Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 273
Filter
1.
Circ Genom Precis Med ; : e004584, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119706

ABSTRACT

BACKGROUND: Genetic testing for cardiac channelopathies is the standard of care. However, many rare genetic variants remain classified as variants of uncertain significance (VUS) due to lack of epidemiological and functional data. Whether deep protein language models may aid in VUS resolution remains unknown. Here, we set out to compare how 2 deep protein language models perform at VUS resolution in the 3 most common long-QT syndrome-causative genes compared with the gold-standard patch clamp. METHODS: A total of 72 rare nonsynonymous VUS (9 KCNQ1, 19 KCNH2, and 50 SCN5A) were engineered by site-directed mutagenesis and expressed in either HEK293 cells or TSA201 cells. Whole-cell patch-clamp technique was used to functionally characterize these variants. The protein language models, ESM1b and AlphaMissense, were used to predict the variant effect of missense variants and compared with patch clamp. RESULTS: Considering variants in all 3 genes, the ESM1b model had a receiver operator curve-area under the curve of 0.75 (P=0.0003). It had a sensitivity of 88% and a specificity of 50%. AlphaMissense performed well compared with patch-clamp with an receiver operator curve-area under the curve of 0.85 (P<0.0001), sensitivity of 80%, and specificity of 76%. CONCLUSIONS: Deep protein language models aid in VUS resolution with high sensitivity but lower specificity. Thus, these tools cannot fully replace functional characterization but can aid in reducing the number of variants that may require functional analysis.

2.
Cell Rep ; 43(8): 114640, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39163202

ABSTRACT

Functional enhancer annotation is critical for understanding tissue-specific transcriptional regulation and prioritizing disease-associated non-coding variants. However, unbiased enhancer discovery in disease-relevant contexts remains challenging. To identify enhancers pertinent to diabetes, we conducted a CRISPR interference (CRISPRi) screen in the human pluripotent stem cell (hPSC) pancreatic differentiation system. Among the enhancers identified, we focused on an enhancer we named ONECUT1e-664kb, ∼664 kb from the ONECUT1 promoter. Previous studies have linked ONECUT1 coding mutations to pancreatic hypoplasia and neonatal diabetes. We found that homozygous deletion of ONECUT1e-664kb in hPSCs leads to a near-complete loss of ONECUT1 expression and impaired pancreatic differentiation. ONECUT1e-664kb contains a type 2 diabetes-associated variant (rs528350911) disrupting a GATA motif. Introducing the risk variant into hPSCs reduced binding of key pancreatic transcription factors (GATA4, GATA6, and FOXA2), supporting its causal role in diabetes. This work highlights the utility of unbiased enhancer discovery in disease-relevant settings for understanding monogenic and complex disease.

3.
Cancers (Basel) ; 16(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39061183

ABSTRACT

Most of endometrial cancers are sporadic, with 5% or less being attributed to inherited pathogenic germline mutations and mostly related to the Lynch syndrome. To our knowledge, this is the first study to investigate patterns and frequencies of germline mutations in patients with endometrial cancer in an Arab region. Consecutive patients with endometrial cancer (n = 130), regardless of their age and family history, were enrolled. Germline genetic testing, using an 84-gene panel, was performed on all. Almost half of the patient population (n = 64, 49.2%) was tested based on international guidelines, while the remaining patients (n = 66, 50.8%) were tested as part of an ongoing universal germline genetic testing program. Among the whole group, 18 (13.8%) patients had positive pathogenic or likely pathogenic (P/LP) germline variants. The most common variants encountered were in MLH1 (n = 4, 22.2%), PMS2 (n = 3, 16.7%), ATM, MSH2, MUTYH, and BRCA2 (n = 2, 11.1% each). In addition, three (2.3%) patients were found to have an increased risk allele of the APC gene. P/LP variants were more common among patients with carcinosarcoma and clear cell carcinoma, younger patients (age ≤ 50 years), and in patients with a non-metastatic disease. We conclude that germline genetic variants, mostly in genes related to the Lynch syndrome, are relatively common among Arab patients with endometrial cancer.

4.
Int J Legal Med ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008115

ABSTRACT

Hereditary connective tissue disorders (HCTDs) are a heterogeneous group of inherited diseases. These disorders show genetic mutations with loss of function of primary components of connective tissue, such as collagen and elastic fibers. There are more than 200 conditions that involve hereditary connective tissue disorders, while the most known are Marfan syndrome, Osteogenesis Imperfecta, and Ehlers-Danlos syndromes. These disorders need continuous updates, multidisciplinary skills, and specific methodologic evaluations sharing many medicolegal issues. Marfan syndrome and Ehlers-Danlos syndromes show a high risk of early sudden death. As a consequence of this, postmortem genetic testing can identify novel genotype-phenotype correlations which help the clinicians to assess personalized cardiovascular screening programs among the ill subjects. Genetic testing is also essential to identify children suffering from Osteogenesis Imperfecta, especially when a physical abuse is clinically suspected. However, this is a well-known clinical problem even though there are still challenges to interpret genetic data and variants of unknown significance due to the current extensive use of new genetic/genomic techniques. Additionally, the more significant applications and complexities of genomic testing raise novel responsibilities on the clinicians, geneticists, and forensic practitioners as well, increasing potential liability and medical malpractice claims. This systematic review provides a detailed overview on how multidisciplinary skills belonging to clinicians, medicolegal consultants, radiologists, and geneticists can cooperate to manage HCTDs from autopsy or clinical findings to genetic testing. Thus, technical aspects need to be addressed to the medicolegal community since there is no consensus works or guidelines which specifically discuss these issues.

5.
Am J Med Genet A ; : e63797, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958565

ABSTRACT

Inherited cardiovascular conditions are significant causes of sudden cardiac death in the young (SCDY), making their investigation using molecular autopsy and prevention a public health priority. However, the molecular autopsy data in Chinese population is lacking. The 5-year result (2017-2021) of molecular autopsy services provided for victims of SCDY (age 1-40 years) was reviewed. The outcome of family cascade genetic screening and clinical evaluation was reviewed. A literature review of case series reporting results of molecular autopsy on SCDY in 2016-2023 was conducted. Among the 41 decedents, 11 were found to carry 13 sudden cardiac death (SCD)-causative genetic variants. Likely pathogenic (LP) variants were identified in the DSP, TPM1, TTN, and SCN5A genes. Cascade genetic testing identified four family members with LP variants. One family member with familial TPM1 variant was found to have hypertrophic cardiomyopathy upon clinical evaluation. This study provided insight into the genetic profile of molecular autopsy in a Chinese cohort of SCDY. The detection of important SCD-causative variants through molecular autopsy has facilitated family cascade screening by targeted genetic testing and clinical evaluation of at-risk family members. A literature review of the current landscape of molecular autopsy in the investigation of SCDY was conducted.

6.
Genes (Basel) ; 15(7)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39062721

ABSTRACT

Germline BRCA1/2 alteration has been linked to an increased risk of hereditary breast and ovarian cancer syndromes. As a result, genetic testing, based on NGS, allows us to identify a high number of variants of uncertain significance (VUS) or conflicting interpretation of pathogenicity (CIP) variants. The identification of CIP/VUS is often considered inconclusive and clinically not actionable for the patients' and unaffected carriers' management. In this context, their assessment and classification remain a significant challenge. The aim of the study was to investigate whether the in silico prediction tools (PolyPhen-2, SIFT, Mutation Taster and PROVEAN) could predict the potential clinical impact and significance of BRCA1/2 CIP/VUS alterations, eventually impacting the clinical management of Breast Cancer subjects. In a cohort of 860 BC patients, 10.6% harbored BRCA1 or BRCA2 CIP/VUS alterations, mostly observed in BRCA2 sequences (85%). Among them, forty-two out of fifty-five alterations were predicted as damaging, with at least one in silico that used tools. Prediction agreement of the four tools was achieved in 45.5% of patients. Moreover, the highest consensus was obtained in twelve out of forty-two (28.6%) mutations by considering three out of four in silico algorithms. The use of prediction tools may help to identify variants with a potentially damaging effect. The lack of substantial agreement between the different algorithms suggests that the bioinformatic approaches should be combined with the personal and family history of the cancer patients.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Breast Neoplasms , Computer Simulation , Humans , Female , Breast Neoplasms/genetics , BRCA2 Protein/genetics , BRCA1 Protein/genetics , Middle Aged , Adult , Genetic Predisposition to Disease , Genetic Testing/methods , Germ-Line Mutation , Aged , Cohort Studies
7.
Genes (Basel) ; 15(7)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39062735

ABSTRACT

During the expanded neonatal screening program conducted in 2023, we analyzed samples obtained from 1,227,130 out of 1,256,187 newborns in the Russian Federation in order to detect 5q spinal muscular atrophy (5q SMA). Within the 253-sample risk group formed based on the results of the first screening stage, 5 samples showed a discrepancy between the examination results obtained via various screening methods and quantitative MLPA (used as reference). The discrepancy between the results was caused by the presence of either a c.835-18C>T intronic variant or a c.842G>C p.(Arg281Thr) missense variant in the SMN1 gene, both of which are located in the region complementary to the sequences of annealing probes for ligation and real-time PCR. Three newborns had the c.835-18C>T variant in a compound heterozygous state with a deletion of exons 7-8 of the SMN1 gene, one newborn with two copies of the SMN1 gene had the same variant in a heterozygous state, and one newborn had both variants-c.835-18C>T and c.842G>C p.(Arg281Thr)-in a compound heterozygous state. Additional examination was carried out for these variants, involving segregation analysis in families, carriage analysis in population cohorts, and RNA analysis. Based on the obtained results, according to the ACMG criteria, the c.835-18C>T intronic variant should be classified as likely benign, and the c.842G>C p.(Arg281Thr) missense substitution as a variant of uncertain clinical significance. All five probands are under dynamic monitoring. No 5q SMA symptoms were detected in these newborns neonatally or during a 1-year follow-up period.


Subject(s)
Muscular Atrophy, Spinal , Neonatal Screening , Survival of Motor Neuron 1 Protein , Humans , Survival of Motor Neuron 1 Protein/genetics , Infant, Newborn , Neonatal Screening/methods , Female , Male , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/diagnosis , Mutation, Missense , Heterozygote , Exons/genetics , Russia/epidemiology
8.
eNeurologicalSci ; 35: 100506, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38883204

ABSTRACT

Hereditary spastic paraplegia (HSP) is a group of genetically heterogenous neurodegenerative disorders characterized by progressive spasticity and weakness of lower limbs. We report a novel splicing variant (c.1617-2A>C) of the SPAST gene in a heterozygous carrier from an Italian family with autosomal dominant HSP. The case study describes a pure form of spastic paraparesis with the cardinal clinical features of SPG4. The novel variant affects a canonical splice site and is likely to disrupt RNA splicing. We conclude that the c.1617-2A>C substitution is a null variant, which could be classified as pathogenic; its penetrance should be further investigated.

9.
J Hum Genet ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38839994

ABSTRACT

Since variants of uncertain significance (VUS) reported in genetic testing cannot be acted upon clinically, this classification may delay or prohibit precise diagnosis and genetic counseling in adult genetic disorders patients. Large-scale analyses about qualitatively distinct lines of evidence used for VUS can make them re-classification more accurately. We analyzed 458 Chinese adult patients WES data, within 15 pathogenic evidence PS1, PS2, PM1, PM6 and PP4 were not used for VUS pathogenic classification, meanwhile the PP3, BP4, PP2 were used much more frequently. The PM2_Supporting was used most widely for all reported variants. There were also 31 null variants (nonsense, frameshift, canonical ±1 or 2 splice sites) which were probably the disease-causing variants of the patients were classified as VUS. By analyzed the evidence used for all VUS we recommend that appropriate genetic counseling, reliable releasing of in-house data, allele frequency comparison between case and control, expanded verification in patient family, co-segregation analysis and functional assays were urgent need to gather more evidence to reclassify VUS. We also found adult patients with nervous system disease were reported the most phenotype-associated VUS and the lower the phenotypic specificity, the more reported VUS. This result emphasized the importance of pretest genetic counseling which would make less reporting of VUS. Our result revealed the characteristics of the pathogenic classification evidence used for VUS in adult genetic disorders patients for the first time, recommend a rules-based process to evaluate the pathogenicity of VUS which could provide a strong basis for accurately evaluating the pathogenicity and clinical grade information of VUS. Meanwhile, we further expanded the genetic spectrum and improve the diagnostic rate of adult genetic disorders.

10.
Genes (Basel) ; 15(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38927659

ABSTRACT

Pathogenic variations in the BRCA2 gene have been detected with the development of next-generation sequencing (NGS)-based hereditary cancer panel testing technology. It also reveals an increasing number of variants of uncertain significance (VUSs). Well-established functional tests are crucial to accurately reclassifying VUSs for effective diagnosis and treatment. We retrospectively analyzed the multi-gene cancer panel results of 922 individuals and performed in silico analysis following ClinVar classification. Then, we selected five breast cancer-diagnosed patients' missense BRCA2 VUSs (T1011R, T1104P/M1168K, R2027K, G2044A, and D2819) for reclassification. The effects of VUSs on BRCA2 function were analyzed using comet and H2AX phosphorylation (γH2AX) assays before and after the treatment of peripheral blood mononuclear cells (PBMCs) of subjects with the double-strand break (DSB) agent doxorubicin (Dox). Before and after Dox-induction, the amount of DNA in the comet tails was similar in VUS carriers; however, notable variations in γH2AX were observed, and according to combined computational and functional analyses, we reclassified T1001R as VUS-intermediate, T1104P/M1168K and D2819V as VUS (+), and R2027K and G2044A as likely benign. These findings highlight the importance of the variability of VUSs in response to DNA damage before and after Dox-induction and suggest that further investigation is needed to understand the underlying mechanisms.


Subject(s)
BRCA2 Protein , Breast Neoplasms , Histones , Humans , Histones/genetics , Histones/metabolism , Phosphorylation , Female , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , BRCA2 Protein/genetics , Comet Assay/methods , High-Throughput Nucleotide Sequencing , Retrospective Studies , Mutation, Missense , DNA Breaks, Double-Stranded , DNA Damage
11.
Curr Oncol ; 31(6): 3361-3378, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38920739

ABSTRACT

A Variant of Uncertain Significance (VUS) is a difference in the DNA sequence with uncertain consequences for gene function. A VUS in a hereditary cancer gene should not change medical care, yet some patients undergo medical procedures based on their VUS result, highlighting the unmet educational needs among patients and healthcare providers. To address this need, we developed, evaluated, and refined novel educational materials to explain that while VUS results do not change medical care, it remains important to share any personal or family history of cancer with family members given that their personal and family medical history can guide their cancer risk management. We began by reviewing the prior literature and transcripts from interviews with six individuals with a VUS result to identify content and design considerations to incorporate into educational materials. We then gathered feedback to improve materials via a focus group of multidisciplinary experts and multiple rounds of semi-structured interviews with individuals with a VUS result. Themes for how to improve content, visuals, and usefulness were used to refine the materials. In the final round of interviews with an additional 10 individuals with a VUS result, materials were described as relatable, useful, factual, and easy to navigate, and also increased their understanding of cancer gene VUS results.


Subject(s)
Patient Education as Topic , Humans , Patient Education as Topic/methods , Neoplasms/genetics , Female , Genetic Predisposition to Disease , Male , Genetic Testing/methods , Genes, Neoplasm , Adult
12.
Cancer Treat Rev ; 129: 102785, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38870570

ABSTRACT

The detection of germline pathogenic variants (gPVs) in BRCA1/2 and other breast cancer (BC) genes is rising exponentially thanks to the advent of multi-gene panel testing. This promising technology, coupled with the availability of specific therapies for BC BRCA-related, has increased the number of patients eligible for genetic testing. Implementing multi-gene panel testing for hereditary BC screening holds promise to maximise benefits for patients at hereditary risk of BC. These benefits range from prevention programs to antineoplastic-targeted therapies. However, the clinical management of these patients is complex and requires guidelines based on recent evidence. Furthermore, applying multi-gene panel testing into clinical practice increases the detection of variants of uncertain significance (VUSs). This augments the complexity of patients' clinical management, becoming an unmet need for medical oncologists. This review aims to collect updated evidence on the most common BC-related genes besides BRCA1/2, from their biological role in BC development to their potential impact in tailoring prevention and treatment strategies.


Subject(s)
Breast Neoplasms , Genetic Testing , Humans , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Breast Neoplasms/diagnosis , Breast Neoplasms/prevention & control , Female , Genetic Testing/methods , Genetic Predisposition to Disease , BRCA1 Protein/genetics , BRCA2 Protein/genetics
13.
Cell Mol Life Sci ; 81(1): 223, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767677

ABSTRACT

Parkinson's disease (PD) is a common and incurable neurodegenerative disorder that arises from the loss of dopaminergic neurons in the substantia nigra and is mainly characterized by progressive loss of motor function. Monogenic familial PD is associated with highly penetrant variants in specific genes, notably the PRKN gene, where homozygous or compound heterozygous loss-of-function variants predominate. PRKN encodes Parkin, an E3 ubiquitin-protein ligase important for protein ubiquitination and mitophagy of damaged mitochondria. Accordingly, Parkin plays a central role in mitochondrial quality control but is itself also subject to a strict protein quality control system that rapidly eliminates certain disease-linked Parkin variants. Here, we summarize the cellular and molecular functions of Parkin, highlighting the various mechanisms by which PRKN gene variants result in loss-of-function. We emphasize the importance of high-throughput assays and computational tools for the clinical classification of PRKN gene variants and how detailed insights into the pathogenic mechanisms of PRKN gene variants may impact the development of personalized therapeutics.


Subject(s)
Parkinson Disease , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Parkinson Disease/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/pathology , Ubiquitination/genetics , Mitophagy/genetics , Animals
15.
bioRxiv ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38798479

ABSTRACT

Continued advances in variant effect prediction are necessary to demonstrate the ability of machine learning methods to accurately determine the clinical impact of variants of unknown significance (VUS). Towards this goal, the ARSA Critical Assessment of Genome Interpretation (CAGI) challenge was designed to characterize progress by utilizing 219 experimentally assayed missense VUS in the Arylsulfatase A (ARSA) gene to assess the performance of community-submitted predictions of variant functional effects. The challenge involved 15 teams, and evaluated additional predictions from established and recently released models. Notably, a model developed by participants of a genetics and coding bootcamp, trained with standard machine-learning tools in Python, demonstrated superior performance among submissions. Furthermore, the study observed that state-of-the-art deep learning methods provided small but statistically significant improvement in predictive performance compared to less elaborate techniques. These findings underscore the utility of variant effect prediction, and the potential for models trained with modest resources to accurately classify VUS in genetic and clinical research.

16.
Immunol Med ; 47(3): 186-191, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38780575

ABSTRACT

The detection of variants of unknown significance (VUS) in familial Mediterranean fever (FMF) is common; however, their diagnostic value remains elusive, and the interpretation of multiple VUS remains difficult. Therefore, we examined FMF diagnosis-associated factors 1-year post-genetic testing in patients with only VUS and assessed the impact of multiple VUS on diagnosis and clinical features. A 1-year follow-up was conducted on patients clinically suspected of having FMF without confirmatory diagnosis owing to the presence of only VUS. Clinical features were compared between patients with a single VUS and those with multiple VUS among patients diagnosed with FMF. Among 261 patients followed up, 202 were diagnosed with FMF based on clinical judgment. No specific clinical symptoms or variant patterns at genetic testing were associated with diagnosis at 1 year. Multiple VUS was significantly and independently associated with a lower response to colchicine than single VUS among patients diagnosed with FMF. However, clinical symptoms showed no correlation with the number of VUS. In conclusion, predicting FMF diagnosis 1-year post-genetic testing in patients with only VUS remains challenging. Moreover, the impact of multiple VUS on FMF may be limited owing to the lack of correlation with clinical features, except colchicine response.


Subject(s)
Colchicine , Familial Mediterranean Fever , Pyrin , Humans , Familial Mediterranean Fever/genetics , Familial Mediterranean Fever/diagnosis , Pyrin/genetics , Female , Male , Adult , Colchicine/therapeutic use , Genetic Testing , Adolescent , Mutation , Genetic Variation , Young Adult , Follow-Up Studies , Middle Aged , Genetic Predisposition to Disease , Child
17.
Cell Biosci ; 14(1): 45, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582917

ABSTRACT

Canavan disease is an autosomal recessive and lethal neurological disorder, characterized by the spongy degeneration of the white matter in the brain. The disease is caused by a deficiency of the cytosolic aspartoacylase (ASPA) enzyme, which catalyzes the hydrolysis of N-acetyl-aspartate (NAA), an abundant brain metabolite, into aspartate and acetate. On the physiological level, the mechanism of pathogenicity remains somewhat obscure, with multiple, not mutually exclusive, suggested hypotheses. At the molecular level, recent studies have shown that most disease linked ASPA gene variants lead to a structural destabilization and subsequent proteasomal degradation of the ASPA protein variants, and accordingly Canavan disease should in general be considered a protein misfolding disorder. Here, we comprehensively summarize the molecular and cell biology of ASPA, with a particular focus on disease-linked gene variants and the pathophysiology of Canavan disease. We highlight the importance of high-throughput technologies and computational prediction tools for making genotype-phenotype predictions as we await the results of ongoing trials with gene therapy for Canavan disease.

18.
Pediatr Cardiol ; 45(5): 1023-1035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565666

ABSTRACT

Congenital long QT syndrome (LQTS) is an inherited arrhythmia syndrome associated with sudden cardiac death. Accurate interpretation and classification of genetic variants in LQTS patients are crucial for effective management. All patients with LQTS with a positive genetic test over the past 18 years (2002-2020) in our single tertiary pediatric cardiac center were identified. Reevaluation of the reported variants in LQTS genes was conducted using the American College of Genetics and Genomics (ACMG) guideline after refinement by the US ClinGen SVI working group and guideline by Walsh et al. on genetic variant reclassification, under multidisciplinary input. Among the 59 variants identified. 18 variants (30.5%) were reclassified. A significant larger portion of variants of unknown significance (VUS) were reclassified compared to likely pathogenic (LP)/pathogenic (P) variants (57.7% vs 9.1%, p < 0.001). The rate of reclassification was significantly higher in the limited/disputed evidence group compared to the definite/moderate evidence group (p = 0.0006). All LP/P variants were downgraded in the limited/disputed evidence group (p = 0.0057). VUS upgrades are associated with VUS located in genes within the definite/moderate evidence group (p = 0.0403) and with VUS present in patients exhibiting higher corrected QT intervals (QTc) (p = 0.0445). A significant number of pediatric LQTS variants were reclassified, particularly for VUS. The strength of the gene-disease association of the genes influences the reclassification performance. The study provides important insights and guidance for pediatricians to seek for reclassification of "outdated variants" in order to facilitate contemporary precision medicine.


Subject(s)
Genetic Testing , Long QT Syndrome , Humans , Long QT Syndrome/genetics , Child , Female , Male , Genetic Testing/methods , Genetic Variation , Adolescent , Child, Preschool , Infant , Mutation , Retrospective Studies
19.
Int J Neonatal Screen ; 10(2)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38651398

ABSTRACT

Screening newborns using genome sequencing is being explored due to its potential to expand the list of conditions that can be screened. Previously, we proposed the need for large-scale pilot studies to assess the feasibility of screening highly penetrant genetic neurodevelopmental disorders. Here, we discuss the initial experience from the GUARDIAN study and the systemic gaps in clinical services that were identified in the early stages of the pilot study.

20.
HGG Adv ; 5(3): 100289, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38571311

ABSTRACT

Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by pathogenic variants in TCF4, leading to intellectual disability, specific morphological features, and autonomic nervous system dysfunction. Epigenetic dysregulation has been implicated in PTHS, prompting the investigation of a DNA methylation (DNAm) "episignature" specific to PTHS for diagnostic purposes and variant reclassification and functional insights into the molecular pathophysiology of this disorder. A cohort of 67 individuals with genetically confirmed PTHS and three individuals with intellectual disability and a variant of uncertain significance (VUS) in TCF4 were studied. The DNAm episignature was developed with an Infinium Methylation EPIC BeadChip array analysis using peripheral blood cells. Support vector machine (SVM) modeling and clustering methods were employed to generate a DNAm classifier for PTHS. Validation was extended to an additional cohort of 11 individuals with PTHS. The episignature was assessed in relation to other neurodevelopmental disorders and its specificity was examined. A specific DNAm episignature for PTHS was established. The classifier exhibited high sensitivity for TCF4 haploinsufficiency and missense variants in the basic-helix-loop-helix domain. Notably, seven individuals with TCF4 variants exhibited negative episignatures, suggesting complexities related to mosaicism, genetic factors, and environmental influences. The episignature displayed degrees of overlap with other related disorders and biological pathways. This study defines a DNAm episignature for TCF4-related PTHS, enabling improved diagnostic accuracy and VUS reclassification. The finding that some cases scored negatively underscores the potential for multiple or nested episignatures and emphasizes the need for continued investigation to enhance specificity and coverage across PTHS-related variants.


Subject(s)
DNA Methylation , Hyperventilation , Intellectual Disability , Transcription Factor 4 , Humans , Transcription Factor 4/genetics , Hyperventilation/genetics , Hyperventilation/diagnosis , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Female , Male , Child , Facies , Adolescent , Epigenomics/methods , Epigenesis, Genetic , Hyperkinesis/genetics , Child, Preschool , Adult , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL