Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39091740

ABSTRACT

Coronavirus relevancy for human health has surged over the past 20 years as they have a propensity for spillover into humans from animal reservoirs resulting in pandemics such as COVID-19. The diversity within the Coronavirinae subfamily and high infection frequency in animal species worldwide creates a looming threat that calls for research across all genera within the Coronavirinae subfamily. We sought to contribute to the limited structural knowledge within the Gammacoronavirus genera and determined the structure of the viral core replication-transcription complex (RTC) from Infectious Bronchitis Virus (IBV) using single-particle cryo-EM. Comparison between our IBV structure with published RTC structures from other Coronavirinae genera reveals structural differences across genera. Using in vitro biochemical assays, we characterized these differences and revealed their differing involvement in core RTC formation across different genera. Our findings highlight the value of cross-genera Coronavirinae studies, as they show genera specific features in coronavirus genome replication. A broader knowledge of coronavirus replication will better prepare us for future coronavirus spillovers.

2.
Viruses ; 16(5)2024 05 11.
Article in English | MEDLINE | ID: mdl-38793645

ABSTRACT

The hepatitis B virus (HBV) infects hepatocytes and hijacks host cellular mechanisms for its replication. Host proteins can be frontline effectors of the cell's defense and restrict viral replication by impeding multiple steps during its intracellular lifecycle. This review summarizes many of the well-described restriction factors, their mechanisms of restriction, and counteractive measures of HBV, with a special focus on viral transcription. We discuss some of the limitations and knowledge gaps about the restriction factors, highlighting how these factors may be harnessed to facilitate therapeutic strategies against HBV.


Subject(s)
Hepatitis B virus , Hepatitis B , Hepatocytes , Host-Pathogen Interactions , Virus Replication , Hepatitis B virus/physiology , Hepatitis B virus/genetics , Humans , Hepatitis B/virology , Hepatocytes/virology , Animals
3.
Antiviral Res ; 226: 105888, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641024

ABSTRACT

296 million people worldwide are predisposed to developing severe end-stage liver diseases due to chronic hepatitis B virus (HBV) infection. HBV forms covalently closed circular DNA (cccDNA) molecules that persist as episomal DNA in the nucleus of infected hepatocytes and drive viral replication. Occasionally, the HBV genome becomes integrated into host chromosomal DNA, a process that is believed to significantly contribute to circulating HBsAg levels and HCC development. Neither cccDNA accumulation nor expression from integrated HBV DNA are directly targeted by current antiviral treatments. In this study, we investigated the antiviral properties of a newly described allosteric modulator, FLS-359, that targets sirtuin 2 (SIRT2), an NAD+-dependent deacylase. Our results demonstrate that SIRT2 modulation by FLS-359 and by other tool compounds inhibits cccDNA synthesis following de novo infection of primary human hepatocytes and HepG2 (C3A)-NTCP cells, and FLS-359 substantially reduces cccDNA recycling in HepAD38 cells. While pre-existing cccDNA is not eradicated by short-term treatment with FLS-359, its transcriptional activity is substantially impaired, likely through inhibition of viral promoter activities. Consistent with the inhibition of viral transcription, HBsAg production by HepG2.2.15 cells, which contain integrated HBV genomes, is also suppressed by FLS-359. Our study provides further insights on SIRT2 regulation of HBV infection and supports the development of potent SIRT2 inhibitors as HBV antivirals.


Subject(s)
Antiviral Agents , DNA, Circular , DNA, Viral , Hepatitis B virus , Hepatocytes , Sirtuin 2 , Virus Replication , Humans , DNA, Circular/metabolism , Sirtuin 2/antagonists & inhibitors , Sirtuin 2/metabolism , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Hepatocytes/virology , Hepatocytes/drug effects , Antiviral Agents/pharmacology , Virus Replication/drug effects , Hep G2 Cells , Allosteric Regulation/drug effects , Transcription, Genetic/drug effects
4.
Viruses ; 16(4)2024 04 15.
Article in English | MEDLINE | ID: mdl-38675950

ABSTRACT

Hepatitis B virus (HBV) is the etiologic agent of chronic hepatitis B, which puts at least 300 million patients at risk of developing fibrosis, cirrhosis, and hepatocellular carcinoma. HBV is a partially double-stranded DNA virus of the Hepadnaviridae family. While HBV was discovered more than 50 years ago, many aspects of its replicative cycle remain incompletely understood. Central to HBV persistence is the formation of covalently closed circular DNA (cccDNA) from the incoming relaxed circular DNA (rcDNA) genome. cccDNA persists as a chromatinized minichromosome and is the major template for HBV gene transcription. Here, we review how cccDNA and the viral minichromosome are formed and how viral gene transcription is regulated and highlight open questions in this area of research.


