Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 357
Filter
2.
CNS Neurosci Ther ; 30(7): e14828, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38946709

ABSTRACT

OBJECTIVE: Wallerian degeneration (WD) of the middle cerebellar peduncles (MCPs) following pontine infarction is a rare secondary degenerative neurological condition. Due to its infrequency, there is limited research on its characteristics. METHODS: This study aims to present three cases of WD of MCPs following pontine infarction and to analyze the prognosis, clinical manifestations, and neuroimaging features by amalgamating our cases with previously reported ones. RESULTS: The cohort consisted of 25 cases, comprising 18 men and 7 women aged 29 to 77 years (mean age: 66.2 years). The majority of patients (94%) exhibit risk factors for cerebrovascular disease, with hypertension being the primary risk factor. Magnetic resonance imaging (MRI) can detect WD of MCPs within a range of 21 days to 12 months following pontine infarction. This degeneration is characterized by bilateral symmetric hyperintensities on T2/FLAIR-weighted images (WI) lesions in the MCPs. Moreover, restricted diffusion, with hyperintensity on diffusion-weighted imaging (DWI) and low apparent diffusion coefficient (ADC) signal intensity may be observed as early as 21 days after the infarction. Upon detection of WD, it was observed that 20 patients (80%) remained asymptomatic during subsequent clinic visits, while four (16%) experienced a worsening of pre-existing symptoms. CONCLUSIONS: These findings underscore the importance of neurologists enhancing their understanding of this condition by gaining fresh insights into the neuroimaging characteristics, clinical manifestations, and prognosis of individuals with WD of bilateral MCPs.


Subject(s)
Brain Stem Infarctions , Middle Cerebellar Peduncle , Pons , Wallerian Degeneration , Humans , Male , Female , Middle Aged , Aged , Adult , Wallerian Degeneration/diagnostic imaging , Wallerian Degeneration/pathology , Pons/diagnostic imaging , Pons/pathology , Brain Stem Infarctions/diagnostic imaging , Middle Cerebellar Peduncle/diagnostic imaging , Middle Cerebellar Peduncle/pathology , Magnetic Resonance Imaging , Neuroimaging/methods
3.
Hand Clin ; 40(3): 389-397, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972683

ABSTRACT

Axons successfully repaired with polyethylene glycol (PEG) fusion tecnology restored axonal continuity thereby preventing their Wallerian degeneration and minimizing muscle atrophy. PEG fusion studies in animal models and preliminary clinical trials involving patients with digital nerve repair have shown promise for this therapeutic approach. PEG fusion is safe to perform, and given the enormous potential benefits, there is no reason not to explore its therapeutic potential.


Subject(s)
Peripheral Nerve Injuries , Polyethylene Glycols , Humans , Polyethylene Glycols/therapeutic use , Polyethylene Glycols/administration & dosage , Peripheral Nerve Injuries/surgery , Animals , Nerve Regeneration
4.
Clin Neuroradiol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918242

ABSTRACT

PURPOSE: After vertical parasagittal hemispherotomy a restricted diffusion is often seen ipsilaterally and even distant from the adjacent resection margin. This retrospective cohort study analyses the anatomic site and the time course of the diffusion restriction after vertical parasagittal hemispherotomy. METHODS: Fifty-nine patients were included into this study, all of them having had one pre-operative and at least one post-operative MRI, including diffusion imaging at b­values of 0 and 1000 s/mm2 with a calculated ADC. RESULTS: Diffusion restriction occurred exclusively on the operated site in all patients. In the basal ganglia, diffusion restriction was present in 37 of 38 patients at the first postoperative day with a duration of 38 days. In the midbrain, the posterior limb of the internal capsule and the thalamus, a restricted diffusion became postoperatively prominent at day 9 in all three localizations, with a duration of 36, 34 and 36 days, respectively. The incidence of thalamic lesions was lower if a preoperative damage had occurred. CONCLUSION: The restricted diffusion in the basal ganglia resembles direct effects of the operation at its edges, whereas the later appearing diffusion restriction in the midbrain and the posterior limb of the internal capsule rather belong to a degeneration of the descending fibers being transected by the hemispherotomy in the sense of a Wallerian degeneration. The presence of preoperative hemispheric lesions influences the development of diffusion restriction at subacute fiber degeneration.

5.
ACS Nano ; 18(26): 16556-16576, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38889128

ABSTRACT

Critical peripheral nerve deficiencies present as one of the most formidable conundrums in the realm of clinical medicine, frequently culminating in structural degradation and derangement of the neuromuscular apparatus. Engineered extracellular vesicles (EVs) exhibit the potential to ameliorate nerve impairments. However, the advent of Wallerian degeneration (WD), an inexorable phenomenon that ensues post peripheral nerve injury, serves as an insurmountable impediment to the direct therapeutic efficacy of EVs. In this investigation, we have fashioned a dynamic network for the conveyance of PTEN-induced kinase 1 (PINK1) mRNA (E-EV-P@HPCEP) using an adaptive hydrogel with reactive oxygen species (ROS)/Ca2+ responsive ability as the vehicle, bearing dual-targeted, engineered EVs. This intricate system is to precisely deliver PINK1 to senescent Schwann cells (SCs) while concurrently orchestrating a transformation in the inflammatory-senescent milieu following injury, thereby stymying the progression of WD in peripheral nerve fibers through the stimulation of autophagy within the mitochondria of the injured cells and the maintenance of mitochondrial mass equilibrium. WD, conventionally regarded as an inexorable process, E-EV-P@HPCEP achieved functionalized EV targeting, orchestrating a dual-response dynamic release mechanism via boronate ester bonds and calcium chelation, effectuating an enhancement in the inflammatory-senescent microenvironment, which expedites the therapeutic management of nerve deficiencies and augments the overall reparative outcome.


Subject(s)
Calcium , Hydrogels , RNA, Messenger , Reactive Oxygen Species , Schwann Cells , Hydrogels/chemistry , Hydrogels/pharmacology , Reactive Oxygen Species/metabolism , Calcium/metabolism , Calcium/chemistry , Animals , RNA, Messenger/metabolism , RNA, Messenger/genetics , Schwann Cells/metabolism , Protein Kinases/metabolism , Humans , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/pathology , Rats , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism
6.
Biomedicines ; 12(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38927464

ABSTRACT

Nerve injury is a common condition that occurs as a result of trauma, iatrogenic injury, or long-lasting stimulation. Unlike the central nervous system (CNS), the peripheral nervous system (PNS) has a strong capacity for self-repair and regeneration. Peripheral nerve injury results in the degeneration of distal axons and myelin sheaths. Macrophages and Schwann cells (SCs) can phagocytose damaged cells. Wallerian degeneration (WD) makes the whole axon structure degenerate, creating a favorable regenerative environment for new axons. After nerve injury, macrophages, neutrophils and other cells are mobilized and recruited to the injury site to phagocytose necrotic cells and myelin debris. Pro-inflammatory and anti-inflammatory factors involved in the inflammatory response provide a favorable microenvironment for peripheral nerve regeneration and regulate the effects of inflammation on the body through relevant signaling pathways. Previously, inflammation was thought to be detrimental to the body, but further research has shown that appropriate inflammation promotes nerve regeneration, axon regeneration, and myelin formation. On the contrary, excessive inflammation can cause nerve tissue damage and pathological changes, and even lead to neurological diseases. Therefore, after nerve injury, various cells in the body interact with cytokines and chemokines to promote peripheral nerve repair and regeneration by inhibiting the negative effects of inflammation and harnessing the positive effects of inflammation in specific ways and at specific times. Understanding the interaction between neuroinflammation and nerve regeneration provides several therapeutic ideas to improve the inflammatory microenvironment and promote nerve regeneration.

7.
Handb Clin Neurol ; 201: 1-17, 2024.
Article in English | MEDLINE | ID: mdl-38697733

ABSTRACT

Peripheral nerves are functional networks in the body. Disruption of these networks induces varied functional consequences depending on the types of nerves and organs affected. Despite the advances in microsurgical repair and understanding of nerve regeneration biology, restoring full functions after severe traumatic nerve injuries is still far from achieved. While a blunted growth response from axons and errors in axon guidance due to physical barriers may surface as the major hurdles in repairing nerves, critical additional cellular and molecular aspects challenge the orderly healing of injured nerves. Understanding the systematic reprogramming of injured nerves at the cellular and molecular levels, referred to here as "hallmarks of nerve injury regeneration," will offer better ideas. This chapter discusses the hallmarks of nerve injury and regeneration and critical points of failures in the natural healing process. Potential pharmacological and nonpharmacological intervention points for repairing nerves are also discussed.


Subject(s)
Nerve Regeneration , Peripheral Nerve Injuries , Animals , Humans , Axons/physiology , Axons/pathology , Nerve Regeneration/physiology , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/physiopathology , Peripheral Nerves
8.
Toxicology ; 504: 153812, 2024 May.
Article in English | MEDLINE | ID: mdl-38653376

ABSTRACT

Neurotoxic organophosphorus compounds can induce a type of delayed neuropathy in humans and sensitive animals, known as organophosphorus-induced delayed neuropathy (OPIDN). OPIDN is characterized by axonal degeneration akin to Wallerian-like degeneration, which is thought to be caused by increased intra-axonal Ca2+ concentrations. This study was designed to investigate that deregulated cytosolic Ca2+ may function downstream of mitodysfunction in activating Wallerian-like degeneration and necroptosis in OPIDN. Adult hens were administrated a single dosage of 750 mg/kg tri-ortho-cresyl phosphate (TOCP), and then sacrificed at 1 day, 5 day, 10 day and 21 day post-exposure, respectively. Sciatic nerves and spinal cords were examined for pathological changes and proteins expression related to Wallerian-like degeneration and necroptosis. In vitro experiments using differentiated neuro-2a (N2a) cells were conducted to investigate the relationship among mitochondrial dysfunction, Ca2+ influx, axonal degeneration, and necroptosis. The cells were co-administered with the Ca2+-chelator BAPTA-AM, the TRPA1 channel inhibitor HC030031, the RIPK1 inhibitor Necrostatin-1, and the mitochondrial-targeted antioxidant MitoQ along with TOCP. Results demonstrated an increase in cytosolic calcium concentration and key proteins associated with Wallerian degeneration and necroptosis in both in vivo and in vitro models after TOCP exposure. Moreover, co-administration with BATPA-AM or HC030031 significantly attenuated the loss of NMNAT2 and STMN2 in N2a cells, as well as the upregulation of SARM1, RIPK1 and p-MLKL. In contrast, Necrostatin-1 treatment only inhibited the TOCP-induced elevation of p-MLKL. Notably, pharmacological protection of mitochondrial function with MitoQ effectively alleviated the increase in intracellular Ca2+ following TOCP and mitigated axonal degeneration and necroptosis in N2a cells, supporting mitochondrial dysfunction as an upstream event of the intracellular Ca2+ imbalance and neuronal damage in OPIDN. These findings suggest that mitochondrial dysfunction post-TOCP intoxication leads to an elevated intracellular Ca2+ concentration, which plays a pivotal role in the initiation and development of OPIDN through inducing SARM1-mediated axonal degeneration and activating the necroptotic signaling pathway.


Subject(s)
Calcium , Chickens , Mitochondria , Necroptosis , Wallerian Degeneration , Animals , Necroptosis/drug effects , Calcium/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Wallerian Degeneration/chemically induced , Wallerian Degeneration/pathology , Wallerian Degeneration/metabolism , Female , Mice , Tritolyl Phosphates/toxicity , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology , Sciatic Nerve/drug effects , Sciatic Nerve/pathology , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/etiology , Organophosphorus Compounds/toxicity , Organophosphorus Compounds/pharmacology , Cell Line, Tumor
9.
J Clin Med ; 13(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38610734

ABSTRACT

Secondary neurodegeneration refers to the final result of several simultaneous and sequential mechanisms leading to the loss of substance and function in brain regions connected to the site of a primary injury. Stroke is one of the most frequent primary injuries. Among the subtypes of post-stroke secondary neurodegeneration, axonal degeneration of the corticospinal tract, also known as Wallerian degeneration, is the most known, and it directly impacts motor functions, which is crucial for the motor outcome. The timing of its appearance in imaging studies is usually considered late (over 4 weeks), but some diffusion-based magnetic resonance imaging (MRI) techniques, as diffusion tensor imaging (DTI), might show alterations as early as within 7 days from the stroke. The different sequential pathological stages of secondary neurodegeneration provide an interpretation of the signal changes seen by MRI in accordance with the underlying mechanisms of axonal necrosis and repair. Depending on the employed MRI technique and on the timing of imaging, different rates and thresholds of Wallerian degeneration have been provided in the literature. In fact, three main pathological stages of Wallerian degeneration are recognizable-acute, subacute and chronic-and MRI might show different changes: respectively, hyperintensity on T2-weighted sequences with corresponding diffusion restriction (14-20 days after the injury), followed by transient hypointensity of the tract on T2-weighted sequences, and by hyperintensity and atrophy of the tract on T2-weighted sequences. This is the main reason why this review is focused on MRI signal changes underlying Wallerian degeneration. The identification of secondary neurodegeneration, and in particular Wallerian degeneration, has been proposed as a prognostic indicator for motor outcome after stroke. In this review, the main mechanisms and neuroimaging features of Wallerian degeneration in adults are addressed, focusing on the time and mechanisms of tissue damage underlying the signal changes in MRI.

10.
Adv Sci (Weinh) ; 11(19): e2309306, 2024 May.
Article in English | MEDLINE | ID: mdl-38483934

ABSTRACT

Peripheral nerve deficits give rise to motor and sensory impairments within the limb. The clinical restoration of extensive segmental nerve defects through autologous nerve transplantation often encounters challenges such as axonal mismatch and suboptimal functional recovery. These issues may stem from the limited regenerative capacity of proximal axons and the subsequent Wallerian degeneration of distal axons. To achieve the integration of sensory and motor functions, a spatially differential plasmid DNA (pDNA) dual-delivery nanohydrogel conduit scaffold is devised. This innovative scaffold facilitates the localized administration of the transforming growth factor ß (TGF-ß) gene in the proximal region to accelerate nerve regeneration, while simultaneously delivering nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) to the distal region to mitigate Wallerian degeneration. By promoting autonomous and selective alignment of nerve fiber gap sutures via structure design, the approach aims to achieve a harmonious unification of nerve regeneration, neuromotor function, and sensory recovery. It is anticipated that this groundbreaking technology will establish a robust platform for gene delivery in tissue engineering.


Subject(s)
Genetic Therapy , Nerve Regeneration , Nerve Regeneration/physiology , Animals , Genetic Therapy/methods , Rats , Disease Models, Animal , Tissue Scaffolds/chemistry , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Rats, Sprague-Dawley , Nerve Fibers/metabolism , Tissue Engineering/methods , Peripheral Nerve Injuries/therapy , Plasmids/genetics
11.
Cells ; 13(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38334634

ABSTRACT

Few models allow the study of neurite damage in the human central nervous system. We used here dopaminergic LUHMES neurons to establish a culture system that allows for (i) the observation of highly enriched neurites, (ii) the preparation of the neurite fraction for biochemical studies, and (iii) the measurement of neurite markers and metabolites after axotomy. LUHMES-based spheroids, plated in culture dishes, extended neurites of several thousand µm length, while all somata remained aggregated. These cultures allowed an easy microscopic observation of live or fixed neurites. Neurite-only cultures (NOC) were produced by cutting out the still-aggregated somata. The potential application of such cultures was exemplified by determinations of their protein and RNA contents. For instance, the mitochondrial TOM20 protein was highly abundant, while nuclear histone H3 was absent. Similarly, mitochondrial-encoded RNAs were found at relatively high levels, while the mRNA for a histone or the neuronal nuclear marker NeuN (RBFOX3) were relatively depleted in NOC. Another potential use of NOC is the study of neurite degeneration. For this purpose, an algorithm to quantify neurite integrity was developed. Using this tool, we found that the addition of nicotinamide drastically reduced neurite degeneration. Also, the chelation of Ca2+ in NOC delayed the degeneration, while inhibitors of calpains had no effect. Thus, NOC proved to be suitable for biochemical analysis and for studying degeneration processes after a defined cut injury.


Subject(s)
Neurites , Neurons , Humans , Neurites/metabolism , Cells, Cultured , Axotomy
12.
Clin Neurol Neurosurg ; 237: 108131, 2024 02.
Article in English | MEDLINE | ID: mdl-38308937

ABSTRACT

The objective of this review was to analyze the pathophysiological role of endoneurial inflammatory edema in initial stages of classic Guillain-Barré syndrome (GBS), arbitrarily divided into very early GBS (≤ 4 days after symptom onset) and early GBS (≤ 10 days). Classic GBS, with variable degree of flaccid and areflexic tetraparesis, encompasses demyelinating and axonal forms. Initial autopsy studies in early GBS have demonstrated that endoneurial inflammatory edema of proximal nerve trunks, particularly spinal nerves, is the outstanding lesion. Variable permeability of the blood-nerve barrier dictates such lesion topography. In proximal nerve trunks possessing epi-perineurium, edema may increase the endoneurial fluid pressure causing ischemic changes. Critical analysis the first pathological description of the axonal form GBS shows a combination of axonal degeneration and demyelination in spinal roots, and pure Wallerian-like degeneration in peripheral nerve trunks. This case might be reclassified as demyelinating GBS with secondary axonal degeneration. Both in acute motor axonal neuropathy and acute motor-sensory axonal neuropathy, Wallerian-like degeneration of motor fibers predominates in the distal part of ventral spinal roots abutting the dura mater, another feature re-emphasizing the pathogenic relevance of this area. Electrophysiological and imaging studies also point to a predominant alteration at the spinal nerve level, which is a hotspot in any early GBS subtype. Serum biomarkers of axonal damage, including neurofilament light chain and peripherin, are increased in the great majority of patients with any early GBS subtype; endoneurial ischemia of proximal nerve trunks could contribute to such axonal damage. It is concluded that inflammatory edema of proximal nerve trunks is an essential pathogenic event in early GBS, which has a tangible impact for accurate approach to the disease.


Subject(s)
Guillain-Barre Syndrome , Humans , Guillain-Barre Syndrome/complications , Guillain-Barre Syndrome/diagnosis , Spinal Nerve Roots , Autopsy , Axons , Edema
13.
Acta Neurol Belg ; 124(3): 911-918, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38361171

ABSTRACT

INTRODUCTION: Dyke-Davidoff-Masson Syndrome (DDMS) is a clinical syndrome that causes different clinical symptoms and is defined by volume decrement in one cerebral hemisphere. In this study, we aimed to evaluate the involvement of the normal-appearing contralateral hemisphere in 16 pediatric patients with DDMS using diffusion-weighted imaging (DWI). MATERIALS AND METHODS: Brain MRIs were retrospectively reviewed between January 2014 and January 2023. Sixteen pediatric patients radiologically compatible with DDMS were included in the study. Sixteen children who had undergone brain MRI, most commonly for headaches and whose MRI findings had been completely normal, were included as the control group. Apparent diffusion coefficient (ADC) values of the deep gray and white matter of the normal-appearing hemisphere in the patient group were calculated and compared with that of the control group. RESULTS: The ADC values of the gray and white matters of the patient and control groups were not statistically different. However, in the patient group, the ADC values of the gray and white matters in males were remarkably lower than in females (p = 0.038, p = 0.037, respectively). CONCLUSION: The difference in the ADC values of the contralateral hemisphere between females and males in the patient group suggests that the normal-appearing hemisphere may have been affected by DDMS. Although, the exact mechanism of this effect is not known. Therefore, in patients with DDMS, contralateral hemisphere involvement in cerebral hemiatrophy and hemispherectomy should be evaluated clinically and radiologically.


Subject(s)
Diffusion Magnetic Resonance Imaging , Humans , Male , Female , Child , Retrospective Studies , Diffusion Magnetic Resonance Imaging/methods , Adolescent , Child, Preschool , White Matter/diagnostic imaging , White Matter/pathology , Functional Laterality/physiology , Gray Matter/diagnostic imaging , Gray Matter/pathology
14.
Proteomes ; 12(1)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38250814

ABSTRACT

Billions of cells die in us every hour, and our tissues do not shrink because there is a natural regulation where Cell Death (CD) is balanced with cell division. The process in which cells eliminate themselves in a controlled manner is called Programmed Cell Death (PCD). The PCD plays an important role during embryonic development, in maintaining homeostasis of the body's tissues, and in the elimination of damaged cells, under a wide range of physiological and developmental stimuli. A multitude of protein mediators of PCD have been identified and signals have been found to utilize common pathways elucidating the proteins involved. This narrative review focuses on caspase-dependent and caspase-independent PCD pathways. Included are studies of caspase-dependent PCD such as Anoikis, Catastrophe Mitotic, Pyroptosis, Emperitosis, Parthanatos and Cornification, and Caspase-Independent PCD as Wallerian Degeneration, Ferroptosis, Paraptosis, Entosis, Methuosis, and Extracellular Trap Abnormal Condition (ETosis), as well as neutrophil extracellular trap abnormal condition (NETosis) and Eosinophil Extracellular Trap Abnormal Condition (EETosis). Understanding PCD from those reported in this review could shed substantial light on the processes of biological homeostasis. In addition, identifying specific proteins involved in these processes is mandatory to identify molecular biomarkers, as well as therapeutic targets. This knowledge could provide the ability to modulate the PCD response and could lead to new therapeutic interventions in a wide range of diseases.

15.
J Neurotrauma ; 41(9-10): 1240-1252, 2024 May.
Article in English | MEDLINE | ID: mdl-38204213

ABSTRACT

While Wallerian degeneration (WD) is a crucial pathological process induced with spinal cord injury (SCI), its underlying mechanisms is still understudied. In this study, we aim to assess structural alterations and clinical significance of WD in the cervical cord following SCI using multi-modal magnetic resonance imaging (MRI), which combines T2*-weighted imaging and diffusion tensor imaging (DTI). T2*-weighted images allow segmentation of anatomical structures and the detection of WD on macrostructural level. DTI, on the other hand, can identify the reduction in neuroaxonal integrity by measuring the diffusion of water molecules on the microstructural level. In this prospective study, 35 SCI patients (19 paraplegic and 16 tetraplegic patients) and 12 healthy controls were recruited between July 2020 and May 2022. The hyperintensity voxels in the dorsal column was manually labeled as WD on T2*-weighted images. The mean cross-sectional area (CSA) and mean DTI indexes of WD at the C2 level were calculated and compared between groups. Correlation analysis was used to determine the associations of the magnitude of WD with lesion characteristics and clinical outcomes. Compared with controls, SCI patients showed evident hyperintensity (35/35) and decreased neuroaxonal integrity (p < 0.05) within the dorsal column at the C2 level. A higher neurological level of injury was associated with a larger mean CSA and reduction in neuroaxonal integrity within WD (p < 0.05). Smaller total and dorsal tissue bridges were related to greater mean CSA and lower fractional anisotropy values in WD (p < 0.05), respectively. Moreover, SCI participants with significantly larger CSAs and significantly lower microstructural integrity had worse sensory outcomes (p < 0.05). This comprehensive evaluation of WD can help us better understand the mechanisms of WD, monitor progression, and assess the effectiveness of therapeutic interventions after SCI.


Subject(s)
Cervical Cord , Spinal Cord Injuries , Wallerian Degeneration , Humans , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/complications , Spinal Cord Injuries/pathology , Male , Wallerian Degeneration/diagnostic imaging , Wallerian Degeneration/etiology , Wallerian Degeneration/pathology , Female , Adult , Middle Aged , Cervical Cord/diagnostic imaging , Cervical Cord/injuries , Cervical Cord/pathology , Prospective Studies , Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Young Adult
16.
Autophagy ; 20(1): 29-44, 2024 01.
Article in English | MEDLINE | ID: mdl-37561040

ABSTRACT

ABBREVIATIONS: AAV: adeno-associated virus; ATF3: activating transcription factor 3; ATG7: autophagy related 7; AVIL: advillin; cADPR: cyclic ADP ribose; CALC: calcitonin/calcitonin-related polypeptide; CMT: Charcot-Marie-Tooth disease; cKO: conditional knockout; DEG: differentially expressed gene; DRG: dorsal root ganglion; FE-SEM: field emission scanning electron microscopy; IF: immunofluorescence; NCV: nerve conduction velocity; PVALB: parvalbumin; RAG: regeneration-associated gene; ROS: reactive oxygen species; SARM1: sterile alpha and HEAT/Armadillo motif containing 1; SYN1: synapsin I.


Subject(s)
Calcitonin , Charcot-Marie-Tooth Disease , Armadillo Domain Proteins/genetics , Autophagy , Axons , Cytoskeletal Proteins/genetics , Reactive Oxygen Species , Animals , Mice
17.
Journal of Clinical Neurology ; (6): 120-124, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1019242

ABSTRACT

Objective To investigate the clinical and imaging features of adult brain stroke with Wallerian degeneration.Methods The clinical and imaging data of 3 adult patients with post-stroke Wallerian degeneration were retrospectively analyzed,and the literature was reviewed.Results All the three patients had a history of stroke,and the disease recurred several months later.Head MRI examination showed abnormal signals in the pontine,which were consistent with the disfigurement of the pyramidal tract of the primary lesion.Combined with the clinical symptoms of the patients,they were diagnosed as post-stroke Wallerian degeneration.Conclusions Patients with Wallerian degeneration after stroke may show changes in clinical symptoms,and are easily misdiagnosed as cerebral infarction,often with poor prognosis.Clinical awareness of this disease should be improved to avoid misdiagnosis,so as to improve the prognosis of patients and improve the quality of life.

18.
Front Cell Neurosci ; 17: 1283995, 2023.
Article in English | MEDLINE | ID: mdl-38099151

ABSTRACT

Introduction: The degeneration of injured axons is driven by conserved molecules, including the sterile armadillo TIR domain-containing protein SARM1, the cJun N-terminal kinase JNK, and regulators of these proteins. These molecules are also implicated in the regulation of synapse development though the mechanistic relationship of their functions in degeneration vs. development is poorly understood. Results and discussion: Here, we uncover disparate functional relationships between SARM1 and the transmembrane protein Raw in the regulation of Wallerian degeneration and synaptic growth in motoneurons of Drosophila melanogaster. Our genetic data suggest that Raw antagonizes the downstream output MAP kinase signaling mediated by Drosophila SARM1 (dSarm). This relationship is revealed by dramatic synaptic overgrowth phenotypes at the larval neuromuscular junction when motoneurons are depleted for Raw or overexpress dSarm. While Raw antagonizes the downstream output of dSarm to regulate synaptic growth, it shows an opposite functional relationship with dSarm for axonal degeneration. Loss of Raw leads to decreased levels of dSarm in axons and delayed axonal degeneration that is rescued by overexpression of dSarm, supporting a model that Raw promotes the activation of dSarm in axons. However, inhibiting Fos also decreases dSarm levels in axons but has the opposite outcome of enabling Wallerian degeneration. The combined genetic data suggest that Raw, dSarm, and Fos influence each other's functions through multiple points of regulation to control the structure of synaptic terminals and the resilience of axons to degeneration.

19.
Acta Neurochir (Wien) ; 165(12): 3993-4002, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37907766

ABSTRACT

PURPOSE: Polyethylene glycol is known to improve recovery following its use in repair of acute peripheral nerve injury. The duration till which PEG works remains a subject of intense research. We studied the effect of PEG with augmentation of 20Htz of electrical stimulation (ES) following neurorrhaphy at 48 h in a rodent sciatic nerve neurotmesis model. METHOD: Twenty-four Sprague Dawley rats were divided into 4 groups. In group I, the sciatic nerve was transected and repaired immediately. In group II, PEG fusion was done additionally after acute repair. In group III, repair and PEG fusion were done at 48 h. In group IV, ES of 20Htz at 2 mA for 1 h was added to the steps followed for group III. Weekly assessment of sciatic functional index (SFI), pinprick, and cold allodynia tests were done at 3 weeks and euthanized. Sciatic nerve axonal count and muscle weight were done. RESULTS: Groups II, III, and IV showed significantly better recovery of SFI (II: 70.10 ± 1.24/III: 84.00 ± 2.59/IV: 74.40 ± 1.71 vs I: 90.00 ± 1.38) (p < 0.001) and axonal counts (II: 4040 ± 270/III: 2121 ± 450/IV:2380 ± 158 vs I: 1024 ± 094) (p < 0.001) at 3 weeks. The experimental groups showed earlier recovery of sensation in comparison to the controls as demonstrated by pinprick and cold allodynia tests and improved muscle weights. Addition of electrical stimulation helped in better score with SFI (III: 84.00 ± 2.59 vs IV: 74.40 ± 1.71) (p < 0.001) and muscle weight (plantar flexors) (III: 0.49 ± 0.02 vs IV: 0.55 ± 0.01) (p < 0.001) in delayed repair and PEG fusions. CONCLUSION: This study shows that PEG fusion of peripheral nerve repair in augmentation with ES results in better outcomes, and this benefit can be demonstrated up to a window period of 48 h after injury.


Subject(s)
Peripheral Nerve Injuries , Trauma, Nervous System , Rats , Animals , Rats, Sprague-Dawley , Polyethylene Glycols/therapeutic use , Hyperalgesia , Disease Models, Animal , Sciatic Nerve/surgery , Electric Stimulation , Nerve Regeneration/physiology , Recovery of Function
20.
J Neuroinflammation ; 20(1): 243, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872624

ABSTRACT

BACKGROUND: Myelin that surrounds axons breaks in trauma and disease; e.g., peripheral nerve and spinal cord injuries (PNI and SCI) and multiple sclerosis (MS). Resulting myelin debris hinders repair if not effectively scavenged by Schwann cells and macrophages in PNI and by microglia in SCI and MS. We showed previously that myelin debris evades phagocytosis as CD47 on myelin ligates SIRPα (signal regulatory protein-α) on macrophages and microglia, triggering SIRPα to inhibit phagocytosis in phagocytes. Using PNI as a model, we tested the in vivo significance of SIRPα-dependent phagocytosis inhibition in SIRPα null mice, showing that SIRPα deletion leads to accelerated myelin debris clearance, axon regeneration and recovery of function from PNI. Herein, we tested how deletion of CD47, a SIRPα ligand and a cell surface receptor on Schwann cells and phagocytes, affects recovery from PNI. METHODS: Using CD47 null (CD47-/-) and wild type mice, we studied myelin disruption/dismantling and debris clearance, axon regeneration and recovery of function from PNI. RESULTS: As expected from CD47 on myelin acting as a SIRPα ligand that normally triggers SIRPα-dependent phagocytosis inhibition in phagocytes, myelin debris clearance, axon regeneration and function recovery were all faster in CD47-/- mice than in wild type mice. Unexpectedly compared with wild type mice, myelin debris clearance started sooner and CD47-deleted Schwann cells displayed enhanced disruption/dismantling and scavenging of myelin in CD47-/- mice. Furthermore, CD47-deleted macrophages from CD47-/- mice phagocytosed more myelin debris than CD47-expressing phagocytes from wild type mice. CONCLUSIONS: This study reveals two novel normally occurring CD47-dependent mechanisms that impede myelin debris clearance. First, CD47 expressed on Schwann cells inhibits myelin disruption/dismantling and debris scavenging in Schwann cells. Second, CD47 expressed on macrophages inhibits myelin debris phagocytosis in phagocytes. The two add to a third mechanism that we previously documented whereby CD47 on myelin ligates SIRPα on macrophages and microglia, triggering SIRPα-dependent phagocytosis inhibition in phagocytes. Thus, CD47 plays multiple inhibitory roles that combined impede myelin debris clearance, leading to delayed recovery from PNI. Similar inhibitory roles in microglia may hinder recovery from other pathologies in which repair depends on efficient phagocytosis (e.g., SCI and MS).


Subject(s)
CD47 Antigen , Myelin Sheath , Peripheral Nerve Injuries , Animals , Mice , Axons/pathology , CD47 Antigen/genetics , CD47 Antigen/metabolism , Ligands , Macrophages/metabolism , Myelin Sheath/metabolism , Nerve Regeneration , Peripheral Nerve Injuries/metabolism , Phagocytosis , Schwann Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL