Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
1.
Fish Shellfish Immunol ; 154: 109909, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39284538

ABSTRACT

V(D)J recombination is crucial for generating a diverse repertoire of immunoglobulins. Although the V(D)J recombination process has been well characterized in mammals, this process remains largely unexplored in teleosts. In this study, we comprehensively analyzed the IgH locus of a marine fish species large yellow croaker (Larimichthys crocea), and identified 28 V, 19 D, and 8 J gene segments, following a pattern of V-Dζ-Jζ-Cζ-Dµ-Jµ-Cµ1-Cµ2. The V, D, and J gene segments are flanked by consensus recombination signal sequences, with spacer lengths similar to those observed in mammals. The V gene segments are categorized into three distinct families, and exhibited a higher sequence identity compared to those in mammals. Additionally, we designed a set of primers for the examination of the V(D)J recombination in large yellow croaker. RNA-seq analysis showed increased expression of genes related to immunoglobulin production and lymphocyte chemotaxis in IgM + B cells upon Pseudomonas plecoglossicida infection, accompanied by altered expression of V gene segments, suggesting their involvement in the response to P. plecoglossicida infection. Taken together, we identified the IgH locus and V(D)J recombination process of large yellow croaker, which contribute to the understanding of immunoglobulin production and B cell immunity in teleosts, and may provide insights into vaccine development in large yellow croaker.

2.
Elife ; 122024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056282

ABSTRACT

The evolutionary conservation of non-core RAG regions suggests significant roles that might involve quantitative or qualitative alterations in RAG activity. Off-target V(D)J recombination contributes to lymphomagenesis and is exacerbated by RAG2' C-terminus absence in Tp53-/- mice thymic lymphomas. However, the genomic stability effects of non-core regions from both Rag1c/c and Rag2c/c in BCR-ABL1+ B-lymphoblastic leukemia (BCR-ABL1+ B-ALL), the characteristics, and mechanisms of non-core regions in suppressing off-target V(D)J recombination remain unclear. Here, we established three mouse models of BCR-ABL1+ B-ALL in mice expressing full-length RAG (Ragf/f), core RAG1 (Rag1c/c), and core RAG2 (Rag2c/c). The Ragc/c (Rag1c/c and Rag2c/c) leukemia cells exhibited greater malignant tumor characteristics compared to Ragf/f cells. Additionally, Ragc/c cells showed higher frequency of off-target V(D)J recombination and oncogenic mutations than Ragf/f. We also revealed decreased RAG cleavage accuracy in Ragc/c cells and a smaller recombinant size in Rag1c/c cells, which could potentially exacerbate off-target V(D)J recombination in Ragc/c cells. In conclusion, these findings indicate that the non-core RAG regions, particularly the non-core region of RAG1, play a significant role in preserving V(D)J recombination precision and genomic stability in BCR-ABL1+ B-ALL.


Subject(s)
DNA-Binding Proteins , Fusion Proteins, bcr-abl , Homeodomain Proteins , V(D)J Recombination , Animals , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , V(D)J Recombination/genetics , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Mice , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Models, Animal , Carcinogenesis/genetics , Humans , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
3.
Adv Exp Med Biol ; 1445: 73-88, 2024.
Article in English | MEDLINE | ID: mdl-38967751

ABSTRACT

Immunoglobulin (Ig) has been widely acknowledged to be produced solely by B-lineage cells. However, growing evidence has demonstrated the expression of Ig in an array of cancer cells, as well as normal cells including epithelial cells, epidermal cells, mesangial cells, monocytes, and neutrophils. Ig has even been found to be expressed in non-B cells at immune-privileged sites such as neurons and spermatogenic cells. Despite these non-B cell-derived Igs (non-B-Igs) sharing the same symmetric structures with conventional Igs (B-Igs), further studies have revealed unique characteristics of non-B-Ig, such as restricted variable region and aberrant glycosylation. Moreover, non-B-Ig exhibits properties of promoting malignant behaviours of cancer cells, therefore it could be utilised in the clinic as a potential therapeutic biomarker or target. The elucidation of the generation and regulation of non-B-Ig will certainly broaden our understanding of immunology.


Subject(s)
Immunoglobulins , Humans , Animals , Immunoglobulins/genetics , Immunoglobulins/metabolism , Immunoglobulins/immunology , Glycosylation , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism
4.
MedComm (2020) ; 5(7): e613, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38898995

ABSTRACT

The DNA-dependent protein kinase (DNA-PK), catalytic subunit, also known as DNA-PKcs, is complexed with the heterodimer Ku70/Ku80 to form DNA-PK holoenzyme, which is well recognized as initiator in the nonhomologous end joining (NHEJ) repair after double strand break (DSB). During NHEJ, DNA-PKcs is essential for both DNA end processing and end joining. Besides its classical function in DSB repair, DNA-PKcs also shows multifaceted functions in various biological activities such as class switch recombination (CSR) and variable (V) diversity (D) joining (J) recombination in B/T lymphocytes development, innate immunity through cGAS-STING pathway, transcription, alternative splicing, and so on, which are dependent on its function in NHEJ or not. Moreover, DNA-PKcs deficiency has been proven to be related with human diseases such as neurological pathogenesis, cancer, immunological disorder, and so on through different mechanisms. Therefore, it is imperative to summarize the latest findings about DNA-PKcs and diseases for better targeting DNA-PKcs, which have shown efficacy in cancer treatment in preclinical models. Here, we discuss the multifaceted roles of DNA-PKcs in human diseases, meanwhile, we discuss the progresses of DNA-PKcs inhibitors and their potential in clinical trials. The most updated review about DNA-PKcs will hopefully provide insights and ideas to understand DNA-PKcs associated diseases.

5.
Trends Genet ; 40(6): 471-479, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643034

ABSTRACT

Enhancers are the key regulators of other DNA-based processes by virtue of their unique ability to generate nucleosome-depleted regions in a highly regulated manner. Enhancers regulate cell-type-specific transcription of tRNA genes by RNA polymerase III (Pol III). They are also responsible for the binding of the origin replication complex (ORC) to DNA replication origins, thereby regulating origin utilization, replication timing, and replication-dependent chromosome breaks. Additionally, enhancers regulate V(D)J recombination by increasing access of the recombination-activating gene (RAG) recombinase to target sites and by generating non-coding enhancer RNAs and localized regions of trimethylated histone H3-K4 recognized by the RAG2 PHD domain. Thus, enhancers represent the first step in decoding the genome, and hence they regulate biological processes that, unlike RNA polymerase II (Pol II) transcription, do not have dedicated regulatory proteins.


Subject(s)
DNA Replication , Enhancer Elements, Genetic , RNA Polymerase III , Transcription, Genetic , V(D)J Recombination , Animals , Humans , DNA Replication/genetics , Gene Expression Regulation/genetics , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , Transcription, Genetic/genetics , V(D)J Recombination/genetics
6.
Front Immunol ; 15: 1345467, 2024.
Article in English | MEDLINE | ID: mdl-38504980

ABSTRACT

The vast diversity of mammalian adaptive antigen receptors allows for robust and efficient immune responses against a wide number of pathogens. The antigen receptor repertoire is built during the recombination of B and T cell receptor (BCR, TCR) loci and hypermutation of BCR loci. V(D)J recombination rearranges these antigen receptor loci, which are organized as an array of separate V, (D), and J gene segments. Transcription activation at the recombining locus leads to changes in the local three-dimensional architecture, which subsequently contributes to which gene segments are utilized for recombination. The endogenous retrovirus (ERV) mouse mammary tumor provirus 8 (Mtv8) resides on mouse chromosome 6 interposed within the large array of light chain kappa V gene segments. As ERVs contribute to changes in genomic architecture by driving high levels of transcription of neighboring genes, it was suggested that Mtv8 could influence the BCR repertoire. We generated Mtv8-deficient mice to determine if the ERV influences V(D)J recombination to test this possibility. We find that Mtv8 does not influence the BCR repertoire.


Subject(s)
Receptors, Antigen, T-Cell , V(D)J Recombination , Animals , Mice , Immunoglobulins/genetics , Mammals , Receptors, Antigen, T-Cell/genetics , V(D)J Recombination/genetics
7.
Immunol Res ; 72(3): 438-449, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38240953

ABSTRACT

Recombination-activating gene 1 (RAG1) is a vital player in V(D)J recombination, a fundamental process in primary B cell and T cell receptor diversification of the adaptive immune system. Current vertebrate RAG evolved from RAG transposon; however, it has been modified to play a crucial role in the adaptive system instead of being irreversibly silenced by CpG methylation. By interrogating a range of publicly available datasets, the current study investigated whether RAG1 has retained a disproportionate level of its original CpG dinucleotides compared to other genes, thereby rendering it more exposed to methylation-mediated mutation. Here, we show that 57.57% of RAG1 pathogenic mutations and 51.6% of RAG1 disease-causing mutations were associated with CpG methylation, a percentage that was significantly higher than that of its RAG2 cofactor alongside the whole genome. The CpG scores and densities for all RAG ancestors suggested that RAG transposon was CpG denser. The percentage of the ancestral CpG of RAG1 and RAG2 were 6% and 4.2%, respectively, with no preference towards CG containing codons. Furthermore, CpG loci of RAG1 in sperms were significantly higher methylated than that of RAG2. In conclusion, RAG1 has been exposed to CpG mediated methylation mutagenesis more than RAG2 and the whole genome, presumably due to its late entry to the genome later with an initially higher CpG content.


Subject(s)
CpG Islands , DNA Methylation , Evolution, Molecular , Homeodomain Proteins , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , CpG Islands/genetics , Humans , Animals , Mutagenesis , Transposases/genetics , Transposases/metabolism , Mutation , V(D)J Recombination/genetics , DNA Transposable Elements/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
8.
Int J Mol Sci ; 25(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38255952

ABSTRACT

Terminal 2'-deoxynucleotidyl transferase (TdT) is a unique enzyme capable of catalysing template-independent elongation of DNA 3' ends during V(D)J recombination. The mechanism controlling the enzyme's substrate specificity, which is necessary for its biological function, remains unknown. Accordingly, in this work, kinetic and mutational analyses of human TdT were performed and allowed to determine quantitative characteristics of individual stages of the enzyme-substrate interaction, which overall may ensure the enzyme's operation either in the distributive or processive mode of primer extension. It was found that conformational dynamics of TdT play an important role in the formation of the catalytic complex. Meanwhile, the nature of the nitrogenous base significantly affected both the dNTP-binding and catalytic-reaction efficiency. The results indicated that neutralisation of the charge and an increase in the internal volume of the active site caused a substantial increase in the activity of the enzyme and induced a transition to the processive mode in the presence of Mg2+ ions. Surrogate metal ions Co2+ or Mn2+ also may regulate the switching of the enzymatic process to the processive mode. Thus, the totality of individual factors affecting the activity of TdT ensures effective execution of its biological function.


Subject(s)
DNA Nucleotidylexotransferase , DNA-Directed DNA Polymerase , Humans , Substrate Specificity , Catalysis , Coloring Agents , Nucleotides , Ions
9.
Biochem J ; 480(24): 2061-2077, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38084601

ABSTRACT

The stringent regulation of RAGs (Recombination activating genes), the site-specific endonuclease responsible for V(D)J recombination, is important to prevent genomic rearrangements and chromosomal translocations in lymphoid cells. In the present study, we identify a microRNA, miR-501, which can regulate the expression of RAG1 in lymphoid cells. Overexpression of the pre-miRNA construct led to the generation of mature miRNAs and a concomitant reduction in RAG1 expression, whereas inhibition using anti-miRs resulted in its enhanced expression. The direct interaction of the 3'UTR of miR-501 with RAG1 was confirmed by the reporter assay. Importantly, overexpression of miRNAs led to inhibition of V(D)J recombination in B cells, revealing their impact on the physiological function of RAGs. Of interest is the inverse correlation observed for miR-501 with RAG1 in various leukemia patients and lymphoid cell lines, suggesting its possible use in cancer therapy. Thus, our results reveal the regulation of RAG1 by miR-501-3p in B cells and thus V(D)J recombination and its possible implications on immunoglobulin leukemogenesis.


Subject(s)
MicroRNAs , V(D)J Recombination , Humans , V(D)J Recombination/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , MicroRNAs/genetics , B-Lymphocytes
10.
Environ Mol Mutagen ; 64(8-9): 432-457, 2023.
Article in English | MEDLINE | ID: mdl-37957787

ABSTRACT

Mutations in T lymphocytes (T-cells) are informative quantitative markers for environmental mutagen exposures, but risk extrapolations from rodent models to humans also require an understanding of how T-cell development and proliferation kinetics impact mutagenic outcomes. Rodent studies have shown that patterns in chemical-induced mutations in the hypoxanthine-guanine phosphoribosyltransferase (Hprt) gene of T-cells differ between lymphoid organs. The current work was performed to obtain knowledge of the relationships between maturation events during T-cell development and changes in chemical-induced mutant frequencies over time in differing immune compartments of a mouse model. A novel reverse transcriptase-polymerase chain reaction based method was developed to determine the specific T-cell receptor beta (Tcrb) gene mRNA expressed in mouse T-cell isolates, enabling sequence analysis of the PCR product that then identifies the specific hypervariable CDR3 junctional region of the expressed Tcrb gene for individual isolates. Characterization of spontaneous Hprt mutant isolates from the thymus, spleen, and lymph nodes of control mice for their Tcrb gene expression found evidence of in vivo clonal amplifications of Hprt mutants and their trafficking between tissues in the same animal. Concurrent analyses of Hprt mutations and Tcrb gene rearrangements in different lymphoid tissues of control versus N-ethyl-N-nitrosourea-exposed mice permitted elucidation of the localization and timing of mutational events in T-cells, establishing that mutagenesis occurs primarily in the pre-rearrangement replicative period in pre-thymic/thymic populations. These findings demonstrate that chemical-induced mutagenic burden is determined by the combination of mutagenesis and T-cell clonal expansion, processes with roles in immune function and in the pathogenesis of autoimmune disease and cancer.


Subject(s)
Ethylnitrosourea , T-Lymphocytes , Mice , Humans , Animals , Ethylnitrosourea/toxicity , Mutation , Mutagenesis/genetics , Mutagens/toxicity , Hypoxanthine Phosphoribosyltransferase/genetics
11.
Immun Ageing ; 20(1): 64, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37986079

ABSTRACT

BACKGROUND: The spaceflight environment is an extreme environment that affects the immune system of approximately 50% of astronauts. With planned long-duration missions, such as the deployment of the Lunar Gateway and possible interplanetary missions, it is mandatory to determine how all components of the immune system are affected, which will allow the establishment of countermeasures to preserve astronaut health. However, despite being an important component of the immune system, antibody-mediated humoral immunity has rarely been investigated in the context of the effects of the space environment. It has previously been demonstrated that 30 days aboard the BION-M1 satellite and 21 days of hindlimb unloading (HU), a model classically used to mimic the effects of microgravity, decrease murine B lymphopoiesis. Furthermore, modifications in B lymphopoiesis reported in young mice subjected to 21 days of HU were shown to be similar to those observed in aged mice (18-22 months). Since the primary antibody repertoire composed of IgM is created by V(D) J recombination during B lymphopoiesis, the objective of this study was to assess the degree of similarity between changes in the bone marrow IgM repertoire and in the V(D)J recombination process in 2.5-month-old mice subjected to 21 days of HU and aged (18 months) mice. RESULTS: We found that in 21 days, HU induced changes in the IgM repertoire that were approximately 3-fold less than those in aged mice, which is a rapid effect. Bone remodeling and epigenetics likely mediate these changes. Indeed, we previously demonstrated a significant decrease in tibial morphometric parameters from day 6 of HU and a progressive reduction in these parameters until day 21 of HU, and it has been shown that age and microgravity induce epigenetic changes. CONCLUSION: These data reveal novel immune changes that are akin to advanced aging and underline the importance of studying the effects of spaceflight on antibody-mediated humoral immunity.

12.
Mol Biol Evol ; 40(11)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37850912

ABSTRACT

A series of "molecular domestication" events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events are not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like (RAG1L) gene in the genome of the hemichordate Ptychodera flava (PflRAG1L-A). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, RAG2L-A proteins contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g. the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates.


Subject(s)
DNA Transposable Elements , Homeodomain Proteins , Animals , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Vertebrates/genetics , Vertebrates/metabolism , Adaptive Immunity/genetics
13.
Eur J Immunol ; 53(12): e2350577, 2023 12.
Article in English | MEDLINE | ID: mdl-37593947

ABSTRACT

Comparative phylogenetic analyses are of potential value to establish the essential components of genetic networks underlying physiological traits. For species that naturally lack particular lymphocyte lineages, we show here that this strategy readily distinguishes trait-specific actors from pleiotropic components of the genetic network governing lymphocyte differentiation. Previously, three of the four members of the DNA polymerase X family have been implicated in the junctional diversification process during the somatic assembly of antigen receptors. Our phylogenetic analysis indicates that the presence of terminal deoxynucleotidyl transferase is strictly associated with the facility of V(D)J recombination, whereas PolL and PolM genes are retained even in species lacking Rag-mediated somatic diversification of antigen receptor genes.


Subject(s)
Gene Regulatory Networks , Lymphocytes , Animals , Phylogeny , V(D)J Recombination
14.
bioRxiv ; 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37645967

ABSTRACT

A series of "molecular domestication" events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events is not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like (RAG1L) gene in the genome of the hemichordate Ptychodera flava (PflRAG1L-A). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, PflRAG2L-A and echinoderm RAG2L-A contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g., the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates.

15.
Trends Immunol ; 44(10): 782-791, 2023 10.
Article in English | MEDLINE | ID: mdl-37640588

ABSTRACT

The DNA double-strand break (DSB) repair factor 53BP1 has long been implicated in V(D)J and class switch recombination (CSR) of mammalian lymphocyte receptors. However, the dissection of the underlying molecular activities is hampered by a paucity of studies [V(D)J] and plurality of phenotypes (CSR) associated with 53BP1 deficiency. Here, we revisit the currently accepted roles of 53BP1 in antibody diversification in view of the recent identification of its downstream effectors in DSB protection and latest advances in genome architecture. We propose that, in addition to end protection, 53BP1-mediated end-tethering stabilization is essential for CSR. Furthermore, we support a pre-DSB role during V(D)J recombination. Our perspective underscores the importance of evaluating repair of DSBs in relation to their dynamic architectural contexts.


Subject(s)
Antibodies , DNA Breaks, Double-Stranded , DNA Repair , Tumor Suppressor p53-Binding Protein 1 , Animals , Humans , Mice , Antibodies/genetics , Immunoglobulin Class Switching/genetics , Lymphocytes , Mammals
16.
Front Immunol ; 14: 1188738, 2023.
Article in English | MEDLINE | ID: mdl-37483636

ABSTRACT

V(D)J recombination of antigen receptor loci is a highly developmentally regulated process. During T lymphocyte development, recombination of the Tcra gene occurs in CD4+CD8+ double positive (DP) thymocytes and requires the Tcra enhancer (Eα). E proteins are known regulators of DP thymocyte development and have three identified binding sites in Eα. To understand the contribution of E proteins to Eα function, mutants lacking one or two of the respective binding sites were generated. The double-binding site mutant displayed a partial block at the positive selection stage of αß T cell development. Further investigation revealed loss of germline transcription within the Tcra locus at the Jα array, along with dysregulated primary and impaired secondary Vα-Jα rearrangement. Eα E protein binding increases Tcra locus accessibility and regulates TCRα recombination, thus directly promoting Tcra repertoire diversity.


Subject(s)
Receptors, Antigen, T-Cell, alpha-beta , Thymocytes , Protein Binding , Receptors, Antigen, T-Cell, alpha-beta/genetics , V(D)J Recombination/genetics , Transcription Factors/genetics , Enhancer Elements, Genetic
17.
Proc Natl Acad Sci U S A ; 120(26): e2306564120, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37339228

ABSTRACT

Immunoglobulin heavy chain variable region exons are assembled in progenitor-B cells, from VH, D, and JH gene segments located in separate clusters across the Igh locus. RAG endonuclease initiates V(D)J recombination from a JH-based recombination center (RC). Cohesin-mediated extrusion of upstream chromatin past RC-bound RAG presents Ds for joining to JHs to form a DJH-RC. Igh has a provocative number and organization of CTCF-binding elements (CBEs) that can impede loop extrusion. Thus, Igh has two divergently oriented CBEs (CBE1 and CBE2) in the IGCR1 element between the VH and D/JH domains, over 100 CBEs across the VH domain convergent to CBE1, and 10 clustered 3'Igh-CBEs convergent to CBE2 and VH CBEs. IGCR1 CBEs segregate D/JH and VH domains by impeding loop extrusion-mediated RAG-scanning. Downregulation of WAPL, a cohesin unloader, in progenitor-B cells neutralizes CBEs, allowing DJH-RC-bound RAG to scan the VH domain and perform VH-to-DJH rearrangements. To elucidate potential roles of IGCR1-based CBEs and 3'Igh-CBEs in regulating RAG-scanning and elucidate the mechanism of the ordered transition from D-to-JH to VH-to-DJH recombination, we tested effects of inverting and/or deleting IGCR1 or 3'Igh-CBEs in mice and/or progenitor-B cell lines. These studies revealed that normal IGCR1 CBE orientation augments RAG-scanning impediment activity and suggest that 3'Igh-CBEs reinforce ability of the RC to function as a dynamic loop extrusion impediment to promote optimal RAG scanning activity. Finally, our findings indicate that ordered V(D)J recombination can be explained by a gradual WAPL downregulation mechanism in progenitor-B cells as opposed to a strict developmental switch.


Subject(s)
Regulatory Sequences, Nucleic Acid , V(D)J Recombination , Animals , Mice , V(D)J Recombination/genetics , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/metabolism , Precursor Cells, B-Lymphoid/metabolism , Chromatin/metabolism
18.
Proc Natl Acad Sci U S A ; 120(25): e2221894120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307443

ABSTRACT

The nonhomologous end-joining (NHEJ) pathway is a major DNA double-strand break repair pathway in mammals and is essential for lymphocyte development. Ku70 and Ku80 heterodimer (KU) initiates NHEJ, thereby recruiting and activating the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). While DNA-PKcs deletion only moderately impairs end-ligation, the expression of kinase-dead DNA-PKcs completely abrogates NHEJ. Active DNA-PK phosphorylates DNA-PKcs at two clusters-PQR around S2056 (S2053 in mouse) and ABCDE around T2609. Alanine substitution at the S2056 cluster moderately compromises end-ligation on plasmid-based assays. But, mice carrying alanine substitution at all five serine residues within the S2056 cluster (DNA-PKcsPQR/PQR) display no defect in lymphocyte development, leaving the physiological significance of S2056 cluster phosphorylation elusive. Xlf is a nonessential NHEJ factor. Xlf -/- mice have substantial peripheral lymphocytes that are completely abolished by the loss of DNA-PKcs, the related ATM kinases, other chromatin-associated DNA damage response factors (e.g., 53BP1, MDC1, H2AX, and MRI), or RAG2-C-terminal regions, suggesting functional redundancy. While ATM inhibition does not further compromise end-ligation, here we show that in XLF-deficient background, DNA-PKcs S2056 cluster phosphorylation is critical for normal lymphocyte development. Chromosomal V(D)J recombination from DNA-PKcsPQR/PQRXlf -/- B cells is efficient but often has large deletions that jeopardize lymphocyte development. Class-switch recombination junctions from DNA-PKcsPQR/PQRXlf -/- mice are less efficient and the residual junctions display decreased fidelity and increased deletion. These findings establish a role for DNA-PKcs S2056 cluster phosphorylation in physiological chromosomal NHEJ, implying that S2056 cluster phosphorylation contributes to the synergy between XLF and DNA-PKcs in end-ligation.


Subject(s)
Protein Kinases , Protein Processing, Post-Translational , Animals , Mice , Phosphorylation , Alanine , B-Lymphocytes , DNA-Activated Protein Kinase , Mammals , DNA-Binding Proteins
19.
Elife ; 122023 05 25.
Article in English | MEDLINE | ID: mdl-37227256

ABSTRACT

To appropriately defend against a wide array of pathogens, humans somatically generate highly diverse repertoires of B cell and T cell receptors (BCRs and TCRs) through a random process called V(D)J recombination. Receptor diversity is achieved during this process through both the combinatorial assembly of V(D)J-genes and the junctional deletion and insertion of nucleotides. While the Artemis protein is often regarded as the main nuclease involved in V(D)J recombination, the exact mechanism of nucleotide trimming is not understood. Using a previously published TCRß repertoire sequencing data set, we have designed a flexible probabilistic model of nucleotide trimming that allows us to explore various mechanistically interpretable sequence-level features. We show that local sequence context, length, and GC nucleotide content in both directions of the wider sequence, together, can most accurately predict the trimming probabilities of a given V-gene sequence. Because GC nucleotide content is predictive of sequence-breathing, this model provides quantitative statistical evidence regarding the extent to which double-stranded DNA may need to be able to breathe for trimming to occur. We also see evidence of a sequence motif that appears to get preferentially trimmed, independent of GC-content-related effects. Further, we find that the inferred coefficients from this model provide accurate prediction for V- and J-gene sequences from other adaptive immune receptor loci. These results refine our understanding of how the Artemis nuclease may function to trim nucleotides during V(D)J recombination and provide another step toward understanding how V(D)J recombination generates diverse receptors and supports a powerful, unique immune response in healthy humans.


Subject(s)
Nucleotides , V(D)J Recombination , Humans , Nucleotides/metabolism , Base Composition
20.
Front Cell Dev Biol ; 11: 1134121, 2023.
Article in English | MEDLINE | ID: mdl-37082620

ABSTRACT

As effective therapies for relapse and refractory B-cell acute lymphoblastic leukemia (B-ALL) remain problematic, novel therapeutic strategies are needed. Artemis is a key endonuclease in V(D)J recombination and nonhomologous end joining (NHEJ) of DNA double-strand break (DSB) repair. Inhibition of Artemis would cause chromosome breaks during maturation of RAG-expressing T- and B-cells. Though this would block generation of new B- and T-cells temporarily, it could be oncologically beneficial for reducing the proliferation of B-ALL and T-ALL cells by causing chromosome breaks in these RAG-expressing tumor cells. Currently, pharmacological inhibition is not available for Artemis. According to gene expression analyses from 207 children with high-risk pre-B acute lymphoblastic leukemias high Artemis expression is correlated with poor outcome. Therefore, we evaluated four compounds (827171, 827032, 826941, and 825226), previously generated from a large Artemis targeted drug screen. A biochemical assay using a purified Artemis:DNA-PKcs complex shows that the Artemis inhibitors 827171, 827032, 826941, 825226 have nanomolar IC50 values for Artemis inhibition. We compared these 4 compounds to a DNA-PK inhibitor (AZD7648) in three patient-derived B-ALL cell lines (LAX56, BLQ5 and LAX7R) and in two mature B-cell lines (3301015 and 5680001) as controls. We found that pharmacological Artemis inhibition substantially decreases proliferation of B-ALL cell lines while normal mature B-cell lines are not markedly affected. Inhibition of DNA-PKcs (which regulates Artemis) using the DNA-PK inhibitor AZD7648 had minor effects on these same primary patient-derived ALL lines, indicating that inhibition of V(D)J hairpin opening requires direct inhibition of Artemis, rather than indirect suppression of the kinase that regulates Artemis. Our data provides a basis for further evaluation of pharmacological Artemis inhibition of proliferation of B- and T-ALL.

SELECTION OF CITATIONS
SEARCH DETAIL