Subject(s)
DNA, Circular , DNA, Viral , Hepatitis B virus , Virus Replication , Hepatitis B virus/genetics , Hepatitis B virus/physiology , DNA, Circular/genetics , Humans , DNA, Viral/genetics , Viral Transcription/genetics , Gene Expression Regulation, Viral , Transcription, Genetic , Genome, Viral , Hepatitis B, Chronic/virology , Hepatitis B/virology , DNA Replication
5.
Viruses ; 16(3)2024 02 27.
Article in English | MEDLINE | ID: mdl-38543731

ABSTRACT

The chromatin-remodeler SPOC1 (PHF13) is a transcriptional co-regulator and has been identified as a restriction factor against various viruses, including human cytomegalovirus (HCMV). For HCMV, SPOC1 was shown to block the onset of immediate-early (IE) gene expression under low multiplicities of infection (MOI). Here, we demonstrate that SPOC1-mediated restriction of IE expression is neutralized by increasing viral titers. Interestingly, our study reveals that SPOC1 exerts an additional antiviral function beyond the IE phase of HCMV replication. Expression of SPOC1 under conditions of high MOI resulted in severely impaired viral DNA replication and viral particle release, which may be attributed to inefficient viral transcription. With the use of click chemistry, the localization of viral DNA was investigated at late time points after infection. Intriguingly, we detected a co-localization of SPOC1, RNA polymerase II S5P and polycomb repressor complex 2 (PRC2) components in close proximity to viral DNA in areas that are hypothesized to harbor viral transcription sites. We further identified the N-terminal domain of SPOC1 to be responsible for interaction with EZH2, a subunit of the PRC2 complex. With this study, we report a novel and potent antiviral function of SPOC1 against HCMV that is efficient even with unrestricted IE gene expression.


Subject(s)
Cytomegalovirus , Virus Replication , Humans , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , DNA Replication , DNA, Viral/metabolism , Antiviral Agents/pharmacology , DNA-Binding Proteins/metabolism , Transcription Factors/genetics
6.
J Gen Virol ; 105(3)2024 03.
Article in English | MEDLINE | ID: mdl-38546099

ABSTRACT

Cardiac glycosides (CGs) are natural steroid glycosides, which act as inhibitors of the cellular sodium-potassium ATPase pump. Although traditionally considered toxic to human cells, CGs are widely used as drugs for the treatment of cardiovascular-related medical conditions. More recently, CGs have been explored as potential anti-viral drugs and inhibit replication of a range of RNA and DNA viruses. Previously, a compound screen identified CGs that inhibited vaccinia virus (VACV) infection. However, no further investigation of the inhibitory potential of these compounds was performed, nor was there investigation of the stage(s) of the poxvirus lifecycle they impacted. Here, we investigated the anti-poxvirus activity of a broad panel of CGs. We found that all CGs tested were potent inhibitors of VACV replication. Our virological experiments showed that CGs did not impact virus infectivity, binding, or entry. Rather, experiments using recombinant viruses expressing reporter proteins controlled by VACV promoters and arabinoside release assays demonstrated that CGs inhibited early and late VACV protein expression at different concentrations. Lack of virus assembly in the presence of CGs was confirmed using electron microscopy. Thus, we expand our understanding of compounds with anti-poxvirus activity and highlight a yet unrecognized mechanism by which poxvirus replication can be inhibited.


Subject(s)
Cardiac Glycosides , Poxviridae , Vaccinia , Humans , Vaccinia virus/genetics , Cardiac Glycosides/pharmacology , Cardiac Glycosides/metabolism , Virus Replication
7.
Microbiol Spectr ; 12(4): e0407223, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38376353

ABSTRACT

We previously identified the bisbenzimide Hoechst 33342 (H42) as a potent multi-stage inhibitor of the prototypic poxvirus, the vaccinia virus (VACV), and several parapoxviruses. A recent report showed that novel bisbenzimide compounds similar in structure to H42 could prevent human cytomegalovirus replication. Here, we assessed whether these compounds could also serve as poxvirus inhibitors. Using virological assays, we show that these bisbenzimide compounds inhibit VACV spread, plaque formation, and the production of infectious progeny VACV with relatively low cell toxicity. Further analysis of the VACV lifecycle indicated that the effective bisbenzimide compounds had little impact on VACV early gene expression but inhibited VACV late gene expression and truncated the formation of VACV replication sites. Additionally, we found that bisbenzimide compounds, including H42, can inhibit both monkeypox and a VACV mutant resistant to the widely used anti-poxvirus drug TPOXX (Tecovirimat). Therefore, the tested bisbenzimide compounds were inhibitors of both prototypic and pandemic potential poxviruses and could be developed for use in situations where anti-poxvirus drug resistance may occur. Additionally, these data suggest that bisbenzimide compounds may serve as broad-activity antiviral compounds, targeting diverse DNA viruses such as poxviruses and betaherpesviruses.IMPORTANCEThe 2022 mpox (monkeypox) outbreak served as a stark reminder that due to the cessation of smallpox vaccination over 40 years ago, most of the human population remains susceptible to poxvirus infection. With only two antivirals approved for the treatment of smallpox infection in humans, the need for additional anti-poxvirus compounds is evident. Having shown that the bisbenzimide H33342 is a potent inhibitor of poxvirus gene expression and DNA replication, here we extend these findings to include a set of novel bisbenzimide compounds that show anti-viral activity against mpox and a drug-resistant prototype poxvirus mutant. These results suggest that further development of bisbenzimides for the treatment of pandemic potential poxviruses is warranted.


Subject(s)
Poxviridae , Smallpox , Humans , Bisbenzimidazole/metabolism , Pandemics , Vaccinia virus/genetics
8.
J Gen Virol ; 105(1)2024 01.
Article in English | MEDLINE | ID: mdl-38175123

ABSTRACT

Hepatitis B Virus (HBV) is a small DNA virus that replicates via an episomal covalently closed circular DNA (cccDNA) that serves as the transcriptional template for viral mRNAs. The host protein, CCCTC-binding factor (CTCF), is a key regulator of cellular transcription by maintaining epigenetic boundaries, nucleosome phasing, stabilisation of long-range chromatin loops and directing alternative exon splicing. We previously reported that CTCF binds two conserved motifs within Enhancer I of the HBV genome and represses viral transcription, however, the underlying mechanisms were not identified. We show that CTCF depletion in cells harbouring cccDNA-like HBV molecules and in de novo infected cells resulted in an increase in spliced transcripts, which was most notable in the abundant SP1 spliced transcript. In contrast, depletion of CTCF in cell lines with integrated HBV DNA had no effect on the abundance of viral transcripts and in line with this observation there was limited evidence for CTCF binding to viral integrants, suggesting that CTCF-regulation of HBV transcription is specific to episomal cccDNA. Analysis of HBV chromatin topology by Assay for Transposase Accessible Chromatin Sequencing (ATAC-Seq) revealed an accessible region spanning Enhancers I and II and the basal core promoter (BCP). Mutating the CTCF binding sites within Enhancer I resulted in a dramatic rearrangement of chromatin accessibility where the open chromatin region was no longer detected, indicating loss of the phased nucleosome up- and down-stream of the HBV enhancer/BCP. These data demonstrate that CTCF functions to regulate HBV chromatin conformation and nucleosomal positioning in episomal maintained cccDNA, which has important consequences for HBV transcription regulation.


Subject(s)
Chromatin , Hepatitis B virus , Chromatin/genetics , Hepatitis B virus/genetics , DNA, Circular/genetics , Nucleosomes , CCCTC-Binding Factor/genetics
9.
J Virol ; 98(1): e0119223, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38174932

ABSTRACT

Influenza viruses remain a major public health concern causing contagious respiratory illnesses that result in around 290,000-650,000 global deaths every year. Their ability to constantly evolve through antigenic shifts and drifts leads to the emergence of newer strains and resistance to existing drugs and vaccines. To combat this, there is a critical need for novel antiviral drugs through the introduction of host-targeted therapeutics. Influenza viruses encode only 14 gene products that get extensively modified through phosphorylation by a diverse array of host kinases. Reversible phosphorylation at serine, threonine, or tyrosine residues dynamically regulates the structure, function, and subcellular localization of viral proteins at different stages of their life cycle. In addition, kinases influence a plethora of signaling pathways that also regulate virus propagation by modulating the host cell environment thus establishing a critical virus-host relationship that is indispensable for executing successful infection. This dependence on host kinases opens up exciting possibilities for developing kinase inhibitors as next-generation anti-influenza therapy. To fully capitalize on this potential, extensive mapping of the influenza virus-host kinase interaction network is essential. The key focus of this review is to outline the molecular mechanisms by which host kinases regulate different steps of the influenza A virus life cycle, starting from attachment-entry to assembly-budding. By assessing the contributions of different host kinases and their specific phosphorylation events during the virus life cycle, we aim to develop a holistic overview of the virus-host kinase interaction network that may shed light on potential targets for novel antiviral interventions.


Subject(s)
Host-Pathogen Interactions , Influenza, Human , Protein Kinases , Signal Transduction , Humans , Influenza A virus/genetics , Influenza A virus/physiology , Influenza, Human/metabolism , Virus Replication , Protein Kinases/metabolism , Phosphorylation
10.
J Virol ; 97(11): e0079123, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37916833

ABSTRACT

IMPORTANCE: Human adenoviruses (HAdVs) generally cause mild and self-limiting diseases of the upper respiratory and gastrointestinal tracts but pose a serious risk to immunocompromised patients and children. Moreover, they are widely used as vectors for vaccines and vector-based gene therapy approaches. It is therefore vital to thoroughly characterize HAdV gene products and especially HAdV virulence factors. Early region 1B 55 kDa protein (E1B-55K) is a multifunctional HAdV-encoded oncoprotein involved in various viral and cellular pathways that promote viral replication and cell transformation. We analyzed the E1B-55K dependency of SUMOylation, a post-translational protein modification, in infected cells using quantitative proteomics. We found that HAdV increases overall cellular SUMOylation and that this increased SUMOylation can target antiviral cellular pathways that impact HAdV replication. Moreover, we showed that E1B-55K orchestrates the SUMO-dependent degradation of certain cellular antiviral factors. These results once more emphasize the key role of E1B-55K in the regulation of viral and cellular proteins in productive HAdV infections.


Subject(s)
Adenoviridae Infections , Adenoviruses, Human , Antiviral Restriction Factors , Humans , Adenoviridae/genetics , Adenoviridae Infections/metabolism , Adenoviruses, Human/physiology , Antiviral Restriction Factors/metabolism , Sumoylation
11.
Cell Host Microbe ; 31(9): 1507-1522.e5, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37708853

ABSTRACT

Spontaneous transcription and translation of HIV can persist during suppressive antiretroviral therapy (ART). The quantity, phenotype, and biological relevance of this spontaneously "active" reservoir remain unclear. Using multiplexed single-cell RNAflow-fluorescence in situ hybridization (FISH), we detect active HIV transcription in 14/18 people with HIV on suppressive ART, with a median of 28/million CD4+ T cells. While these cells predominantly exhibit abortive transcription, p24-expressing cells are evident in 39% of participants. Phenotypically diverse, active reservoirs are enriched in central memory T cells and CCR6- and activation-marker-expressing cells. The magnitude of the active reservoir positively correlates with total HIV-specific CD4+ and CD8+ T cell responses and with multiple HIV-specific T cell clusters identified by unsupervised analysis. These associations are particularly strong with p24-expressing active reservoir cells. Single-cell vDNA sequencing shows that active reservoirs are largely dominated by defective proviruses. Our data suggest that these reservoirs maintain HIV-specific CD4+ and CD8+ T responses during suppressive ART.


Subject(s)
CD8-Positive T-Lymphocytes , Proviruses , Humans , In Situ Hybridization, Fluorescence , Phenotype , CD4-Positive T-Lymphocytes
12.
Infect Drug Resist ; 16: 2321-2338, 2023.
Article in English | MEDLINE | ID: mdl-37155475

ABSTRACT

The urgent need for SARS-CoV-2 controls has led to a reassessment of approaches to identify and develop natural product inhibitors of zoonotic, highly virulent, and rapidly emerging viruses. There are yet no clinically approved broad-spectrum antivirals available for beta-coronaviruses. Discovery pipelines for pan-virus medications against a broad range of betacoronaviruses are therefore a priority. A variety of marine natural product (MNP) small molecules have shown inhibitory activity against viral species. Access to large data caches of small molecule structural information is vital to finding new pharmaceuticals. Increasingly, molecular docking simulations are being used to narrow the space of possibilities and generate drug leads. Combining in-silico methods, augmented by metaheuristic optimization and machine learning (ML) allows the generation of hits from within a virtual MNP library to narrow screens for novel targets against coronaviruses. In this review article, we explore current insights and techniques that can be leveraged to generate broad-spectrum antivirals against betacoronaviruses using in-silico optimization and ML. ML approaches are capable of simultaneously evaluating different features for predicting inhibitory activity. Many also provide a semi-quantitative measure of feature relevance and can guide in selecting a subset of features relevant for inhibition of SARS-CoV-2.

13.
J Virol ; 97(6): e0021423, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37223953

ABSTRACT

Even though replication and transcription of human papillomavirus type 16 (HPV16) has been intensively studied, little is known about immediate-early events of the viral life cycle due to the lack of an efficient infection model allowing genetic dissection of viral factors. We employed the recently developed infection model (Bienkowska-Haba M, Luszczek W, Myers JE, Keiffer TR, et al. 2018. PLoS Pathog 14:e1006846) to investigate genome amplification and transcription immediately after infectious delivery of viral genome to nuclei of primary keratinocytes. Using 5-ethynyl-2'-deoxyuridine (EdU) pulse-labeling and highly sensitive fluorescence in situ hybridization, we observed that the HPV16 genome is replicated and amplified in an E1- and E2-dependent manner. Knockout of E1 resulted in failure of the viral genome to replicate and amplify. In contrast, knockout of the E8^E2 repressor led to increased viral genome copy number, confirming previous reports. Genome copy control by E8^E2 was confirmed for differentiation-induced genome amplification. Lack of functional E1 had no effect on transcription from the early promoter, suggesting that viral genome replication is not required for p97 promoter activity. However, infection with an HPV16 mutant virus defective for E2 transcriptional function revealed a requirement of E2 for efficient transcription from the early promoter. In the absence of the E8^E2 protein, early transcript levels are unaltered and even decreased when normalized to genome copy number. Surprisingly, a lack of functional E8^E2 repressor did not affect E8^E2 transcript levels when normalized to genome copy number. These data suggest that the main function of E8^E2 in the viral life cycle is to control genome copy number. IMPORTANCE It is being assumed that human papillomavirus (HPV) utilizes three different modes of replication during its life cycle: initial amplification during the establishment phase, genome maintenance, and differentiation-induced amplification. However, HPV16 initial amplification was never formally proven due to a lack of an infection model. Using our recently established infection model (Bienkowska-Haba M, Luszczek W, Myers JE, Keiffer TR, et al. 2018. PLoS Pathog 14:e1006846), we demonstrate herein that viral genome is indeed amplified in an E1- and E2-dependent manner. Furthermore, we find that the main function of the viral repressor E8^E2 is to control viral genome copy number. We did not find evidence that it regulates its own promoter in a negative feedback loop. Our data also suggest that the E2 transactivator function is required for stimulation of early promoter activity, which has been debated in the literature. Overall, this report confirms the usefulness of the infection model for studying early events of the HPV life cycle using mutational approaches.


Subject(s)
Genome, Viral , Human papillomavirus 16 , Papillomavirus Infections , Humans , Human papillomavirus 16/genetics , Human papillomavirus 16/metabolism , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomavirus Infections/virology , Virus Replication/genetics , Genome, Viral/genetics , NIH 3T3 Cells , Animals , Mice , Cell Line , HEK293 Cells , Viral Transcription/genetics
14.
ACS Infect Dis ; 8(5): 958-968, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35502456

ABSTRACT

HIV-1 integrated long terminal repeat (LTR) promoter activity is modulated by folding of its G-rich region into non-canonical nucleic acids structures, such as G-quadruplexes (G4s), and their interaction with cellular proteins. Here, by a combined pull-down/mass spectrometry/Western-blot approach, we identified the fused in liposarcoma (FUS) protein and found it to preferentially bind and stabilize the least stable and bulged LTR G4, especially in the cell environment. The outcome of this interaction is the down-regulation of viral transcription, as assessed in a reporter assay with LTR G4 mutants in FUS-silencing conditions. These data indicate that the complexity and dynamics of HIV-1 LTR G4s are much greater than previously envisaged. The G-rich LTR region, with its diverse G4 landscape and multiple cell protein interactions, stands out as prime sensing center for the fine regulation of viral transcription. This region thus represents a rational antiviral target for inhibiting both the actively transcribing and latent viruses.


Subject(s)
G-Quadruplexes , HIV Long Terminal Repeat , HIV-1 , HIV-1/genetics , Humans , Promoter Regions, Genetic , RNA-Binding Protein FUS
15.
Molecules ; 27(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35630700

ABSTRACT

Chronic hepatitis induced by hepatitis B virus (HBV) infection is a serious public health problem, leading to hepatic cirrhosis and liver cancer. Although the currently approved medications can reliably decrease the virus load and prevent the development of hepatic diseases, they fail to induce durable off-drug control of HBV replication in the majority of patients. The roots of Isatis indigotica Fortune ex Lindl., a traditional Chinese medicine, were frequently used for the prevention of viral disease in China. In the present study, (-)-lariciresinol ((-)-LRSL), isolated from the roots of Isatis indigotica Fortune ex Lindl., was found to inhibit HBV DNA replication of both wild-type and nucleos(t)ide analogues (NUCs)-resistant strains in vitro. Mechanism studies revealed that (-)-LRSL could block RNA production after treatment, followed by viral proteins, and then viral particles and DNA. Promoter reporter assays and RNA decaying dynamic experiments indicated that (-)-LRSL mediated HBV RNA reduction was mainly due to transcriptional inhibition rather than degradation. Moreover, (-)-LRSL in a dose-dependent manner also inhibited other animal hepadnaviruses, including woodchuck hepatitis virus (WHV) and duck hepatitis B virus (DHBV). Combining the analysis of RNA-seq, we further found that the decrease in HBV transcriptional activity by (-)-LRSL may be related to hepatocyte nuclear factor 1α (HNF1α). Taken together, (-)-LRSL represents a novel chemical entity that inhibits HBV replication by regulating HNF1α mediated HBV transcription, which may provide a new perspective for HBV therapeutics.


Subject(s)
Hepatitis B virus , Isatis , Animals , Furans , Hepatitis B virus/metabolism , Humans , Isatis/genetics , Lignans , RNA/metabolism , Viral Transcription
16.
Microbiol Spectr ; 10(3): e0012322, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35435752

ABSTRACT

Kayviruses are polyvalent broad host range staphylococcal phages with a potential to combat staphylococcal infections. However, the implementation of rational phage therapy in medicine requires a thorough understanding of the interactions between bacteriophages and pathogens at omics level. To evaluate the effect of a phage used in therapy on its host bacterium, we performed differential transcriptomic analysis by RNA-Seq from bacteriophage K of genus Kayvirus infecting two Staphylococcus aureus strains, prophage-less strain SH1000 and quadruple lysogenic strain Newman. The temporal transcriptional profile of phage K was comparable in both strains except for a few loci encoding hypothetical proteins. Stranded sequencing revealed transcription of phage noncoding RNAs that may play a role in the regulation of phage and host gene expression. The transcriptional response of S. aureus to phage K infection resembles a general stress response with differential expression of genes involved in a DNA damage response. The host transcriptional changes involved upregulation of nucleotide, amino acid and energy synthesis and transporter genes and downregulation of host transcription factors. The interaction of phage K with variable genetic elements of the host showed slight upregulation of gene expression of prophage integrases and antirepressors. The virulence genes involved in adhesion and immune evasion were only marginally affected, making phage K suitable for therapy. IMPORTANCE Bacterium Staphylococcus aureus is a common human and veterinary pathogen that causes mild to life-threatening infections. As strains of S. aureus are becoming increasingly resistant to multiple antibiotics, the need to search for new therapeutics is urgent. A promising alternative to antibiotic treatment of staphylococcal infections is a phage therapy using lytic phages from the genus Kayvirus. Here, we present a comprehensive view on the phage-bacterium interactions on transcriptomic level that improves the knowledge of molecular mechanisms underlying the Kayvirus lytic action. The results will ensure safer usage of the phage therapeutics and may also serve as a basis for the development of new antibacterial strategies.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Prophages/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/therapy , Staphylococcus Phages/genetics , Transcriptome
17.
Methods ; 201: 15-25, 2022 05.
Article in English | MEDLINE | ID: mdl-33882362

ABSTRACT

The replication of SARS-CoV-2 and other coronaviruses depends on transcription of negative-sense RNA intermediates that serve as the templates for the synthesis of positive-sense genomic RNA (gRNA) and multiple different subgenomic mRNAs (sgRNAs) encompassing fragments arising from discontinuous transcription. Recent studies have aimed to characterize the expression of subgenomic SARS-CoV-2 transcripts in order to investigate their clinical significance. Here, we describe a novel panel of reverse transcription droplet digital PCR (RT-ddPCR) assays designed to specifically quantify multiple different subgenomic SARS-CoV-2 transcripts and distinguish them from transcripts that do not arise from discontinuous transcription at each locus. These assays can be applied to samples from SARS-CoV-2 infected patients to better understand the regulation of SARS-CoV-2 transcription and how different sgRNAs may contribute to viral pathogenesis and clinical disease severity.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Humans , Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Viral/analysis , RNA, Viral/genetics , Reverse Transcription , SARS-CoV-2/genetics
18.
J Virol Methods ; 301: 114436, 2022 03.
Article in English | MEDLINE | ID: mdl-34929204

ABSTRACT

BACKGROUND: Next Generation Sequencing allows for deep analysis of transcriptional activity in cells and tissues, however it is still a cost intensive method that demands well versed data handling. Reverse transcription quantitative PCR (RT-qPCR) is the most commonly used method to measure gene expression levels, however the information gathered is quite small in comparison to NGS. A newer method called nanoString allows for highly multiplexed gene expression analysis by detecting mRNAs without the use of enzymes for reverse transcription or amplification even for single cells or low input material. The method can be done in 1.5 days and data are quickly analyzed by the accompanied user friendly software. Our aim was to investigate this new method and compare it to the existing alternatives, while investigating murine Cytomegalovirus (mCMV) infection and latency. METHODS: mCMV infected murine embryonic fibroblasts (MEF), lung and salivary glands from BALB/c mice were evaluated at different stages of infection. A set of 30 custom designed nanoString probes were tested, 20 probes specific for mCMV genes, 6 probes for host genes known to be influenced by viral infection and 4 reference gene specific probes. nanoString counts were compared to published RNA-Seq RPKM. RESULTS: We found that nanoString can be used for analysis of cytomegalovirus gene expression during acute infection in vitro and in vivo, both for virus specific and host genes. Although some transcripts show different expression rates in comparison to NGS data, the most abundant transcripts are comparable. When tissues are infected, there are significantly fewer transcripts than in MEFs, and consistent with previous work there are significant differences in relevant abundance between MEF and tissues. We were unable to detect our viral transcripts of interest in latently infected tissue. CONCLUSIONS: For viruses with annotated transcriptomes, nanoString allows simultaneous quantitation of multiple virus and host genes. One huge advantage of the platform is rapid turnaround and simplicity of analysis. It should prove to be very useful to explore host virus interactions during acute infection, but it is unclear if it has adequate sensitivity for analysis during latency in immunocompetent mice.


Subject(s)
Cytomegalovirus Infections , Muromegalovirus , Animals , Cytomegalovirus/genetics , Mice , Mice, Inbred BALB C , Muromegalovirus/genetics , Transcriptome
19.
J Biol Chem ; 297(4): 101233, 2021 10.
Article in English | MEDLINE | ID: mdl-34562448

ABSTRACT

Clinical and epidemiological studies support a role for vitamin D in suppressing hepatitis B virus (HBV). This antiviral role of vitamin D is widely attributed to vitamin D receptor (VDR)/retinoid X receptor-mediated regulation of host immunomodulatory genes through vitamin D response elements (VDREs) in their promoters. Here, we investigated the ability of calcitriol (1α,25-dihydroxyvitamin D3, metabolically activated vitamin D) to directly regulate HBV activity through this signaling pathway. We observed that calcitriol selectively inhibited only the HBV core promoter without affecting the HBV-PreS1, HBV-PreS2/S, or HBx promoters. We then identified a VDRE cluster in the HBV core promoter that is highly conserved across most HBV genotypes. Disruption of this VDRE cluster abrogated calcitriol-mediated suppression of the HBV core promoter. Furthermore, we showed that VDR interacts directly with the VDRE cluster in the HBV core promoter independent of retinoid X receptor. This demonstrates that calcitriol inhibits HBV core promoter activity through a noncanonical calcitriol-activated VDR pathway. Finally, we observed that calcitriol suppressed expression of the canonical HBV core promoter transcripts, pregenomic RNA, and precore RNA in multiple HBV cell culture models. In addition, calcitriol inhibited the secretion of hepatitis B "e" antigen and hepatitis B surface antigen (HBV-encoded proteins linked to poor disease prognosis), without affecting virion secretion. Our findings identify VDR as a novel regulator of HBV core promoter activity and also explain at least in part the correlation of vitamin D levels to HBV activity observed in clinical studies. Furthermore, this study has implications on the potential use of vitamin D along with anti-HBV therapies, and lays the groundwork for studies on vitamin D-mediated regulation of viruses through VDREs in virus promoters.


Subject(s)
Calcitriol/pharmacology , Hepatitis B e Antigens/biosynthesis , Hepatitis B virus/metabolism , Promoter Regions, Genetic , Receptors, Calcitriol/metabolism , Retinoid X Receptors/metabolism , Hep G2 Cells , Hepatitis B/drug therapy , Hepatitis B/genetics , Hepatitis B/metabolism , Hepatitis B e Antigens/genetics , Hepatitis B virus/genetics , Humans , Receptors, Calcitriol/genetics , Retinoid X Receptors/genetics
20.
J Biol Chem ; 297(4): 101218, 2021 10.
Article in English | MEDLINE | ID: mdl-34562452

ABSTRACT

The SARS-CoV-2 replication-transcription complex is an assembly of nonstructural viral proteins that collectively act to reproduce the viral genome and generate mRNA transcripts. While the structures of the individual proteins involved are known, how they assemble into a functioning superstructure is not. Applying molecular modeling tools, including protein-protein docking, to the available structures of nsp7-nsp16 and the nucleocapsid, we have constructed an atomistic model of how these proteins associate. Our principal finding is that the complex is hexameric, centered on nsp15. The nsp15 hexamer is capped on two faces by trimers of nsp14/nsp16/(nsp10)2, which then recruit six nsp12/nsp7/(nsp8)2 polymerase subunits to the complex. To this, six subunits of nsp13 are arranged around the superstructure, but not evenly distributed. Polymerase subunits that coordinate dimers of nsp13 are capable of binding the nucleocapsid, which positions the 5'-UTR TRS-L RNA over the polymerase active site, a state distinguishing transcription from replication. Analysis of the viral RNA path through the complex indicates the dsRNA that exits the polymerase passes over the nsp14 exonuclease and nsp15 endonuclease sites before being unwound by a convergence of zinc fingers from nsp10 and nsp14. The template strand is then directed away from the complex, while the nascent strand is directed to the sites responsible for mRNA capping. The model presents a cohesive picture of the multiple functions of the coronavirus replication-transcription complex and addresses fundamental questions related to proofreading, template switching, mRNA capping, and the role of the endonuclease.


Subject(s)
Endoribonucleases/metabolism , Models, Molecular , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Dimerization , Endoribonucleases/chemistry , Endoribonucleases/genetics , Humans , Molecular Docking Simulation , Protein Structure, Quaternary , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , SARS-CoV-2/isolation & purification , Transcription, Genetic , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL