction in the number of T cells in peripheral immune organs, such as the spleen, in Ulk1-/- mice. In response to Listeria infection, Ulk1-/- mice have a weaker ability to clear this bacterium, and their T cells also have defects in producing cytokines. However, the absence of Ulk1 did not affect the activation or apoptosis of naïve CD4+ T cells in vitro. In a bone marrow chimeric mouse model, T cells from Ulk1-/- mice did not differ developmentally from those from control mice. Furthermore, RNA-seq revealed that Ulk1 deficiency affects the metabolic function of splenocytes and T-cell function in mice, potentially through the canonical Wnt signaling cascade and the ERK1/ERK2 signaling cascades. Overall, these results suggest that Ulk1 is essential for T-cell maturation in the thymus, the balance of peripheral T cells, and the functional response of T cells to antigens.

3.
Future Med Chem ; : 1-17, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145469

ABSTRACT

Aim: Build a virtual screening model for ULK1 inhibitors based on artificial intelligence. Materials & methods: Build machine learning and deep learning classification models and combine molecular docking and biological evaluation to screen ULK1 inhibitors from 13 million compounds. And molecular dynamics was used to explore the binding mechanism of active compounds. Results & conclusion: Possibly due to less available training data, machine learning models significantly outperform deep learning models. Among them, the Naive Bayes model has the best performance. Through virtual screening, we obtained three inhibitors with IC50 of µM level and they all bind well to ULK1. This study provides an efficient virtual screening model and three promising compounds for the study of ULK1 inhibitors.


[Box: see text].

4.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125630

ABSTRACT

Melanosomes are specialized membrane-bound organelles where melanin is synthesized and stored. The levels of melanin can be effectively reduced by inhibiting melanin synthesis or promoting melanosome degradation via autophagy. Ceramide, a key component in the metabolism of sphingolipids, is crucial for preserving the skin barrier, keeping it hydrated, and warding off the signs of aging. Our preliminary study indicated that a long-chain C22-ceramide compound (Ehux-C22) isolated from the marine microalga Emiliania huxleyi, reduced melanin levels via melanosomal autophagy in B16 cells. Recently, microRNAs (miRNAs) were shown to act as melanogenesis-regulating molecules in melanocytes. However, whether the ceramide Ehux-C22 can induce melanosome autophagy at the post-transcriptional level, and which potential autophagy-dependent mechanisms are involved, remains unknown. Here, miR-199a-3p was screened and identified as a novel upregulated miRNA in Ehux-C22-treated B16 cells. An in vitro high melanin expression model in cultured mouse melanoma cells (B16 cells) was established by using 0.2 µM alpha-melanocyte-stimulating hormone(α-MSH) and used for subsequent analyses. miR-199a-3p overexpression significantly enhanced melanin degradation, as indicated by a reduction in the melanin level and an increase in melanosome autophagy. Further investigation demonstrated that in B16 cells, Ehux-C22 activated miR-199a-3p and inhibited mammalian target of rapamycin(mTOR) level, thus activating the mTOR-ULK1 signaling pathway by promoting the expression of unc-51-like autophagy activating kinase 1 (ULK1), B-cell lymphoma-2 (Bcl-2), Beclin-1, autophagy-related gene 5 (ATG5), and microtubule-associated protein light chain 3 (LC3-II) and degrading p62. Therefore, the roles of Ehux-C22-regulated miR-199a-3p and the mTOR pathway in melanosomal autophagy were elucidated. This research may provide novel perspectives on the post-translational regulation of melanin metabolism, which involves the coordinated control of melanosomes.


Subject(s)
Autophagy , Ceramides , Melanins , Melanoma, Experimental , Melanosomes , MicroRNAs , Signal Transduction , TOR Serine-Threonine Kinases , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mice , TOR Serine-Threonine Kinases/metabolism , Melanosomes/metabolism , Ceramides/metabolism , Melanins/metabolism , Melanins/biosynthesis , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Melanoma, Experimental/genetics , Cell Line, Tumor , alpha-MSH/metabolism , Melanocytes/metabolism , Melanocytes/drug effects
5.
Funct Integr Genomics ; 24(4): 134, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39107544

ABSTRACT

Distal hereditary motor neuropathy (dHMN) is a progressive neurological disease characterized by distal limb muscle weakness and amyotrophy. Sigma 1 receptor (σ1R), a gene product of SIGMAR1, mutations have been reported to induce dHMN, but its mechanism remains unknown. This study aims to explore the effect of C238T and 31_50del mutations in σ1R on neuronal SH-SY5Y cell functions. The SH-SY5Y cells that overexpressed σ1R, C238T mutant σ1R (σ1RC238T) or 31_50del mutant σ1R (σ1R31_50del) were constructed by pEGFPN1 vectors. We used Western blot (WB) and immunofluorescence (IF) staining to detect the expression of σ1R and green fluorescent proteins (GFP). Then, we evaluated the impact of σ1R mutation on apoptosis, autophagy, endoplasmic reticulum stress, and the involvement of the unfolded protein response (UPR) pathway in SH-SY5Y cells. We found that σ1RC238T and σ1R31_50del downregulated σ1R and promoted the apoptosis of SH-SY5Y cells. σ1RC238T and σ1R31_50del increased p-PERK, p-eIF2α, p-JNK, BIP, ATF4, CHOP, ATF6, XBP1, Caspase3, Caspase12 expressions and Ca2+ concentration, whereas decreased ATP content in SH-SY5Y cells. Besides, the expressions of LC3B, Lamp1, ATG7, Beclin-1 and phosphorylation of AMPK and ULK1 were increased, while the p62 level decreased after C238T or 31_50del mutation of σ1R. Additionally, AMPK knockdown abolished the apoptosis mediated by σ1RC238T or σ1R31_50del in SH-SY5Y cells. Our results indicated that C238T or 31_50del mutation in σ1R promoted motor neuron apoptosis through the AMPK/ULK1 pathway in dHMN. This study shed light on a better understanding of the neurons pathological mechanisms mediated by σ1R C238T and σ1R 31-50del in dHMN.


Subject(s)
Apoptosis , Autophagy-Related Protein-1 Homolog , Autophagy , Endoplasmic Reticulum Stress , Receptors, sigma , Sigma-1 Receptor , Humans , Receptors, sigma/metabolism , Receptors, sigma/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Cell Line, Tumor , Signal Transduction , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Unfolded Protein Response , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mutation
6.
BMC Cardiovasc Disord ; 24(1): 415, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123142

ABSTRACT

BACKGROUND: Ischemia reperfusion (IR) causes impaired myocardial function, and autophagy activation ameliorates myocardial IR injury. Isoliquiritigenin (ISO) has been found to protect myocardial tissues via AMPK, with exerting anti-tumor property through autophagy activation. This study aims to investigate ISO capacity to attenuate myocardial IR through autophagy activation mediated by AMPK/mTOR/ULK1 signaling. METHODS: ISO effects were explored by SD rats and H9c2 cells. IR rats and IR-induced H9c2 cell models were established by ligating left anterior descending (LAD) coronary artery and hypoxia/re-oxygenation, respectively, followed by low, medium and high dosages of ISO intervention (Rats: 10, 20, and 40 mg/kg; H9c2 cells: 1, 10, and 100 µmol/L). Myocardial tissue injury in rats was assessed by myocardial function-related index, HE staining, Masson trichrome staining, TTC staining, and ELISA. Autophagy of H9c2 cells was detected by transmission electron microscopy (TEM) and immunofluorescence. Autophagy-related and AMPK/mTOR/ULK1 pathway-related protein expressions were detected with western blot. RESULTS: ISO treatment caused myocardial function improvement, and inhibition of myocardial inflammatory infiltration, fibrosis, infarct area, oxidative stress, CK-MB, cTnI, and cTnT expression in IR rats. In IR-modeled H9c2 cells, ISO treatment lowered apoptosis rate and activated autophagy and LC3 fluorescence expression. In vivo and in vitro, ISO intervention exhibited enhanced Beclin1, LC3II/LC3I, and p-AMPK/AMPK levels, whereas inhibited P62, p-mTOR/mTOR and p-ULK1(S757)/ULK1 protein expression, activating autophagy and protecting myocardial tissues from IR injury. CONCLUSION: ISO treatment may induce autophagy by regulating AMPK/mTOR/ULK1 signaling, thereby improving myocardial IR injury, as a potential candidate for treatment of myocardial IR injury.


Subject(s)
AMP-Activated Protein Kinases , Autophagy-Related Protein-1 Homolog , Autophagy , Chalcones , Myocardial Reperfusion Injury , Myocytes, Cardiac , Rats, Sprague-Dawley , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Male , Rats , AMP-Activated Protein Kinases/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Autophagy-Related Protein-1 Homolog/metabolism , Cell Line , Chalcones/pharmacology , Disease Models, Animal , Fibrosis , Myocardial Infarction/pathology , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardial Infarction/enzymology , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Ventricular Function, Left/drug effects
7.
Autophagy ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177530

ABSTRACT

Macroautophagy/autophagy enables lysosomal degradation of a diverse array of intracellular material. This process is essential for normal cellular function and its dysregulation is implicated in many diseases. Given this, there is much interest in understanding autophagic mechanisms of action in order to determine how it can be best targeted therapeutically. In mitophagy, the selective degradation of mitochondria via autophagy, mitochondria first need to be primed with signals that allow the recruitment of the core autophagy machinery to drive the local formation of an autophagosome around the target mitochondrion. To determine how the recruitment of different core autophagy components can drive mitophagy, we took advantage of the mito-QC mitophagy assay (an outer mitochondrial membrane-localized tandem mCherry-GFP tag). By tagging autophagy proteins with an anti-mCherry (or anti-GFP) nanobody, we could recruit them to mitochondria and simultaneously monitor levels of mitophagy. We found that targeting ULK1, ATG16L1 and the different Atg8-family proteins was sufficient to induce mitophagy. Mitochondrial recruitment of ULK1 and the Atg8-family proteins induced a conventional mitophagy pathway, requiring RB1CC1/FIP200, PIK3C3/VPS34 activity and ATG5. Surprisingly, the mitophagy pathway upon recruitment of ATG16L1 proceeded independently of ATG5, although it still required RB1CC1 and PIK3C3/VPS34 activity. In this latter pathway, mitochondria were alternatively delivered to lysosomes via uptake into early endosomes.

8.
Article in English | MEDLINE | ID: mdl-39175431

ABSTRACT

The activation of hepatic stellate cells (HSCs) is central to the occurrence and development of liver fibrosis. Our previous studies showed that autophagy promotes HSC activation and ultimately accelerates liver fibrosis. Unc-51-like autophagy activating kinase 1 (ULK1) is an autophagic initiator in mammals, and N 6-methyladenosine (m 6A) modification is closely related to autophagy. In this study, we find that the m 6A demethylase fat mass and obesity-associated protein (FTO), which is the m 6A methylase with the most significant difference in expression, is upregulated during HSC activation and bile duct ligation (BDL)-induced hepatic fibrosis. Importantly, we identify that FTO overexpression aggravates HSC activation and hepatic fibrosis via autophagy. Mechanistically, compared with other autophagy-related genes, ULK1 is a target of FTO because FTO mainly mediates the m 6A demethylation of ULK1 and upregulates its expression, thereby enhancing autophagy and the activation of HSCs. Notably, the m 6A reader YTH domain-containing protein 2 (YTHDC2) decreases ULK1 mRNA level by recognizing the m 6A binding site and ultimately inhibiting autophagy and HSC activation. Taken together, our findings highlight m6A-dependent ULK1 as an essential regulator of HSC autophagy and reveal that ULK1 is a novel potential therapeutic target for hepatic fibrosis treatment.

9.
Future Med Chem ; : 1-19, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949858

ABSTRACT

Aim: Chromones are promising for anticancer drug development. Methods & results: 12 chromone-based compounds were synthesized and tested against cancer cell lines. Compound 8 showed the highest cytotoxicity (LC50 3.2 µM) against colorectal cancer cells, surpassing 5-fluorouracil (LC50 4.2 µM). It suppressed colony formation, induced cell cycle arrest and triggered apoptotic cell death, confirmed by staining and apoptosis markers. Cell death was accompanied by enhanced reactive oxygen species formation and modulation of the autophagic machinery (autophagy marker light chain 3B (LC3B); adenosine monophosphate-activated protein kinase (AMPK); protein kinase B (PKB); UNC-51-like kinase (ULK)-1; and ULK2). Molecular docking and dynamic simulations revealed that compound 8 directly binds to ULK1. Conclusion: Compound 8 is a promising lead for autophagy-modulating anti-colon cancer drugs.


[Box: see text].

10.
Adv Sci (Weinh) ; : e2404080, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041921

ABSTRACT

The molecular mechanism underlying abnormal osteoclastogenesis triggering subchondral bone remodeling in osteoarthritis (OA) is still unclear. Here, single-cell and bulk transcriptomics sequencing analyses are performed on GEO datasets to identify key molecules and validate them using knee joint tissues from OA patients and rat OA models. It is found that the catalytic subunit of protein phosphatase 2A (PP2Ac) is highly expressed during osteoclastogenesis in the early stage of OA and is correlated with autophagy. Knockdown or inhibition of PP2Ac weakened autophagy during osteoclastogenesis. Furthermore, the ULK1 expression of the downstream genes is significantly increased when PP2Ac is knocked down. PP2Ac-mediated autophagy is dependent on ULK1 phosphorylation activity during osteoclastogenesis, which is associated with enhanced dephosphorylation of ULK1 Ser637 residue regulating at the post-translational level. Additionally, mTORC1 inhibition facilitated the expression level of PP2Ac during osteoclastogenesis. In animal OA models, decreasing the expression of PP2Ac ameliorated early OA progression. The findings suggest that PP2Ac is also a promising therapeutic target in early OA.

11.
Cells ; 13(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891049

ABSTRACT

The ß-thalassemias are inherited genetic disorders affecting the hematopoietic system. In ß-thalassemias, more than 350 mutations of the adult ß-globin gene cause the low or absent production of adult hemoglobin (HbA). A clinical parameter affecting the physiology of erythroid cells is the excess of free α-globin. Possible experimental strategies for a reduction in excess free α-globin chains in ß-thalassemia are CRISPR-Cas9-based genome editing of the ß-globin gene, forcing "de novo" HbA production and fetal hemoglobin (HbF) induction. In addition, a reduction in excess free α-globin chains in ß-thalassemia can be achieved by induction of the autophagic process. This process is regulated by the Unc-51-like kinase 1 (Ulk1) gene. The interplay with the PI3K/Akt/TOR pathway, with the activity of the α-globin stabilizing protein (AHSP) and the involvement of microRNAs in autophagy and Ulk1 gene expression, is presented and discussed in the context of identifying novel biomarkers and potential therapeutic targets for ß-thalassemia.


Subject(s)
Autophagy , beta-Thalassemia , Humans , beta-Thalassemia/genetics , beta-Thalassemia/pathology , beta-Thalassemia/metabolism , Autophagy/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Animals , Signal Transduction , Gene Editing , Intracellular Signaling Peptides and Proteins
12.
Chin J Integr Med ; 30(9): 809-817, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38900226

ABSTRACT

OBJECTIVE: To explore the effect of acupotomy intervention on autophagy of chondrocytes in rabbits with knee osteoarthritis (KOA), and to determine the possible mechanisms of acupotomy to alleviate cartilage degeneration. METHODS: The modified Videman method was used to construct a KOA rabbit model. After modeling, 40 rabbits were randomly divided into 4 groups by a random number table: control; KOA (model); KOA + acupotomy (acupotomy), and KOA + sham acupotomy (sham), 10 in each group. After a 3-week treatment course, the knee joint activity was determined by the modified Lequesne MG index. Hematoxylin-eosin staining staining was used to examine the morphological changes of chondrocytes. Autophagy of chondrocytes was observed by transmission electron microscopy. The surface morphology of cartilage tissue was observed by scanning electron microscope. The mRNA and protein levels of AMP kinase/mammalian target of rapamycin/Unc-51 (AMPK/mTOR/ULK1) signal pathway key proteins, autophagy-related factor Beclin-1 and microtubule-associated protein 1A/1B light chain 3 (LC3) in rabbit knee cartilage were assessed by real-time fluorescence quantitative polymerase chain reaction and Western blot, respectively. RESULTS: The modified Lequesne MG score of acupotomy group was significantly lower than that of model group (P<0.05). Pathological results showed that chondrocyte autophagy decreased and cartilage surface was rough in the model group, which recovered after acupotomy treatment. The mRNA expressions of AMPK, ULK1, Beclin-1 and the protein levels of p-AMPK, p-ULK1, Beclin-1, and LC3 II/LC3 I were decreased in the model group, while the mRNA and protein expressions of mTOR were increased (P<0.01). However, acupotomy treatment reversed these abnormal changes (P<0.05). CONCLUSIONS: Acupotomy could effectively up-regulate the expressions of AMPK, ULK1 and Beclin1, reduce the expression of mTOR, promote autophagy, and alleviate joint degeneration. Acupotomy is a promising complementary and alternative therapy for KOA.


Subject(s)
Acupuncture Therapy , Autophagy , Chondrocytes , Osteoarthritis, Knee , Animals , Rabbits , Chondrocytes/pathology , Chondrocytes/metabolism , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/therapy , Osteoarthritis, Knee/metabolism , Acupuncture Therapy/methods , Signal Transduction , Autophagy-Related Protein-1 Homolog/metabolism , Disease Models, Animal , Male , TOR Serine-Threonine Kinases/metabolism
13.
J Mol Biol ; 436(15): 168631, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38821350

ABSTRACT

Mitophagy is a specific type of autophagy responsible for the selective elimination of dysfunctional or superfluous mitochondria, ensuring the maintenance of mitochondrial quality control. The initiation of mitophagy is coordinated by the ULK1 kinase complex, which engages mitophagy receptors via its FIP200 subunit. Whether FIP200 performs additional functions in the subsequent later phases of mitophagy beyond this initial step and how its regulation occurs, remains unclear. Our findings reveal that multiple phosphorylation events on FIP200 differentially control the early and late stages of mitophagy. Furthermore, these phosphorylation events influence FIP200's interaction with ATG16L1. In summary, our results highlight the necessity for precise and dynamic regulation of FIP200, underscoring its importance in the progression of mitophagy.


Subject(s)
Autophagy-Related Proteins , Mitochondria , Mitophagy , Phosphorylation , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Humans , Mitochondria/metabolism , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , HeLa Cells , Carrier Proteins/metabolism
14.
Ecotoxicol Environ Saf ; 279: 116503, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38810288

ABSTRACT

Kashin-Beck disease (KBD) is an endemic, environmentally associated cartilage disease. Previous studies have shown that the environmental suspected pathogenic factors of KBD, T-2 toxin and low selenium, are involved in the regulation of inflammation, oxidative stress and autophagy in some tissues and organs. In cartilage diseases, the level of cellular autophagy determines the fate of the chondrocytes. However, whether autophagy is involved in KBD cartilage lesions, and the role of low selenium and T-2 toxins in KBD cartilage injury and autophagy are still unclear. This work took the classical AMPK/mTOR/ULK1 autophagy regulatory pathway as the entry point to clarify the relationship between the environmental suspected pathogenic factors and chondrocyte autophagy. Transmission electron microscopy was used to observe the autophagy of chondrocytes in KBD patients. qRT-PCR and western blot were used to analyze the expression of AMPK/mTOR/ULK1 pathway and autophagy markers. The rat model of KBD was established by low selenium and T-2 toxin, the autophagy in rat cartilage was detected after 4- and 12-week interventions. Chondrocyte autophagy was found in KBD, and the AMPK/mTOR/ULK1 pathway was down-regulated. In the rat model, the pathway showed an up-regulated trend when low selenium and T-2 toxin, were treated for a short time or low concentration, and autophagy level increased. However, when low selenium and T-2 toxin were treated for a long time or at high concentrations, the pathway showed a down-regulated trend, and the autophagy level was reduced and even defective. In conclusion, in the process of KBD cartilage lesion, chondrocyte autophagy level may increase in the early stage, and decrease in the late stage with the progression of lesion. Low selenium and T-2 toxins may affect autophagy by AMPK/mTOR/ULK1 pathway.


Subject(s)
AMP-Activated Protein Kinases , Autophagy-Related Protein-1 Homolog , Autophagy , Chondrocytes , Kashin-Beck Disease , Selenium , T-2 Toxin , TOR Serine-Threonine Kinases , T-2 Toxin/toxicity , T-2 Toxin/analogs & derivatives , Autophagy/drug effects , Kashin-Beck Disease/pathology , TOR Serine-Threonine Kinases/metabolism , Animals , Autophagy-Related Protein-1 Homolog/metabolism , Male , Chondrocytes/drug effects , Chondrocytes/pathology , Humans , AMP-Activated Protein Kinases/metabolism , Rats , Female , Middle Aged , Rats, Sprague-Dawley , Signal Transduction/drug effects , Adult , Intracellular Signaling Peptides and Proteins
15.
Stem Cells Transl Med ; 13(7): 648-660, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38736295

ABSTRACT

Cholestatic liver disease (CLD) is a severe disease, which can progress to liver cirrhosis, even liver cancer. Hepatic stellate cells (HSCs) activation plays a crucial role in CLD development. Bone mesenchymal stem cells (BMSCs) treatment was demonstrated to be beneficial in liver diseases. However, the therapeutic effect and mechanism of BMSCs on CLD are poorly known. In the present study, we investigated the therapeutic effects and underlying mechanisms of BMSCs transplantation in mouse models of bile duct ligation-induced cholestatic liver fibrosis (CLF). The results revealed that BMSCs significantly improved liver function and reduced the formation of fibrosis after portal vein transplantation. Mechanistically, after coculturing BMSCs and HSCs, we identified that BMSCs alleviated starvation-induced HSCs activation. Further, BMSCs inhibited HSCs activation by decreasing autophagy, and PI3K/AKT/mTOR pathway was involved in the regulation. More importantly, ULK1 is identified as the main autophagy-related gene regulated by BMSCs in HSCs autophagy. Overexpression of ULK1 reversed the suppression of HSCs autophagy by BMSCs. Collectively, our results provide a theoretical basis for BMSCs targeting ULK1 to attenuate HSCs autophagy and activation and suggest that BMSCs or ULK1 may be an alternative therapeutic approach/target for the treatment of CLF.


Subject(s)
Autophagy-Related Protein-1 Homolog , Autophagy , Liver Cirrhosis , Mesenchymal Stem Cells , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Animals , Autophagy/physiology , TOR Serine-Threonine Kinases/metabolism , Autophagy-Related Protein-1 Homolog/metabolism , Mesenchymal Stem Cells/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Mice , Phosphatidylinositol 3-Kinases/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/therapy , Liver Cirrhosis/pathology , Signal Transduction , Mesenchymal Stem Cell Transplantation/methods , Male , Mice, Inbred C57BL , Hepatic Stellate Cells/metabolism , Cholestasis/metabolism , Cholestasis/pathology
16.
BMC Pharmacol Toxicol ; 25(1): 33, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783387

ABSTRACT

BACKGROUND: The specific mechanism by which rotenone impacts thoracic aortic autophagy and apoptosis is unknown. We aimed to investigate the regulatory effects of rotenone on autophagy and apoptosis in rat thoracic aortic endothelial cells (RTAEC) via activation of the LKB1-AMPK-ULK1 signaling pathway and to elucidate the molecular mechanisms of rotenone on autophagy and apoptosis in vascular endothelial cells. METHODS: In vivo, 60 male SD rats were randomly selected and divided into 5 groups: control (Con), DMSO, 1, 2, and 4 mg/kg groups, respectively. After 28 days of treatment, histopathological and ultrastructural changes in each group were observed using HE and transmission electron microscopy; Autophagy, apoptosis, and LKB1-AMPK-ULK1 pathway-related proteins were detected by Western blot; Apoptosis levels in the thoracic aorta were detected by TUNEL. In vitro, RTAEC were cultured and divided into control (Con), DMSO, 20, 100, 500, and 1000 nM groups. After 24 h of intervention, autophagy, apoptosis, and LKB1-AMPK-ULK1 pathway-related factors were detected by Western blot and qRT-PCR; Flow cytometry to detect apoptosis levels; Autophagy was inhibited with 3-MA and CQ to detect apoptosis levels, and changes in autophagy, apoptosis, and downstream factors were detected by the AMPK inhibitor CC intervention. RESULTS: Gavage in SD rats for 28 days, some degree of damage was observed in the thoracic aorta and heart of the rotenone group, as well as the appearance of autophagic vesicles was observed in the thoracic aorta. TUNEL analysis revealed higher apoptosis in the rotenone group's thoracic aorta; RTAEC cultured in vitro, after 24 h of rotenone intervention, showed increased ROS production and significantly decreased ATP production. The flow cytometry data suggested an increase in the number of apoptotic RTAEC. The thoracic aorta and RTAEC in the rotenone group displayed elevated levels of autophagy and apoptosis, and the LKB1-AMPK-ULK1 pathway proteins were activated and expressed at higher levels. Apoptosis and autophagy were both suppressed by the autophagy inhibitors 3-MA and CQ. The AMPK inhibitor CC reduced autophagy and apoptosis in RTAEC and suppressed the production of the AMPK downstream factors ULK1 and P-ULK1. CONCLUSIONS: Rotenone may promote autophagy in the thoracic aorta and RTAEC by activating the LKB1-AMPK-ULK1 signaling pathway, thereby inducing apoptosis.


Subject(s)
AMP-Activated Protein Kinases , Aorta, Thoracic , Apoptosis , Autophagy-Related Protein-1 Homolog , Autophagy , Endothelial Cells , Protein Serine-Threonine Kinases , Rats, Sprague-Dawley , Rotenone , Signal Transduction , Animals , Rotenone/toxicity , Rotenone/pharmacology , Autophagy/drug effects , Autophagy-Related Protein-1 Homolog/metabolism , Male , Apoptosis/drug effects , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Aorta, Thoracic/drug effects , Protein Serine-Threonine Kinases/metabolism , Rats , AMP-Activated Protein Kinase Kinases , Cells, Cultured , Intracellular Signaling Peptides and Proteins/metabolism
17.
Autophagy ; 20(9): 2017-2040, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38744665

ABSTRACT

AMPK promotes catabolic and suppresses anabolic cell metabolism to promote cell survival during energetic stress, in part by inhibiting MTORC1, an anabolic kinase requiring sufficient levels of amino acids. We found that cells lacking AMPK displayed increased apoptotic cell death during nutrient stress caused by prolonged amino acid deprivation. We presumed that impaired macroautophagy/autophagy explained this phenotype, as a prevailing view posits that AMPK initiates autophagy (often a pro-survival response) through phosphorylation of ULK1. Unexpectedly, however, autophagy remained unimpaired in cells lacking AMPK, as monitored by several autophagic readouts in several cell lines. More surprisingly, the absence of AMPK increased ULK1 signaling and MAP1LC3B/LC3B lipidation during amino acid deprivation while AMPK-mediated phosphorylation of ULK1 S555 (a site proposed to initiate autophagy) decreased upon amino acid withdrawal or pharmacological MTORC1 inhibition. In addition, activation of AMPK with compound 991, glucose deprivation, or AICAR blunted autophagy induced by amino acid withdrawal. These results demonstrate that AMPK activation and glucose deprivation suppress autophagy. As AMPK controlled autophagy in an unexpected direction, we examined how AMPK controls MTORC1 signaling. Paradoxically, we observed impaired reactivation of MTORC1 in cells lacking AMPK upon prolonged amino acid deprivation. Together these results oppose established views that AMPK promotes autophagy and inhibits MTORC1 universally. Moreover, they reveal unexpected roles for AMPK in the suppression of autophagy and the support of MTORC1 signaling in the context of prolonged amino acid deprivation. These findings prompt a reevaluation of how AMPK and its control of autophagy and MTORC1 affect health and disease.


Subject(s)
AMP-Activated Protein Kinases , Amino Acids , Autophagy , Mechanistic Target of Rapamycin Complex 1 , Signal Transduction , Mechanistic Target of Rapamycin Complex 1/metabolism , Autophagy/physiology , Amino Acids/metabolism , AMP-Activated Protein Kinases/metabolism , Humans , Animals , Phosphorylation , Mice , Autophagy-Related Protein-1 Homolog/metabolism , Glucose/metabolism , Apoptosis/drug effects
19.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 789-804, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38686458

ABSTRACT

Acute lung injury (ALI) is a serious condition characterized by damage to the lungs. Recent research has revealed that activation of the NLRP3 inflammasome in alveolar macrophages, a type of immune cell in the lungs, plays a key role in the development of ALI. This process, known as pyroptosis, contributes significantly to ALI pathogenesis. Researchers have conducted comprehensive bioinformatics analyses and identified 15 key genes associated with alveolar macrophage pyroptosis in ALI. Among these, NLRP3 has emerged as a crucial regulator. This study further reveal that the ULK1 protein diminishes the expression of NLRP3, thereby reducing the immune response of alveolar macrophages and mitigating ALI. Conversely, TRAF3, another protein, is found to inhibit ULK1 through a process called ubiquitination, leading to increased activation of the NLRP3 inflammasome and exacerbation of ALI. This TRAF3-mediated suppression of ULK1 and subsequent activation of NLRP3 are confirmed through various in vitro and in vivo experiments. The presence of abundant M0 and M1 alveolar macrophages in the ALI tissue samples further support these findings. This research highlights the TRAF3-ULK1-NLRP3 regulatory axis as a pivotal pathway in ALI development and suggests that targeting this axis could be an effective therapeutic strategy for ALI treatment.


Subject(s)
Acute Lung Injury , Autophagy-Related Protein-1 Homolog , Macrophages, Alveolar , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , TNF Receptor-Associated Factor 3 , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Animals , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Mice , TNF Receptor-Associated Factor 3/metabolism , TNF Receptor-Associated Factor 3/genetics , Humans , Male , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Signal Transduction , Ubiquitination
20.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(5): 159495, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38609006

ABSTRACT

Sea cucumber phospholipids, including the plasmalogen (PlsEtn) and plasmanylcholine (PakCho), have been shown to play a regulatory role in lipid metabolism disorders, but their mechanism of action remains unclear. Therefore, high-fat diet (HFD) and palmitic acid were used to establish lipid accumulation models in mice and HepG2 cells, respectively. Results showed that PlsEtn can reduce lipid deposition both in vivo and in vitro. HFD stimulation abnormally activated lipophagy through the phosphorylation of the AMPK/ULK1 pathway. The lipophagy flux monitor revealed abnormalities in the fusion stage of lipophagy. Of note, only PlsEtn stimulated the dynamic remodeling of the autophagosome membrane, which was indicated by the significantly decreased LC3 II/I ratio and p62 level. In all experiments, the effect of PlsEtn was significantly higher than that of PakCho. These findings elucidated the mechanism of PlsEtn in alleviating lipid accumulation, showed that it might be a lipophagy enhancer, and provided new insights into the high-value utilization of sea cucumber as an agricultural resource.


Subject(s)
Diet, High-Fat , Lipid Metabolism , Plasmalogens , Sea Cucumbers , Animals , Diet, High-Fat/adverse effects , Plasmalogens/metabolism , Sea Cucumbers/metabolism , Lipid Metabolism/drug effects , Mice , Humans , Hep G2 Cells , Male , Mice, Inbred C57BL , Autophagy/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL